
The Jury Is In: Monolithic OS Design Is Flawed
Microkernel-based Designs Improve Security

Simon Biggs, Damon Lee, Gernot Heiser
Data61, CSIRO
UNSW Sydney

gernot.heiser@data61.csiro.au

ABSTRACT
The security benefits of keeping a system’s trusted comput-
ing base (TCB) small has long been accepted as a truism, as
has the use of internal protection boundaries for limiting
the damage caused by exploits. Applied to the operating sys-
tem, this argues for a small microkernel as the core of the
TCB, with OS services separated into mutually-protected
components (servers) – in contrast to “monolithic” designs
such as Linux, Windows or MacOS. While intuitive, the ben-
efits of the small TCB have not been quantified to date. We
address this by a study of critical Linux CVEs, where we
examine whether they would be prevented or mitigated by
a microkernel-based design. We find that almost all exploits
are at least mitigated to less than critical severity, and 40%
completely eliminated by an OS design based on a verified
microkernel, such as seL4.

ACM Reference Format:
Simon Biggs, Damon Lee, Gernot Heiser. 2018. The Jury Is
In: Monolithic OS Design Is Flawed: Microkernel-based Designs
Improve Security. In 9th Asia-Pacific Workshop on Systems (APSys
’18), August 27–28, 2018, Jeju Island, Republic of Korea. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3265723.3265733

1 INTRODUCTION
Modern mainstream operating systems (OSes) are designed
for functionality, speed and ease of development. With the
increase of functionality and support for more diverse hard-
ware, their size and complexity keeps growing. These OSes
have a monolithic structure, with most services contained
in the kernel, i.e. the part of the system that executes in the
privileged mode of the hardware. The result is an explosive
growth in the amount of privileged code, as shown in Fig-
ure 1 for Linux. The Windows kernel, while not growing as

APSys ’18, August 27–28, 2018, Jeju Island, Republic of Korea
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in 9th Asia-Pacific Workshop on Systems (APSys ’18), August 27–28, 2018, Jeju
Island, Republic of Korea, https://doi.org/10.1145/3265723.3265733.

 0

 5

 10

 15

 20

 25

0
.0

1

1
.0

.0
1
.1

.0
1
.2

.0
1
.3

.0
2
.0

.0
2
.1

.0
2
.2

.0
2
.3

.0
2
.4

.0
2
.5

.0
2
.6

.0
3
.0

4
.0

4
.1

0

4
.1

5

M
il
li
o
n
 L

in
e
s
 o

f 
S

o
u
rc

e
 C

o
d
e

Kernel Version

Figure 1: Linux kernel code size growth [Wikipedia].

quickly, is even bigger, with a recent version said to be 60–
65MSLOC (millions of source lines of code) [Ahmed 2016]
compared to 26MSLOC for Linux.
Any code executing in privileged mode can bypass secu-

rity, and is therefore inherently part of a system’s trusted
computing base (TCB) [Rushby 1981]. Hence we are expe-
riencing a rapid growth of the TCB of mainstream OSes.
As almost all code is buggy, and the number of bugs grows
with the size of the code base, this TCB growth is bound to
lead to a growth of the number of vulnerabilities. This is a
serious problem, as OS vulnerabilities are a key enabler of
cyber crime, the cost of which is estimated to reach $6 trillion
($6 × 1012) by 2021 [Mason 2018].

It has long been argued that the microkernel design, with
its ability to reduce TCB size, contain faults and encapsulate
untrusted components, is, in terms of security, superior to
monolithic systems [Hohmuth et al. 2004]. However, to the
best of our knowledge, there has been no quantitative study
to date that can back this claim.
In this paper we present such a study. Specifically we

analyse all critical security bugs in the monolithic Linux ker-
nel from the Common Vulnerabilities and Exposures (CVE)

https://doi.org/10.1145/3265723.3265733
https://doi.org/10.1145/3265723.3265733
https://en.wikipedia.org/wiki/Linux_kernel#Development


APSys ’18, August 27–28, 2018, Jeju Island, Republic of Korea Simon Biggs, Damon Lee, Gernot Heiser

repository [Mitre 2018]. For each of these we analyse how
a design of the same OS functionality on top of a micro-
kernel, especially a formally verified microkernel such as
seL4 [Klein et al. 2009], would retain, mitigate or eliminate
the vulnerability.
The results are a stark confirmation of the arguments

in favor of a small TCB. We find that 96% of critical Linux
compromises would no longer be critical with a microkernel-
based design, 40% would be completely eliminated by an
OS based on a verified microkernel, and 29% even with an
unverified microkernel.

2 BACKGROUND
2.1 Bug density
A large code base has many bugs. How many depends on
factors such as the inherent (conceptual) complexity of the
code, the development processes, programming languages
and others. Estimates vary, Hatton [1997] estimates an av-
erage of 6 faults per kSLOC and a best-case fault density of
0.5–1/kSLOC, while Mohagheghi et al. [2004] estimate a den-
sity of 1–3/kSLOC. Kernel code is highly complex, so its bug
density is unlikely to be near the lower end of estimates. But
even if we take the most optimistic estimate of 0.5/kSLOC,
we can expect the Linux kernel to have about 13,000 bugs,
and the Windows kernel about 30,000.

2.2 Operating-system structure
These bug-density figures provide a good explanation why
computer systems regularly fail to provide security. But this
is not the best we can do, as had been realised decades ago.
Rushby [1981] argued for a security-oriented design that
uses a minimal separation kernel for isolating subsystems,
and the Orange Book [Department of Defence 1986] requires
that the TCB be minimised.
OS design for minimal TCB size implies an architecture

based on a microkernel. Contrary to a monolithic system,
such as Linux, Windows or MacOS, a microkernel keeps
the code that operates in privileged mode to a bare mini-
mum, focusing on fundamental mechanisms for managing
the hardware, and implementing all actual system services
and policies in user-level servers [Liedtke 1995].
Figure 2 shows the difference in design. In a monolithic

system, an application obtains a service by executing a syscall
instruction, which invokes the low-level system-call handler,
which in turn redirects the request to the respective in-kernel
service. A monolithic kernel tends to have a layered (vertical)
structure [Dijkstra 1968], with more complex services build-
ing on more primitive ones. As the system evolves, layers
are added and enhanced, leading to a growth in the overall
kernel size and complexity.

Hardware 

VFS 
 
IPC, file system 
 
Scheduler, virtual memory 
 
Device drivers, dispatcher 

Hardware 

 
IPC, virtual memory 

Application 
 

Application 
 

Unix 
Server 
 
 

File 
Server 
 
 

Device 
Driver 
 

Syscall 

IPC 

Kernel 
Mode 

User 
Mode 

Figure 2: Monolithic vs microkernel-based OS archi-
tecture.

To invoke a service in a microkernel-based system, an ap-
plication sends an inter-process communication (IPC) mes-
sage to a server, which replies back by IPC. Device drivers
are also user-level servers, one for each device. The micro-
kernel provides isolation between processes and otherwise
mostly acts as a fast context-switching engine. The resulting
system has a horizontal structure, with applications and ser-
vices running side-by-side. Functionality is added by adding
servers or extending existing ones. Functionality added to
one service does not affect an unrelated one.

A key property of a microkernel is that it enables a design
based on least privilege [Saltzer and Schroeder 1975]: Ser-
vices not only run in user mode, subject to kernel-imposed
isolation. They also need to be furnished with only the bare
minimum of privileges to do their job. For example, a device
driver needs access to device registers and little more, while
no other service needs access to those device registers. If
a server runs with minimal privileges, then compromising
it cannot escalate privileges beyond what the server holds
already.

A different aspect of the same underlying principle is fault
containment: If a server, say the IP stack, is compromised,
this will affect the service it provides, but leave components
that do not depend on this service completely unaffected.

There is an inherent cost to microkernels: Instead of two
mode switches as in a monolithic system, the hardware cost
for invoking a system service is four mode switches and
two context switches: The client invokes the kernel’s IPC
operation (two mode switches), and so does the server (an-
other two mode switches). To deliver the message, the kernel
switches from the client’s to the server’s context and back
(two context switches).

2.3 Microkernel pros and cons
The idea of a microkernel goes back to Brinch Hansen’s Nu-
cleus [1970], which aimed for a policy-free general-purpose
substrate on which to implement the actual system. Micro-
kernels were popular in the 1980s but were plagued by per-
formance issues, leading to failures such as the $2bn debacle
of the IBM Workplace OS [Fleisch et al. 1998], and claims



The Jury Is In: Monolithic OS Design Is Flawed APSys ’18, August 27–28, 2018, Jeju Island, Republic of Korea

that poor performance was inherent in the approach [Chen
and Bershad 1993].

This claim was put to rest by the L4 microkernel [Liedtke
1993], which showed that microkernel operations could be
so fast as to add very little overhead on the services provided
at user level. This is not surprising if you do the numbers:
mode and context switches are in the order of dozens of
cycles, and a round-trip L4 IPC typically costs of the order
of 500–800 cycles, a fraction of a microsecond on modern
hardware, and a tiny fraction of the cost of a typical system
service.

The small performance cost is offset by a dramatically re-
duced TCB: A well-designed microkernel is several orders of
magnitude smaller than a monolithic kernel. This is demon-
strated by L4 kernels: In striking contrast to Figure 1, L4
kernels stayed close to constant in size, growing in 20 years
from 6 kSLOC of the original L4 to 9 kSLOC of seL4 [Heiser
and Elphinstone 2016].

Yet one might question whether it is possible to provide all
functionality of a full-blown OS in a microkernel-based de-
sign. This question has been answered in the assertive many
years ago, going back to the multi-personality Workplace OS
built on Mach [Fleisch et al. 1998], the POSIX API provided
by QNX [Leroux 2011], and more recently Google’s Fuchsia
OS [Google 2018] which is based on the Zircon microkernel.

2.4 OS verification and seL4
The seL4microkernel has been designed for security from the
ground up. It uses access control based on capabilities [Den-
nis and Van Horn 1966], which provides fine-grained control
over access rights in the system, and enables a true least-
privilege design.
More importantly, seL4 demonstrated that small is beau-

tiful: Owing to its small size, it was feasible to formally
prove seL4’s implementation correct, and use that as the
enabler of further proofs, including integrity and confiden-
tiality enforcement [Klein et al. 2014]. seL4 is also the only
protected-mode OS in the literature that has undergone a
sound and high-assurance analysis of worst-case execution
times [Blackham et al. 2011; Sewell et al. 2017].
As such, seL4 is presently the best approximation to a

small TCB that is almost impossible to compromise, and
hence the most promising base for building secure systems
on top. In our study we will use a hypothetical seL4-based
OS with the complete functionality of Linux to determine
whether vulnerabilities can be avoided by OS design.

2.5 Vulnerability assessment: CVSS
The common vulnerability scoring system (CVSS) [FIRST
2015] assigns a vulnerability score in the range 0.0 to 10.0,

where vulnerabilities with a score 9.0 or above are considered
critical.
The overall score is composed from three major metrics,

base, temporal and environmental.
The base metric is scored according to:

Exploitability: This scores the ease of exploiting the
vulnerability, taking into account the attack vector
(remote vs local vs physical access), the complexity of
the attack (no preconditions vs serendipity), and the
privileges required to carry it out.

Scope: Assesses whether the exploit is confined to a sin-
gle component or goes beyond the compromised com-
ponent.

Impact: Assesses the degree to which confidentiality (C),
integrity (I) or availability (A) are impacted. Confiden-
tiality is impacted if the exploit allows an attacker to
steal any information, integrity is violated if the at-
tacker can affect unauthorised modification of data,
and availability is affected if the attacker can crash
the system or the attacked application, or otherwise
prevents the progress of an application’s execution.

The temporal metric quantifies:

Exploit maturity: Measures the degree to which the
details of the exploit are publicly available, or even
incorporated into readily-accessible tools.

Remediation level: Assesses the availability and com-
pleteness of defences.

Report confidence: Assesses the degree to which the
exploit is verified.

The environmental metrics measures:

Security requirements: Assesses the importance of
the affected asset to the organisation in terms of the
CIA properties.

Modified base: A catch-all metric for adjusting the base
metric to special circumstances.

The full list of vulnerabilities can be found at the Mitre
CVE site [Mitre 2018]. A critical CVE is characterised as
simple to exploit, of high impact, too recent for defences to
be available, and verified.

3 METHODOLOGY
Our aim is to determine how switching from a monolithic
kernel to an OS based on a (verified) microkernel would af-
fect the severity of real Linux exploits. In order to assess
this, we assert that it is the kernel’s core duty to provide
isolation between unrelated applications that are executing
concurrently: One malicious application must not be able to
compromise the confidentiality, integrity or availability of an-
other application. An exploit violates this isolation. In this



APSys ’18, August 27–28, 2018, Jeju Island, Republic of Korea Simon Biggs, Damon Lee, Gernot Heiser

work we evaluate to which degree this violation is reduced
or eliminated by a changed OS structure.

3.1 Threat model
In a monolithic OS, compromising one (kernel-provided) ser-
vice compromises the whole system, therefore the whole
multi-million-SLOC kernel is in every application’s TCB. In
contrast, in a microkernel-based system, the TCB of an appli-
cation becomes highly dependent on the system services it
uses. We need to define this set of services in order to investi-
gate the effect of the reduced TCB of the microkernel-based
system.
Specifically, we assume a hypothetical, bug-free applica-

tion that performs a security-critical function. This appli-
cation will require access to an IP stack, persistent storage
and display output. While display output is not necessary
for many programs, an attacker who gains control over the
display could trick a user into further compromising their
system, so we include it in our set of resources that must not
be compromised. An attack through a compromised display
might be very hard if not infeasible in many cases, so this is
a conservative requirement which might overestimate the
severity of vulnerabilities in our hypothetical application.
In all other respects, the threat model of a CVE under

examination remains unchanged.

3.2 Classification
We define five mitigation categories, and assign each exploit
to one of these categories. The mitigation scores indicate
how the operation of our hypothetical, security-critical ap-
plication exploit would be affected by a change in OS design.

The critical question to ask is whether a particular exploit
could impact an OS service implemented in userspace (as
opposed to only being effective if compromising the kernel)
and if so, which privileges the affected component would
require, and which of the CIA properties are affected.

For each exploit we consider its worst-case effect. For ex-
ample, the description of many exploits indicate a possibility
for arbitrary code execution. We assume that the exploit does
indeed allow execution of arbitrary code.

The mitigation categories are as follows (we give specific
examples in Section 4.1).

Eliminated by Microkernel (Yes): A vulnerability is
placed into this category if our hypothetical appli-
cation would be unaffected by this vulnerability as
long as the exploit happened in a microkernel-based
operating system. The attacker would not be able to
violate any of the application’s CIA properties. This
implies that the exploit must not compromise any of
the services our program requires (IP stack, files on
persistent storage, display output). Vulnerabilities in

this category tend to be on services which could be
implemented in userspace with limited privileges.

Eliminated by Formal Verification (FV): This cate-
gory is similar to the previous one, except that the
exploit could affect the microkernel itself, unless the
kernel is formally verified (as is the case for seL4).
Vulnerabilities in this category are those which affect
functions that must be performed by the kernel, e.g.
page-table management.

Partially mitigated by Microkernel (CIA): In order
to be placed in this category, a vulnerability must
have compromised an operating system component
which is used by our application but not necessarily
the whole system. We furthermore identify which se-
curity properties of the application are compromised,
i.e. the subset of {C,I,A}. We assume that the applica-
tion takes steps to minimise its dependency on services
provided by user-level servers. For example, an applica-
tion can protect itself against a compromised IP stack
if it encrypts and signs all data sent over the network.
However, the IP stack could still attack availability by
dropping all packets. We would assign such an exploit
an “A” score.

No Impact (No): Exploits in this category are unaf-
fected by a change in OS design. This includes hard-
ware and bootloader vulnerabilities in addition to ser-
vices that require kernel mode but are not implemented
by seL4.

Insufficient Information (???): A vulnerability placed
in this category did not have sufficient information to
determine in which of the above categories if belongs.

3.3 Process
We perform the classification by having two authors indepen-
dently examine each exploit and assign a mitigation score.
Where the assessments differ, the third author examines the
exploit to determine the final score.

3.4 Threats to validity
The following factors could, despite our best efforts, influ-
ence our study in a way that would make our observations
misleading.

• Linux critical CVEs might not be representative of
monolithic systems. This would mean that our results,
while valid for Linux, would not generalise to other
monolithic systems. We consider the impact of this
threat very low: While the critical vulnerabilities we
study are specific to Linux, in almost all cases simi-
lar functionality exists in the kernel of other mono-
lithic OSes, such as Windows and MacOS. An exploit
against similar functionality would most likely be of



The Jury Is In: Monolithic OS Design Is Flawed APSys ’18, August 27–28, 2018, Jeju Island, Republic of Korea

comparable severity, as in each case kernel code is
compromised.

• CVE scores are strongly affected by remote exploitabil-
ity. Consequently, there may be an over-representation
of network stack vulnerabilities in critical CVEs, which
may bias the scores, and make the results of our study
not fully representative of the most serious security
threats. However, as our hypothetical application de-
pends on network connectivity, such a networking
bias would lead to our mitigation assessments being
pessimistic, i.e. underestimate the average benefit of a
microkernel-based design. We therefore consider the
impact of this threat low.

• Critical CVEs might not be representative of all serious
vulnerabilities. It is conceivable that severe (in contrast
to critical) exploits might exhibit different properties
in respect to how their severity and exploitability is
dependent on OS structure. We consider the impact
of this threat low: Without further study it cannot be
ruled out that the nature of severe threats are different,
but there is no reason to suspect that they are radically
different, and in any case, critical vulnerabilities are
the most concerning.

• Proper isolation of services might not be feasible,
thus diminishing the benefits of microkernel-enforced
exploit-containment. We consider the impact of this
threat low to medium, as there are existing sys-
tems, such as Minix [Tanenbaum 2016] and especially
QNX [Leroux 2011], which is routinely deployed in
safety-critical systems, show that this isolation is fea-
sible.

• Applications might not be designed to make full use
of microkernel-based isolation. As explained in Sec-
tion 3.2, we assume that applications are designed to
minimise damage resulting from a compromised sys-
tems service. This is clearly a best-case scenario, and
most present apps will not necessarily comply with
this assumption. This is not surprising, as they are
designed to run on monolithic systems, where there
is no choice but to trust the whole OS, and there is
no benefit from minimising exposure to the OS. This
does not affect the validity of our results, which are
examining the degree of security that is achievable in a
microkernel-based OS. Hence we rate this threat low.

• We noted in Section 3.1 that requiring the integrity
of the display was a conservative assumption that
might overestimate the severity of a compromise of
the microkernel-based system in many cases. If so, it
would lead us to underestimate the security benefits of
a microkernel-based approach, we therefore rate this
threat as low.

4 RESULTS
There were a total of 115 critical CVEs for Linux as of late
2017, we assess all of them. We first provide a few examples,
and then present the overall results.

4.1 Examples
4.1.1 Eliminated by Microkernel. An example of this cate-
gory is CVE-2015-4001, which describes an integer signed-
ness error in the OZWPAN driver. This driver is a USB host
controller device driver which does not have a hardware
device associated with it, but instead is used to communicate
with a wireless peripheral over Wi-Fi. The integer signed-
ness error can lead to the result of a subtraction becoming
negative, causing a memcpy operation to interpret the value
as an intention to copy large amounts of network-supplied
data into a heap buffer. An attacker can insert a payload into
a crafted packet to trigger the error and inject data. Since
Linux loads the driver into the kernel, it could cause a denial
of service by crashing the kernel, or could possibly execute
arbitrary code with kernel privileges.

In a microkernel-based system, the driver would run as a
user-level server in its own address space, and as such could
not overwrite kernel memory and cause a system crash,
information leakage or corruption. Furthermore, any code
injection would only execute with the minimal privileges
required by the driver. In a well-designed microkernel-based
system, this driver would only have the ability to communi-
cate with aWi-Fi user-level server to interact with the device
and with applications using it, but little more. Therefore, this
exploit would not affect the security of our hypothetical
application.

4.1.2 Eliminated by Formal Verification. CVE-2014-9803 de-
scribes an exploit where the Linux kernel on some Nexus
devices mishandled execute-only pages, which allowed a
crafted application to gain kernel privileges. As this oper-
ation must be performed in kernel mode, it could equally
occur in a microkernel. However, in a formally verified mi-
crokernel, such as seL4, this bug could not occur.

4.1.3 Partially Mitigated by Microkernel. CVE-2015-8961 de-
scribes an exploit in the __ext4_journal_stop function.
On Linux it can result in full file-system disclosure (C) or a
kernel crash (A).

On a microkernel, the file system would be implemented
as a user-level server, and this exploit would not result in
a kernel crash. However since an attacker may gain access
to all files, an application which stored confidential data on
persistent storage could be compromised. If the data written
to persistent storage was encrypted with a key that was
not accessible by the file system (for example, entered by
the user) then an attacker could not use this compromise to

https://www.cvedetails.com/cve/CVE-2015-4001
https://www.cvedetails.com/cve/CVE-2014-9803
https://www.cvedetails.com/cve/CVE-2015-8961


APSys ’18, August 27–28, 2018, Jeju Island, Republic of Korea Simon Biggs, Damon Lee, Gernot Heiser

CVE MS CVE MS CVE MS CVE MS CVE MS CVE MS
1999-0461 A 2011-3191 A 2015-8967 Yes 2016-6789 Yes 2016-8437 FV 2017-0429 IA
1999-0590 No 2012-1146 FV 2016-2061 Yes 2016-6790 Yes 2016-8438 CA 2017-0430 CIA
2000-0506 Yes 2014-0100 A 2016-2062 IA 2016-7117 CIA 2016-8439 Yes 2017-0455 No
2002-1572 Yes 2014-2523 CA 2016-2063 Yes 2016-7910 CIA 2016-8440 FV 2017-0507 Yes
2002-1573 Yes 2014-2648 Yes 2016-2065 Yes 2016-7911 A 2016-8455 Yes 2017-0508 Yes
2003-0959 FV 2014-9803 FV 2016-2066 Yes 2016-7912 CA 2016-8459 IA 2017-0510 No
2004-1017 FV 2014-9870 FV 2016-2067 IA 2016-7913 Yes 2016-8479 IA 2017-0528 FV
2004-1137 A 2015-0312 Yes 2016-2068 Yes 2016-8398 A 2016-9120 Yes 2017-0561 CIA
2006-1368 A 2015-0569 CA 2016-3955 A 2016-8424 IA 2016-9313 Yes 2017-0563 No
2006-1523 FV 2015-0570 CA 2016-5344 Yes 2016-8425 IA 2016-9555 A 2017-0564 Yes
2006-1857 CA 2015-0571 Yes 2016-6758 Yes 2016-8426 IA 2016-9644 FV 2017-0605 FV
2006-6535 A 2015-0573 Yes 2016-6759 Yes 2016-8427 IA 2016-10150 Yes 2017-0648 No
2008-1673 CA 2015-1421 A 2016-6760 Yes 2016-8428 IA 2017-0306 IA 2017-7895 A
2008-3496 Yes 2015-3331 Yes 2016-6761 Yes 2016-8429 IA 2017-0307 IA 2017-8890 A
2008-3915 A 2015-4001 Yes 2016-6775 IA 2016-8430 IA 2017-0333 IA 2017-11176 FV
2008-5134 A 2015-4002 Yes 2016-6776 IA 2016-8431 IA 2017-0335 IA
2009-0065 A 2015-8787 A 2016-6777 IA 2016-8432 IA 2017-0337 IA
2009-4538 A 2015-8812 CIA 2016-6781 ??? 2016-8434 IA 2017-0338 IA
2010-2495 A 2015-8961 CIA 2016-6782 ??? 2016-8435 IA 2017-0427 CA
2010-2521 CIA 2015-8962 CIA 2016-6785 ??? 2016-8436 IA 2017-0428 IA

Table 1: Mitigation scores (MS) for all critical Linux CVEs (IDs linked to details pages). Key: “Yes”: prevented by
microkernel-based design; “FV”: prevented by formally verified kernel; “CIA” (or subset): mitigated to loss of
confidentiality/integrity/availability of particular service; “No”: unaffected by microkernel-based design; “???”:
insufficient information.

read confidential file data. Here the hypothetical application
would still be secure if it had been designed to not trust
the file system. However, the attacker can still crash the file
system, attacking availability. Consequently we assign an
“A” score to this vulnerability.

4.1.4 No Impact. An example of a vulnerability where even
a formally verified microkernel cannot help is CVE-2017-
0563. This vulnerability was an elevation-of-privilege exploit
within the touchscreen driver. The driver requires access to
the I2C bus1 within the phone. With access to this bus it is
possible to re-flash the system-on-chip firmware or boot-
loader, both of which were unsigned.

By re-flashing bootloader or firmware, the attacker gains
control before the kernel starts executing, and can therefore
compromise even a formally verified kernel (breaking the
verification assumptions of hardware operation).

4.2 Overall results
Table 1 shows the complete results, assigning a mitigation
score to each of the 115 critical Linux vulnerabilities.

1I2C (pronounced I-squared-C) is a multi-master, multi-slave serial computer
bus which was invented by Phillips Semiconductor.

Table 2 summarises the results according to the mitiga-
tion categories. Here we further split the partially-mitigated
category into strongly and weakly mitigated. We consider
the mitigation strong if the exploit can only effect denial
of a particular service (e.g. IP networking). If the mitigated
compromise can still violate confidentiality or integrity, we
consider the mitigation weak.

Of all CVEs, only three (3%) lacked information needed for
classification. We exclude this small fraction from Table 2,
the percentage figures here refer to the fraction of the 112
CVEs which we could classify. We find that 29% of all critical
Linux vulnerabilities would be completely prevented in a

Assessment Short # Fract. Cumul.
Eliminated Yes 33 29% 29%
Eliminated
with verification

FV 12 11% 40%

Strongly mitigated A 19 17% 57%
Weakly mitigated C/I 43 38% 96%
Unaffected No 5 4% 100%
Total: 112 100% 100%

Table 2: Summary of findings.

https://www.cvedetails.com/cve/CVE-1999-0461
https://www.cvedetails.com/cve/CVE-2011-3191
https://www.cvedetails.com/cve/CVE-2015-8967
https://www.cvedetails.com/cve/CVE-2016-6789
https://www.cvedetails.com/cve/CVE-2016-8437
https://www.cvedetails.com/cve/CVE-2017-0429
https://www.cvedetails.com/cve/CVE-1999-0590
https://www.cvedetails.com/cve/CVE-2012-1146
https://www.cvedetails.com/cve/CVE-2016-2061
https://www.cvedetails.com/cve/CVE-2016-6790
https://www.cvedetails.com/cve/CVE-2016-8438
https://www.cvedetails.com/cve/CVE-2017-0430
https://www.cvedetails.com/cve/CVE-2000-0506
https://www.cvedetails.com/cve/CVE-2014-0100
https://www.cvedetails.com/cve/CVE-2016-2062
https://www.cvedetails.com/cve/CVE-2016-7117
https://www.cvedetails.com/cve/CVE-2016-8439
https://www.cvedetails.com/cve/CVE-2017-0455
https://www.cvedetails.com/cve/CVE-2002-1572
https://www.cvedetails.com/cve/CVE-2014-2523
https://www.cvedetails.com/cve/CVE-2016-2063
https://www.cvedetails.com/cve/CVE-2016-7910
https://www.cvedetails.com/cve/CVE-2016-8440
https://www.cvedetails.com/cve/CVE-2017-0507
https://www.cvedetails.com/cve/CVE-2002-1573
https://www.cvedetails.com/cve/CVE-2014-2648
https://www.cvedetails.com/cve/CVE-2016-2065
https://www.cvedetails.com/cve/CVE-2016-7911
https://www.cvedetails.com/cve/CVE-2016-8455
https://www.cvedetails.com/cve/CVE-2017-0508
https://www.cvedetails.com/cve/CVE-2003-0959
https://www.cvedetails.com/cve/CVE-2014-9803
https://www.cvedetails.com/cve/CVE-2016-2066
https://www.cvedetails.com/cve/CVE-2016-7912
https://www.cvedetails.com/cve/CVE-2016-8459
https://www.cvedetails.com/cve/CVE-2017-0510
https://www.cvedetails.com/cve/CVE-2004-1017
https://www.cvedetails.com/cve/CVE-2014-9870
https://www.cvedetails.com/cve/CVE-2016-2067
https://www.cvedetails.com/cve/CVE-2016-7913
https://www.cvedetails.com/cve/CVE-2016-8479
https://www.cvedetails.com/cve/CVE-2017-0528
https://www.cvedetails.com/cve/CVE-2004-1137
https://www.cvedetails.com/cve/CVE-2015-0312
https://www.cvedetails.com/cve/CVE-2016-2068
https://www.cvedetails.com/cve/CVE-2016-8398
https://www.cvedetails.com/cve/CVE-2016-9120
https://www.cvedetails.com/cve/CVE-2017-0561
https://www.cvedetails.com/cve/CVE-2006-1368
https://www.cvedetails.com/cve/CVE-2015-0569
https://www.cvedetails.com/cve/CVE-2016-3955
https://www.cvedetails.com/cve/CVE-2016-8424
https://www.cvedetails.com/cve/CVE-2016-9313
https://www.cvedetails.com/cve/CVE-2017-0563
https://www.cvedetails.com/cve/CVE-2006-1523
https://www.cvedetails.com/cve/CVE-2015-0570
https://www.cvedetails.com/cve/CVE-2016-5344
https://www.cvedetails.com/cve/CVE-2016-8425
https://www.cvedetails.com/cve/CVE-2016-9555
https://www.cvedetails.com/cve/CVE-2017-0564
https://www.cvedetails.com/cve/CVE-2006-1857
https://www.cvedetails.com/cve/CVE-2015-0571
https://www.cvedetails.com/cve/CVE-2016-6758
https://www.cvedetails.com/cve/CVE-2016-8426
https://www.cvedetails.com/cve/CVE-2016-9644
https://www.cvedetails.com/cve/CVE-2017-0605
https://www.cvedetails.com/cve/CVE-2006-6535
https://www.cvedetails.com/cve/CVE-2015-0573
https://www.cvedetails.com/cve/CVE-2016-6759
https://www.cvedetails.com/cve/CVE-2016-8427
https://www.cvedetails.com/cve/CVE-2016-10150
https://www.cvedetails.com/cve/CVE-2017-0648
https://www.cvedetails.com/cve/CVE-2008-1673
https://www.cvedetails.com/cve/CVE-2015-1421
https://www.cvedetails.com/cve/CVE-2016-6760
https://www.cvedetails.com/cve/CVE-2016-8428
https://www.cvedetails.com/cve/CVE-2017-0306
https://www.cvedetails.com/cve/CVE-2017-7895
https://www.cvedetails.com/cve/CVE-2008-3496
https://www.cvedetails.com/cve/CVE-2015-3331
https://www.cvedetails.com/cve/CVE-2016-6761
https://www.cvedetails.com/cve/CVE-2016-8429
https://www.cvedetails.com/cve/CVE-2017-0307
https://www.cvedetails.com/cve/CVE-2017-8890
https://www.cvedetails.com/cve/CVE-2008-3915
https://www.cvedetails.com/cve/CVE-2015-4001
https://www.cvedetails.com/cve/CVE-2016-6775
https://www.cvedetails.com/cve/CVE-2016-8430
https://www.cvedetails.com/cve/CVE-2017-0333
https://www.cvedetails.com/cve/CVE-2017-11176
https://www.cvedetails.com/cve/CVE-2008-5134
https://www.cvedetails.com/cve/CVE-2015-4002
https://www.cvedetails.com/cve/CVE-2016-6776
https://www.cvedetails.com/cve/CVE-2016-8431
https://www.cvedetails.com/cve/CVE-2017-0335
https://www.cvedetails.com/cve/CVE-2009-0065
https://www.cvedetails.com/cve/CVE-2015-8787
https://www.cvedetails.com/cve/CVE-2016-6777
https://www.cvedetails.com/cve/CVE-2016-8432
https://www.cvedetails.com/cve/CVE-2017-0337
https://www.cvedetails.com/cve/CVE-2009-4538
https://www.cvedetails.com/cve/CVE-2015-8812
https://www.cvedetails.com/cve/CVE-2016-6781
https://www.cvedetails.com/cve/CVE-2016-8434
https://www.cvedetails.com/cve/CVE-2017-0338
https://www.cvedetails.com/cve/CVE-2010-2495
https://www.cvedetails.com/cve/CVE-2015-8961
https://www.cvedetails.com/cve/CVE-2016-6782
https://www.cvedetails.com/cve/CVE-2016-8435
https://www.cvedetails.com/cve/CVE-2017-0427
https://www.cvedetails.com/cve/CVE-2010-2521
https://www.cvedetails.com/cve/CVE-2015-8962
https://www.cvedetails.com/cve/CVE-2016-6785
https://www.cvedetails.com/cve/CVE-2016-8436
https://www.cvedetails.com/cve/CVE-2017-0428
https://www.cvedetails.com/cve/CVE-2017-0563
https://www.cvedetails.com/cve/CVE-2017-0563


The Jury Is In: Monolithic OS Design Is Flawed APSys ’18, August 27–28, 2018, Jeju Island, Republic of Korea

microkernel-based system, and a further 11% (a total of 40%)
if the microkernel was formally verified, like seL4.
A further 17% of exploits are strongly mitigated, result-

ing in only the loss of one particular non-essential service,
meaning that a total of 57% of critical Linux exploits would
be reduced to a low severity level.

Only 38% of exploits still lead to confidentiality or integrity
violations in a microkernel-based design. Even these weakly
mitigated vulnerabilities would no longer lead to full system
compromise, and therefore no longer be rated critical. Hence,
only the 4% “unaffected” vulnerabilities remain critical in
our microkernel scenario.

5 CONCLUSIONS
We have presented what is, to the best of our knowledge,
the first quantitative empirical assessment of the security
implications of operating system structure, i.e. monolithic
vs microkernel-based design.

Our results provide very strong evidence that operating-
system structure has a strong effect on security. 96% of crit-
ical Linux exploits would not reach critical severity in a
microkernel-based system, 57% would be reduced to low
severity, the majority of which would be eliminated alto-
gether if the system was based on a verified microkernel.
Even without verification, a microkernel-based design alone
would completely prevent 29% of exploits.

Given the limited number of documented exploits, we
have to assume our results to have a statistical uncertainty
of about nine percentage points. Taking this into account,
the results remain strong. The conclusion is inevitable: From
the security point of view, the monolithic OS design is
flawed and a root cause of the majority of compromises. It
is time for the world to move to an OS structure appropriate
for 21st century security requirements.

ACKNOWLEDGMENTS
We thank Charles Gray for suggesting this study, and Yuval
Yarom and the anonymous reviewers for helpful feedback.

REFERENCES
Fahim Ahmed. 2016. How many lines of code does Windows 10

contain? https://www.quora.com/How-many-lines-of-code-does-
Windows-10-contain

Bernard Blackham, Yao Shi, Sudipta Chattopadhyay, Abhik Roychoudhury,
and Gernot Heiser. 2011. Timing Analysis of a Protected Operating
System Kernel. In IEEE Real-Time Systems Symposium. Vienna, Austria,
339–348.

Per Brinch Hansen. 1970. The Nucleus of a Multiprogramming Operating
System. Commun. ACM 13 (1970), 238–250.

J. Bradley Chen and Brian N. Bershad. 1993. The Impact of Operating
System Structure on Memory System Performance. In ACM Symposium
on Operating Systems Principles. Asheville, NC, US, 120–133.

Jack B. Dennis and Earl C. Van Horn. 1966. Programming Semantics for
Multiprogrammed Computations. Commun. ACM 9 (1966), 143–155.

Department of Defence 1986. Trusted Computer System Evaluation Criteria.
Department of Defence. DoD 5200.28-STD.

Edsger W. Dijkstra. 1968. The Structure of the “THE” Multiprogramming
System. Commun. ACM 11 (1968), 341–346.

FIRST. 2015. CVSS v3.0 Specification Document. https://www.first.org/
cvss/specification-document

Brett D. Fleisch, Mark Allan A. Co, and Chao Tan. 1998. Workplace Micro-
kernel and OS: A Case Study. Software: Practice and Experience 28 (1998),
569–591.

Google. 2018. Fuchsia is not Linux. https://fuchsia.googlesource.com/
docs/+/HEAD/the-book/README.md

Les Hatton. 1997. Re-Examining the Fault Density - Component Size Con-
nection. IEEE Software 14, 2 (1997), 89–97.

Gernot Heiser and Kevin Elphinstone. 2016. L4 Microkernels: The Lessons
from 20 Years of Research and Deployment. ACM Transactions on Com-
puter Systems 34, 1 (April 2016), 1:1–1:29.

Michael Hohmuth, Michael Peter, Hermann Härtig, and Jonathan S. Shapiro.
2004. Reducing TCB size by using untrusted components — small ker-
nels versus virtual-machine monitors. In Proceedings of the 11th SIGOPS
European Workshop. Leuven, BE.

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas
Sewell, Rafal Kolanski, and Gernot Heiser. 2014. Comprehensive For-
mal Verification of an OS Microkernel. ACM Transactions on Computer
Systems 32, 1 (Feb. 2014), 2:1–2:70.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolan-
ski, Michael Norrish, Thomas Sewell, Harvey Tuch, and SimonWinwood.
2009. seL4: Formal Verification of an OS Kernel. In ACM Symposium on
Operating Systems Principles. ACM, Big Sky, MT, USA, 207–220.

Paul Leroux. 2011. Secure by Design: Using a Microkernel RTOS to Build
Secure, Fault-Tolerant Systems. http://www.qnx.com/content/dam/qnx/
whitepapers/2009/qnxsecurekernelwhitepaperRIMMC411.67.pdf.

Jochen Liedtke. 1993. Improving IPC by Kernel Design. In ACM Symposium
on Operating Systems Principles. Asheville, NC, USA, 175–188.

Jochen Liedtke. 1995. On µ-Kernel Construction. In ACM Symposium on
Operating Systems Principles. Copper Mountain, CO, USA, 237–250.

John Mason. 2018. Cyber Security Statistics. https://thebestvpn.com/cyber-
security-statistics-2018/

Mitre. 2018. Linux Kernel: CVE security vulnerabilities, versions and de-
tailed reports. https://www.cvedetails.com/product/47/Linux-Linux-
Kernel.html?vendorid=33

Parastoo Mohagheghi, Reidar Conradi, Ole M. Killi, and Henrik Schwarz.
2004. An Empirical Study of Software Reuse vs. Defect-Density and
Stability. In International Conference on Software Engineering.

John Rushby. 1981. Design and Verification of Secure Systems. In ACM
Symposium on Operating Systems Principles. Pacific Grove, CA, USA,
12–21.

Jerome H. Saltzer and Michael D. Schroeder. 1975. The Protection of Infor-
mation in Computer Systems. Proc. IEEE 63 (1975), 1278–1308.

Thomas Sewell, Felix Kam, and Gernot Heiser. 2017. High-Assurance Timing
Analysis for a High-Assurance Real-Time OS. Real-Time Systems 53 (Sept.
2017), 812–853.

Andrew S. Tanenbaum. 2016. Lessons Learned from 30 Years of MINIX.
Commun. ACM 59, 3 (2016), 70–78.

https://www.quora.com/ How-many-lines-of-code-does-Windows-10-contain
https://www.quora.com/ How-many-lines-of-code-does-Windows-10-contain
https://www.first.org/cvss/specification-document
https://www.first.org/cvss/specification-document
https://fuchsia.googlesource.com/docs/+/HEAD/the-book/ README.md
https://fuchsia.googlesource.com/docs/+/HEAD/the-book/ README.md
http://www.qnx.com/content/dam/qnx/whitepapers/2009/qnx_secure_kernel_whitepaper_RIM_MC411.67.pdf
http://www.qnx.com/content/dam/qnx/whitepapers/2009/qnx_secure_kernel_whitepaper_RIM_MC411.67.pdf
https://thebestvpn.com/cyber-security-statistics-2018/
https://thebestvpn.com/cyber-security-statistics-2018/
https://www.cvedetails.com/product/47/ Linux-Linux-Kernel.html?vendor_id=33
https://www.cvedetails.com/product/47/ Linux-Linux-Kernel.html?vendor_id=33

	Abstract
	1 Introduction
	2 Background
	2.1 Bug density
	2.2 Operating-system structure
	2.3 Microkernel pros and cons
	2.4 OS verification and seL4
	2.5 Vulnerability assessment: CVSS

	3 Methodology
	3.1 Threat model
	3.2 Classification
	3.3 Process
	3.4 Threats to validity

	4 Results
	4.1 Examples
	4.2 Overall results

	5 Conclusions
	Acknowledgments
	References

