
The COGENT Case for Property-Based Testing
Zilin Chen Liam O’Connor Gabriele Keller Gerwin Klein Gernot Heiser

Data61 and UNSW, Australia
first.last@data61.csiro.au

Abstract
Property-based testing can play an important role in reducing
the cost of formal verification: It has been demonstrated to
be effective at detecting bugs and finding inconsistencies in
specifications, and thus can eliminate effort wasted on fruit-
less proof attempts. We argue that in addition, property-based
testing enables an incremental approach to a fully verified
system, by allowing replacement of automatically generated
tests of properties stated in the specification by formal proofs.
We demonstrate this approach on the verification of systems
code, discuss the implications on systems design, and outline
the integration of property-based testing into the COGENT
framework.

CCS Concepts • Software and its engineering Software

testing and debugging; Formal software verification;

Functional languages;

Keywords COGENT, QuickCheck, Refinement, Systems
software, Formal methods

ACM Reference Format:
Zilin Chen Liam O’Connor Gabriele Keller Gerwin Klein
Gernot Heiser. 2017. The COGENT Case for Property-Based Testing.
In Proceedings of PLOS’17: 9th Workshop on Programming Lan-
guages and Operating Systems (PLOS’17). ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3144555.3144556

1 Introduction
COGENT [2, 13, 30] is a restricted, purely functional language
aimed at reducing the cost of formally verifying systems code.
COGENT grew out of the experience of the verification of
the seL4 microkernel [23]. Specifically, we had observed that
many of the more low-level proofs in the chain connecting
the high-level specification with the C implementation are
time consuming and tedious, but not particularly involved,
and seemed good candidates for automation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLOS’17, October 28, 2017, Shanghai, China
© 2017 Copyright held by the owner/author(s). Publication rights licensed to
the Association for Computing Machinery.
ACM ISBN 978-1-4503-5153-9/17/10.
https://doi.org/10.1145/3144555.3144556

High-level specification

C

Cogent 
compiler

ADT C

Cogent 
program

generates

generates

Cogent 
embeddings

generates

re
fin
es

re
fin
es

re
fin
es

manual

generated

legend

proof

Figure 1. An overview of COGENT

COGENT makes such automation possible by abstracting
over low-level issues, such as explicit memory management.
As Figure 1 shows, the COGENT compiler generates C code,
several embeddings of the COGENT semantics in the inter-
active theorem prover Isabelle [28], and proofs connecting
the two. Similar to Rust [32], COGENT is equipped with a
linear type system to allow destructive updates while retain-
ing the purely functional semantics. Because of the linear
type system, it is impossible to implement data structures in
COGENT which rely even temporarily on sharing. These have
to be implemented in C, verified separately, and imported as
abstract data types (ADTs) with an interface that observes the
linear type constraints.

While the compiler-generated automatic proof reduces the
gap between the high-level specification and the C imple-
mentation, the remaining gap — manually connecting the
COGENT semantics to the high-level specification, as well as
the verification of the manually-written C components — still
requires significant time and effort from developers.

Property-based testing is a promising technique for reduc-
ing this cost. Similar to formal verification, property-based
testing uses a specification of the desired properties of a unit
under test. From this specification it automatically generates
test cases to search for counter-examples. Hughes [21] and
Arts et al. [4] show that property-based testing is effective for
detecting bugs and finding inconsistencies in specifications.
In their work on secure information flow, Hriţcu et al. [20]
observe that property-based testing is especially valuable in
formal verification, as it can eliminate the wasted effort of
trying to prove a faulty or ill-specified system correct.

https://doi.org/10.1145/3144555.3144556
https://doi.org/10.1145/3144555.3144556


PLOS’17, October 28, 2017, Shanghai, China Chen et al.

In this paper, we posit that there are further reasons why
property-based testing is well suited to work in tandem with
formal verification: we argue that the costs and downsides of
using property-based testing apply to a much lesser degree in
the context of verification, and discuss how property-based
testing can be used to facilitate the verification process. We
present an approach to using property-based testing in the
context of systems code verification. Using a worked example,
we outline our work in progress implementing property-based
testing support for COGENT, and show how this fits into the
systems verification framework. Furthermore, we outline the
challenges we identified and our plans for future work.

2 Rationale
In a property-based testing framework, testers specify the
logical pre- and postconditions of functions, and the frame-
work generates random test data and runs each individual test
over and over with different inputs, searching for a counter-
example. Property-based testing is effective but not univer-
sally applicable — in practice it is usually hard to describe the
complete system in terms of logical properties. In the context
of formal verification, however, we will have to model the
complete behaviour of the system in logic in any case. By us-
ing the same set of properties for both testing and verification
purposes, it is possible to first check properties by extensive,
automated testing, and only attempt to prove them once we
are reasonably confident they actually hold.

We can also check whether the set of properties we es-
tablish is sufficient to connect the implementation to the
high-level specification, by using these properties as so-far
unproved (but validated by tests) candidate theorems. Hence,
combining the techniques enables a more incremental ap-
proach than the all-or-nothing we get with formal verification
alone. While non-exhaustive testing can never guarantee the
absence of errors, we can use property-based testing to es-
tablish confidence in the correctness of a program, and then
increase the level of confidence with each verified component.

It is useful to keep the same set of properties under property-
based testing even once formal verification is complete. When
the program inevitably evolves, the testing approach will more
quickly tell us which properties break and (optimistically)
which are likely to still hold. While the formal verification can
also be replayed, and will tell us which properties definitely
still hold, it will fail conservatively when the proof breaks
or changes, i.e. when the reason for a property to hold has
changed, not only when the property itself is no longer true.

Purely functional languages, like COGENT, are particularly
suitable for property-based testing as well as verification,
since the behaviour of a function only depends on the input
values, and not on any hidden state. Unfortunately, just the
fact that a system is written in a purely functional language
does not necessarily mean it can be validated using property-
based testing. It is still vital to design the system carefully.

For example, if a function only accesses a small portion of
the state, only those portions should be passed into the func-
tion. Otherwise, it is unlikely that running tests on randomly
generated test data achieves sufficient code coverage, as many
of the variations made to the input may have no effect on the
behaviour of the function.

In practice, this means that to obtain a system that is suit-
able for property-based testing, special considerations are
needed in the design; in general, a naive translation of C code
into COGENT will be too dependent on (mostly incidental)
global state. While this seems to be a high price to pay, a
verification-friendly design also requires us to carefully mod-
ularise and compartmentalise the state accessible from each
part of the system [1, 3], so in fact, these design restrictions
impose no additional burden in the context of COGENT.

Claessen and Hughes [11] introduced property-based test-
ing with QuickCheck, a combinator library for the functional
language Haskell. By now, frameworks which implement at
least some part of the QuickCheck functionality are available
for most general-purpose programming languages. Instead of
implementing a new framework for COGENT, we are provid-
ing an interface to use the Haskell QuickCheck library, as this
is currently the most mature and fully-featured implementa-
tion of property-based testing, and it integrates well with the
COGENT compiler.

In the remainder of the paper, we first introduce our ap-
proach to both testing and verifying file systems using refine-
ment (Section 3.1), illustrate how our QuickCheck architec-
ture enables the incremental development of fully verified
systems code (Section 3.2), and show an example of applying
our framework to a COGENT ADT library (Section 3.3). After
that, we discuss a number of major issues that we encountered
during development and our proposed solutions (Section 4).
Finally, we briefly summarise related work (Section 5) and
conclude.

3 QuickChecking COGENT
Existing verification work in COGENT, such as the verifica-
tion of the file system BilbyFs [2], expresses the functional
correctness of the system as a refinement statement from
an abstract correctness specification. Our framework, there-
fore, allows such refinement statements to be expressed as
QuickCheck properties. We start with a brief introduction to
the notion of refinement.

3.1 Using refinement for testing and verification
As mentioned in Section 2, COGENT’s purely functional se-
mantics provides a simple formal model of a program’s be-
haviour. Specifically, it enables reasoning about programs
using equational principles. Fortunately, the property lan-
guages used in most property-based testing libraries have
a similarly equational semantics. The remaining challenge



The COGENT Case for Property-Based Testing PLOS’17, October 28, 2017, Shanghai, China

then is to express our notion of what constitutes a correct pro-
gram with formulae that can be either proved using equational
reasoning or validated by property-based testing.

As stated above, functional correctness as used for CO-
GENT programs uses a refinement statement from an abstract
specification. It is abstract in the sense that all details not
relevant to program correctness are omitted (for example,
no attention is paid to performance or computability in the
abstract specification).

In an imperative setting, a simple model for both the ab-
stract specification and the concrete implementation would be
relations on states, describing every possible behaviour of the
program as the manipulation of some global state. A program
C is a refinement of a program A if every possible behaviour
in the model ofC is observable in that of A, that is JCK ✓ JAK.
This means that if we prove a property about every execution
for our abstract specification, we know that the property holds
for all executions of our concrete implementation.

An abstract specification typically has a different, smaller
state space than its concrete implementation, so the simple
subset relationship does not quite capture what we require of
refinement; we need a notion of correspondence of states. We
get this from some additional machinery from the world of
data refinement. We introduce a refinement relation R that re-
lates abstract and concrete states, and show that each step our
program takes preserves this relation; the relation represents
the desired correspondence. We must show that our abstract
program behaves analogously to the concrete program given
corresponding initial states. That is, if R relates our initial
abstract and concrete states, then every final state of a con-
crete operation conc will be related by R to a final state of a
corresponding abstract operation abs:

R; JconcK ✓ JabsK;R

� �

• •

abs

R

conc

R✓

where “;” is forward composition of relations. A theorem like
this for each operation in our program forms the bulk of a
forward simulation proof of data refinement [15].

In COGENT, however, there is no global state. COGENT is
a purely functional, deterministic, total language, and mod-
els all functions as plain mathematical functions. In such a
scenario, the only state involved consists of the inputs and
outputs to the function, simplifying the refinement statement.
Given an abstract function abs :: Xa ! Ya , and a concrete
COGENT function conc :: Xc ! Yc , then, assuming the exis-
tence of refinement relations RX and RY , we can express the
statement that conc refines abs as:

RX ia ic =) RY (abs ia ) (conc ic )

This, however, places unnecessary constraints on our abstract
specification. While COGENT is deterministic and total, our

Functional ADTs Cogent Embedding

C Embedding

Pr
oo

f

Abstract Embedding

Pr
oo

f

Top-level Spec

Pr
oo

f

Cogent Code

C ADTsADT Embedding

Pr
oo

f
Pr

oo
f

Haskell Abstract Spec

Haskell Embedding

Te
sts

Haskell ADTs
C FFI

Automatic
Manual
Semi-Automatic  
Code Generation  
Dependency

Isabelle/HOL 
Haskell
System Code 

Figure 2. Overview of the QuickCheck framework

abstract specification need not be. In fact, it is often desirable
to allow non-determinism to reduce the complexity of the ab-
stract specification. We model non-determinism by allowing
abstract functions to return a set of possible results. Then, our
refinement statement merely requires that the single concrete
result correspond to one of the possible abstract results:

RX ia ic =) 9oa 2 abs ia . RY oa (conc ic )

Defining the notation

corres R a c

def
= 9o 2 a. R o c

allows us to clean up this form of refinement statement:

RX ia ic =) corres RY (abs ia ) (conc ic )

The theorems that capture correctness for COGENT systems
typically have this corres format. Our goal, then, is to encode
these properties in Haskell as machine-testable properties.

3.2 The QuickCheck architecture for COGENT

Our COGENT QuickCheck framework (Figure 2) extends the
existing COGENT compiler with additional code generation
features, allowing a Haskell embedding of the COGENT code
to be generated, as well as the refinement properties them-
selves. These refinement properties require the user to supply
Haskell definitions for all refinement relations, as well as an
abstract specification.

As previously mentioned, COGENT’s design requires that
some components (mostly ADT implementations that are
common to multiple file system implementations) are not im-
plemented in COGENT, but in C, and accessed via COGENT’s
foreign function interface (FFI). In the Haskell embedding,
the programmer either interfaces the same implementations
via Haskell’s C FFI, or implements these ADTs in Haskell.
Currently, this is done manually, but the compiler could gen-
erate the bindings to the C calls; this is left for future work.

These ADTs, which are not implemented in COGENT, have
to be verified separately at some point to obtain a fully verified
system. In the mean time, QuickChecking these components



PLOS’17, October 28, 2017, Shanghai, China Chen et al.

can provide us with a higher degree of confidence of their
correctness, as we shall see in Section 3.3.

Once the tester has supplied our framework with the neces-
sary definitions, they can use QuickCheck to test whether the
generated Haskell embedding is a refinement of the Haskell
specification. To facilitate the testing process, and possibly
reflect the structure of the proofs, the tester can also provide
multiple, increasingly abstract specifications. Our framework
can generate Isabelle versions of these Haskell specifications
which can then be used for manual proof. This ensures that
the two specifications can remain in sync, allowing the user to
move between proving and testing as needed. Lastly, the proof
engineer must prove that the most abstract Haskell specifica-
tion is a refinement of the top-level correctness specification
in Isabelle. Typically, this proof is straightforward as there is
very little difference between the two.

The top-level Isabelle specification is written in higher-
order logic, and is not executable. It is highly non-
deterministic, in order to model behaviours of the system
which are dependent on inputs out of our control. For exam-
ple, the system memory allocator can non-deterministically
fail when it runs out of memory, and disk device drivers can
non-deterministically fail in a variety of ways, such as when
the disk is full or an I/O failure occurs.

In the Haskell specification, we must also model this non-
determinism, however the Haskell specification is more con-
strained than that of Isabelle: it must be executable. In general,
simulating a non-deterministic model can be exponential in
time and space, compared to a deterministic version.

We address this by modelling only a minimal amount of
non-determinism in our Haskell specification, using a similar
non-deterministic set monad as in our Isabelle specification.
By keeping the amount of non-determinism low, we reduce
the cost of modelling all possible results to manageable levels.

Finally, in addition to the specifications and properties,
the generation of test data is also an important ingredient
in a property-based testing framework. While the COGENT
compiler will automatically provide test data generators for
all COGENT types used in the program, the user must provide
their own generators for any abstract data types used in the
Haskell embedding or specification.

3.3 Example: testing refinement of an ADT library
To test a property with QuickCheck, we can encode it as
a Boolean function.1 When we pass the property to the
quickCheck function provided by the QuickCheck library,
it will apply the Boolean function to a number of randomly
generated input data. If it evaluates to False for any test case,
QuickCheck has found a counter-example. It will then try to
shrink the test case to find the simplest counter-example and
report that to the user. If it cannot find a counter-example, it
will report that the tests have run successfully.

1It does not have to be a Boolean function — QuickCheck is more flexible.

In our case, we want to test for each function whether it
observes the correspondence theorem from Section 3.1. Let
us take an ADT function ba_create — which allocates and
initialises a byte array BA of a given length — as an example
and showcase the development process. 2

type St
type BA
type R a b = <Success a | Error b>

ba_create : (St , U32) -> R (St , BA) St

In the above COGENT code, type St, BA and function
ba_create are all abstract; their definitions are written in C.
St models the global system state, which is threaded through
the ba_create function because it allocates memory and
thus changes the global state. ba_create returns a tagged
union type R (St, BA) St, which is either a new system
state paired with the newly created byte array, or in the error
case, a new system state alone.

A Haskell embedding of the code above is generated by
the COGENT compiler. This embedding serves as the non-
deterministic specification, which is refined by the C imple-
mentation:
type St = ???
type BA = ???
data R a b = Success a | Error b

hs_ba_create :: (St , U32) -> ND (R (St , BA) St)
hs_ba_create = ???

The tester needs to fill in the definitions for the abstract
datatypes and functions, denoted by “???” in the Haskell
template:
type St = ()
type BA = [Byte]

hs_ba_create :: (St , U32) -> ND (R (St , BA) St)
hs_ba_create (() ,len) =

( return $ Success (() , replicate len 0))
�alternative � ( return $ Error ())

The type constructor ND is the non-determinism monad
which contains all the possible results of a computation. The
monadic return operator lifts a result to a singleton set;
alternative simply takes the union of its both operands.
In this case, the result is a two-element set {Success ((),
replicate len 0) , Error ()}. This non-determinism is
present because the state of the external world has been ab-
stracted to a single unit type in our Haskell embedding.

In order to call the COGENT compiled C code from Haskell,
we make use of Haskell’s FFI facilities:
foreign import ccall unsafe " ba_create "

c_ba_create � :: Ptr Ct4 -> IO (Ptr Ct5)

c_ba_create :: Ct4 -> IO Ct5

2This example is adapted from our word array library for presentation.



The COGENT Case for Property-Based Testing PLOS’17, October 28, 2017, Shanghai, China

c_ba_create a = peek =<< c_ba_create � =<< new a

The foreign import ccall declaration expresses that the
Haskell function c_ba_create’ is the interface to C func-
tion ba_create. Ct4 and Ct5 are the Haskell representa-
tions of the compiler-generated C types; their definitions can
be generated using FFI tools like hsc2hs [18] or c2hs [9].
c_ba_create is merely a wrapper to hide the pointers.

To compare the behaviour of c_ba_create and
hs_ba_create, we need a Haskell definition of the refine-
ment relations for both the inputs and the outputs of these
two functions. In future, we hope to generate these automat-
ically with the aid of a separate domain-specific language.
Depending on the property under test, it can be convenient to
represent one or more of these refinement relations as an ab-
straction function, which rather than merely relating two data
types, actually converts the concrete data type into its abstract
equivalent. In our example, we define an abstraction function
for the inputs, and a refinement relation for the outputs (the
definitions are omitted for presentation):

abs_ba_create_arg :: Ct4 -> (St , U32)
rel_ba_create_ret :: R (St , BA) St -> Ct5

-> IO Bool

In general, if a Haskell representation of a C type consists
of pointers, it must be wrapped in an IO monad when we
want to manipulate these pointers. That is why function
rel_create_ret returns an IO Bool, as Ct5 happens to
include pointers, whereas Ct4 does not.

Now, as a final step, we have to relate the two implemen-
tations, hs_ba_create and c_ba_create via a function
which models the correspondence property from Section 3.1.

prop_ba_create_corres = monadicIO $
forAllM gen_Ct4 $ \ic -> run $ do

oc <- c_ba_create =<< ic
oa <- return $ hs_ba_create

( abs_ba_create_arg ic)
corresM rel_ba_create_ret oa oc

Slightly simplified, this function can be read as: for any type
correct concrete input ic (generated by test data generator
gen_Ct4) and its abstraction, check that the results of ap-
plying the concrete function c_ba_create and the abstract
function hs_ba_create respectively are related via the re-
finement relation rel_ba_create_ret. The corresM func-
tion is a slight generalisation of our corres notation to allow
the refinement relation to be defined inside the IO monad, as
the C function is called via the FFI and is thus impure:

corresM :: (a -> c -> IO Bool ) -> ND a -> c
-> IO Bool

corresM rrel ma c = anyM (�rrel � c) $ toList ma

Running the tests by passing prop_ba_create_corres to
the quickCheck function, we get
*ByteArray> quickCheck prop_ba_create_corres
+++ OK, passed 100 tests.

4 Discussion
At the time of writing, we have applied our prototype frame-
work to series of small examples, some of which are derived
from the BilbyFs project [1], such as a subset of the word
array ADT library and some simple file system operations.

Testing ADT code is different from testing plain COGENT
code, as they have different abstraction levels and different re-
finement steps. For ADTs, as COGENT does not automatically
prove any refinement steps, the refinement under test needs
to extend all the way from the C semantics to the abstract
specification, while for non-ADTs, the Haskell embedding of
COGENT is the lowest level of abstraction that is necessary
to test. The examples we drew from a real file system, while
simple, involve a wide range of datatypes, some of which are
from the Linux kernel. Testing these examples has given us
an idea of how much boilerplate code is required and which
components of the testing infrastructure can be automatically
generated. Since real file systems code inevitably accesses
a wide range of ADTs and wrapper code from the kernel, it
also tests the ability to integrate these different units together.

4.1 Modular testing
Our QuickCheck machinery does not require the user to test
the entire system as a whole. Instead, the user may test re-
finement for each function or for a cluster of functions at a
time. Typically, the ADTs implemented in C are a common
module, shared across many systems. Accordingly, our frame-
work allows for developers to test their ADTs in isolation,
without regard to their greater context within the overall sys-
tem. This modularity is aided by COGENT’s purely functional
semantics.

Once the ADT libraries have been implemented in C, tested
with our framework, and even verified with Isabelle, they can
then be linked with the rest of the COGENT system, including
with our testing framework. Alternatively, they may choose to
replace these C implementations with native Haskell ones for
the purposes of testing the main COGENT code. Our frame-
work supports both approaches.

4.2 Enforcing COGENT’s contract
ADTs that are used from within COGENT are free to make
use of destructive update, however the linear type system that
prevents these mutations from being distinguished from pure
functions is no longer present in the Haskell embedding. This
means that extra care must be taken to use these functions
in a linear way, even in the Haskell abstract specifications.
A possible future version of our framework could use GHC
Haskell’s new linear types extension [5] to prevent mistakes
of this kind from being made.

4.3 Improving the test data generation
QuickCheck comes with a set of predefined random test data
generators for a wide range of built-in Haskell types. It even



PLOS’17, October 28, 2017, Shanghai, China Chen et al.

comes with the ability to derive new data generators for user-
defined datatypes [26]. One feature that would be desirable
is to guide test data generation using domain knowledge.
Ideally, generators should produce test data that satisfies the
preconditions of the tested unit. This means that time is not
wasted testing spurious or invalid inputs. For example, when
we test array initialisation functions, the size of allocated
memory is represented as a 32-bit integer, but testing the
full range of inputs would be impractically slow, as massive
data structures would be repeatedly allocated, copied, and
marshalled between the Haskell and C heaps.

COGENT also supports higher-order functions, and our test
framework supports generating functions, however in a very
different way than the basic QuickCheck library. QuickCheck
will generate essentially an arbitrary mapping from the func-
tion’s domain to its codomain, whereas our framework is able
to exploit a quirk in the way that COGENT compiles first-
class functions. Rather than represent a function value as a
function pointer, we keep track of all possible functions of a
given type, and assign them a particular index. The function
value is therefore just represented as single machine word
containing that index. This representation is chosen because
it interoperates more cleanly with our existing C verification
infrastructure. Happily, this means we can simply generate a
random index and choose from all of the available functions
of the required type. This makes our testing more intelligent,
as the only functions provided as arguments to higher-order
functions are those that actually exist in the program, however
it does mean that such higher-order functions cannot be tested
in complete isolation from the rest of the system.

4.4 Testing kernel modules
A file system is typically compiled as a kernel module and
run in kernel mode, but our test framework runs in user mode.
This discrepancy means that, for our prototype, we have
ported our file systems code to run in user mode. This is
a fairly common practice anyway in systems programming,
with libraries such as FUSE [16] facilitating the user-space
execution of kernel modules. A possible alternative is to use
a system such as House [19] or HaLVM [22] to run Haskell
in kernel mode, allowing us to make our testing environment
resemble the real run-time environment of the software more
closely.

4.5 Future work
The COGENT QuickCheck framework is very much work in
progress: the tester still has to write a significant amount of
code which could be generated by the compiler. This includes
Haskell datatypes and functions for the FFI to C, as well as
boilerplate code for corres instances, refinement relations and
abstraction functions. Generating refinement relations and
abstraction functions requires domain knowledge, and there-
fore would require some sort of domain-specific language to
instruct the generator on how to abstract the types.

Chen [10] proposes an alternative to integrating Haskell
into our COGENT framework: a high-level language extension
to COGENT could meet our needs without having to build
many of the aforementioned auxiliaries. With such a language,
COGENT users would have a more pleasant experience, and
they would no longer need to learn any new language other
than the extended COGENT.

We also intend to improve the data generator and shrinking
algorithm in the QuickCheck framework, which will pave
the way for us to do a more complete case study on the file
systems that we developed. We see some links between the
properties specified in property-based testing and in Isabelle.
Whether one can be generated from the other, and whether the
testing (more precisely, counter-examples) can guide the theo-
rem prover to automate the manual proofs, are open research
questions.

5 Related Work
External property-based testing libraries have been connected
to many proof assistants, including Isabelle/HOL, as a way to
generate quick counter-examples for proposed lemmas [7, 17].
In principle, this would provide an alternative implementation
to our design: one could generate the Isabelle/HOL seman-
tics of the COGENT program and run Isabelle Quickcheck on
the formalisation instead of the COGENT program itself. The
main difference is performance and implementation effort.
Our approach takes advantage of the more mature Haskell
environment for QuickCheck as well as the existing com-
piler infrastructure for COGENT that is written in Haskell to
achieve better performance, which translates into a higher
number of test cases, potentially with hardware in the loop.
For using Isabelle QuickCheck directly, one would have to
replicate the test harness and test case generators in ML for
no immediate benefit in this context.

Some property-based testing frameworks are formally ver-
ified and implemented in proof assistants [29, 31]. These
frameworks shed light on how to verify that a property-based
testing library actually tests the desired properties.

QuickCheck has been used for testing of a variety of high-
level properties, such as information flow control [14, 20],
mutual exclusion [12], and functional correctness of AU-
TOSAR components [4, 27]. As far as we know, ours is the
first framework to use property-based testing for refinement-
based functional correctness statements.

There is a wide range of work on generating test data more
intelligently [6, 8, 24], as well as approaches to test data
shrinking that preserve invariants about the generated data
[25, 33]. These approaches are highly complementary to our
framework. Our refinement framework should provide a good
testing ground to evaluate these techniques.

References
[1] Sidney Amani. 2016. A Methodology for Trustworthy File Systems.

PhD Thesis. CSE, UNSW, Sydney, Australia.



The COGENT Case for Property-Based Testing PLOS’17, October 28, 2017, Shanghai, China

[2] Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter
Chubb, Liam O’Connor, Joel Beeren, Yutaka Nagashima, Japheth Lim,
Thomas Sewell, Joseph Tuong, Gabriele Keller, Toby Murray, Gerwin
Klein, and Gernot Heiser. 2016. Cogent: Verifying High-Assurance File
System Implementations. In ASPLOS. Atlanta, GA, USA, 175–188.

[3] Sidney Amani and Toby Murray. 2015. Specifying a Realistic File
System. In Workshop on Models for Formal Analysis of Real Systems.
Suva, Fiji, 1–9.

[4] Thomas Arts, John Hughes, Ulf Norell, and Hans Svensson. 2015.
Testing AUTOSAR software with QuickCheck. In Eighth IEEE In-
ternational Conference on Software Testing, Verification and Valida-
tion, ICST 2015 Workshops, Graz, Austria, April 13-17, 2015. 1–4.
https://doi.org/10.1109/ICSTW.2015.7107466

[5] Jean-Philippe Bernardy, Mathieu Bosepflug, Ryan R. Newton, Simon
Peyton Jones, and Arnaud Spiwack. 2017. Retrofitting Linear
Types. (2017). https://www.microsoft.com/en-us/research/
wp-content/uploads/2017/03/haskell-linear-submitted.
pdf.

[6] Achim D. Brucker and Burkhart Wolff. 2013. On theorem prover-
based testing. Formal Aspects of Computing 25, 5 (2013), 683–721.
http://dx.doi.org/10.1007/s00165-012-0222-y

[7] Lukas Bulwahn. 2012. The New Quickcheck for Isabelle: Random,
Exhaustive and Symbolic Testing Under One Roof. In Proceedings
of the Second International Conference on Certified Programs and
Proofs (CPP’12). Berlin, Heidelberg, 92–108. http://dx.doi.org/
10.1007/978-3-642-35308-6_10

[8] Matthieu Carlier, Catherine Dubois, and Arnaud Gotlieb. 2012. A First
Step in the Design of a Formally Verified Constraint-Based Testing
Tool: FocalTest. Tests and Proofs: 6th International Conference, TAP
2012, Prague, Czech Republic, May 31 – June 1, 2012. Proceedings
(2012), 35–50.

[9] Manuel M. T. Chakravarty. 1999. C -> HASKELL, or Yet Another
Interfacing Tool. In Implementation of Functional Languages, 11th
International Workshop, IFL’99, Lochem, The Netherlands, September
7-10, 1999, Selected Papers. 131–148. https://doi.org/10.1007/
10722298_8

[10] Zilin Chen. 2017. COGENT*: Giving Systems Engineers A Stepping
Stone (Extended abstract). In The workshop on Type-Driven Devel-
opment (TyDe’17). https://www.cse.unsw.edu.au/~zilinc/
tyde17.pdf.

[11] Koen Claessen and John Hughes. 2000. QuickCheck: A Light-
weight Tool for Random Testing of Haskell Programs. In 5th ICFP.
New York, NY, USA, 268–279. http://doi.acm.org/10.1145/
351240.351266

[12] Koen Claessen, Michal Palka, Nicholas Smallbone, John Hughes, Hans
Svensson, Thomas Arts, and Ulf Wiger. 2009. Finding Race Conditions
in Erlang with QuickCheck and PULSE. In Proceedings of the 14th
ACM SIGPLAN International Conference on Functional Programming
(ICFP ’09). New York, NY, USA, 149–160. http://doi.acm.org/
10.1145/1596550.1596574

[13] Cogent 2017. COGENT Homepage. (2017). http://ts.data61.
csiro.au/projects/TS/cogent.pml.

[14] Arthur Azevedo de Amorim, Nathan Collins, André DeHon, Delphine
Demange, Cătălin Hriţcu, David Pichardie, Benjamin C. Pierce, Randy
Pollack, and Andrew Tolmach. 2014. A Verified Information-Flow
Architecture. In POPL. San Diego, CA, USA, 165–178.

[15] Willem-Paul de Roever and Kai Engelhardt. 1998. Data Refinement:
Model-Oriented Proof Methods and their Comparison. Number 47 in
Cambridge Tracts Theoretical Comp. Sci. United Kingdom.

[16] FUSE Developers. 2017. The FUSE Project. https://sourceforge.
net/projects/fuse. (2017).

[17] Peter Dybjer, Qiao Haiyan, and Makoto Takeyama. 2003. Combining
Testing and Proving in Dependent Type Theory. In Proceedings of the
16th International Conference on Theorem Proving in Higher Order

Logics (TPHOLS ’03). Berlin, Heidelberg, 188–203. http://dx.doi.
org/10.1007/10930755_12

[18] GHC Team. 2017. GHC User’s Guide Documentation, Version 8.2.1.
User’s Guide. 463–466 pages. https://downloads.haskell.org/
~ghc/latest/docs/users_guide.pdf.

[19] Thomas Hallgren, Mark P. Jones, Rebekah Leslie, and Andrew Tol-
mach. 2005. A principled approach to operating system construction in
Haskell. In 10th ICFP. Tallinn, Estonia, 116–128.

[20] Cătălin Hriţcu, John Hughes, Benjamin C. Pierce, Antal Spector-
Zabusky, Dimitrios Vytiniotis, Arthur Azevedo de Amorim, and
Leonidas Lampropoulos. 2013. Testing Noninterference, Quickly. In
Proceedings of the 18th ACM SIGPLAN International Conference on
Functional Programming (ICFP ’13). New York, NY, USA, 455–468.
http://doi.acm.org/10.1145/2500365.2500574

[21] John Hughes. 2016. Experiences with QuickCheck: Testing the
Hard Stuff and Staying Sane. In A List of Successes That Can
Change the World - Essays Dedicated to Philip Wadler on the Oc-
casion of His 60th Birthday. 169–186. https://doi.org/10.1007/
978-3-319-30936-1_9

[22] Galois Inc. 2017. The Haskell Lightweight Virtual Machine (HaLVM)
source archive. https://github.com/GaloisInc/HaLVM. (2017).

[23] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. 2009. seL4: Formal Verification of an OS Kernel. In
SOSP. Big Sky, MT, USA, 207–220.

[24] Leonidas Lampropoulos, Diane Gallois-Wong, Cătălin Hriţcu, John
Hughes, Benjamin C. Pierce, and Li-yao Xia. 2017. Beginner’s Luck:
A Language for Property-based Generators. In Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL 2017). New York, NY, USA, 114–129. http://doi.acm.
org/10.1145/3009837.3009868

[25] David R. MacIver. 2016. Integrated vs Type-based Shrink-
ing. Article. http://hypothesis.works/articles/
integrated-shrinking.

[26] Neil Mitchell. 2017. The derive package. (2017). https:
//hackage.haskell.org/package/derive.

[27] Wojciech Mostowski, Thomas Arts, and John Hughes. 2017. Mod-
elling of Autosar Libraries for Large Scale Testing. In Proceed-
ings 2nd Workshop on Models for Formal Analysis of Real Systems,
MARS@ETAPS 2017, Uppsala, Sweden, 29th April 2017. 184–199.
https://doi.org/10.4204/EPTCS.244.7

[28] Tobias Nipkow and Gerwin Klein. 2014. Concrete Semantics with
Isabelle/HOL.

[29] Liam O’Connor. 2016. Applications of Applicative Proof Search.
In Proceedings of the 1st International Workshop on Type-Driven
Development (TyDe 2016). New York, NY, USA, 43–55. http:
//doi.acm.org/10.1145/2976022.2976030

[30] Liam O’Connor, Zilin Chen, Christine Rizkallah, Sidney Amani,
Japheth Lim, Toby Murray, Yutaka Nagashima, Thomas Sewell, and
Gerwin Klein. 2016. Refinement Through Restraint: Bringing Down
the Cost of Verification. In ICFP. Nara, Japan.

[31] Zoe Paraskevopoulou, Cătălin Hriţcu, Maxime Dénès, Leonidas Lam-
propoulos, and Benjamin C. Pierce. 2015. Foundational Property-Based
Testing. In ITP 2015 - 6th conference on Interactive Theorem Prov-
ing (Lecture Notes in Computer Science), Vol. 9236. Nanjing, China.
https://hal.inria.fr/hal-01162898

[32] Rust 2014. The Rust Programming Language. http://rustlang.
org. (2014). Accessed March 2015.

[33] Jacob Stanley. 2017. Hedgehog will eat all your bugs.
Open Source Project. https://github.com/hedgehogqa/
haskell-hedgehog.

https://doi.org/10.1109/ICSTW.2015.7107466
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/03/haskell-linear-submitted.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/03/haskell-linear-submitted.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/03/haskell-linear-submitted.pdf
http://dx.doi.org/10.1007/s00165-012-0222-y
http://dx.doi.org/10.1007/978-3-642-35308-6_10
http://dx.doi.org/10.1007/978-3-642-35308-6_10
https://doi.org/10.1007/10722298_8
https://doi.org/10.1007/10722298_8
https://www.cse.unsw.edu.au/~zilinc/tyde17.pdf
https://www.cse.unsw.edu.au/~zilinc/tyde17.pdf
http://doi.acm.org/10.1145/351240.351266
http://doi.acm.org/10.1145/351240.351266
http://doi.acm.org/10.1145/1596550.1596574
http://doi.acm.org/10.1145/1596550.1596574
http://ts.data61.csiro.au/projects/TS/cogent.pml
http://ts.data61.csiro.au/projects/TS/cogent.pml
https://sourceforge.net/projects/fuse
https://sourceforge.net/projects/fuse
http://dx.doi.org/10.1007/10930755_12
http://dx.doi.org/10.1007/10930755_12
https://downloads.haskell.org/~ghc/latest/docs/users_guide.pdf
https://downloads.haskell.org/~ghc/latest/docs/users_guide.pdf
http://doi.acm.org/10.1145/2500365.2500574
https://doi.org/10.1007/978-3-319-30936-1_9
https://doi.org/10.1007/978-3-319-30936-1_9
https://github.com/GaloisInc/HaLVM
http://doi.acm.org/10.1145/3009837.3009868
http://doi.acm.org/10.1145/3009837.3009868
http://hypothesis.works/articles/integrated-shrinking
http://hypothesis.works/articles/integrated-shrinking
https://hackage.haskell.org/package/derive
https://hackage.haskell.org/package/derive
https://doi.org/10.4204/EPTCS.244.7
http://doi.acm.org/10.1145/2976022.2976030
http://doi.acm.org/10.1145/2976022.2976030
https://hal.inria.fr/hal-01162898
http://rustlang.org
http://rustlang.org
https://github.com/hedgehogqa/haskell-hedgehog
https://github.com/hedgehogqa/haskell-hedgehog

	Abstract
	1 Introduction
	2 Rationale
	3 QuickChecking Cogent
	3.1 Using refinement for testing and verification
	3.2 The QuickCheck architecture for Cogent
	3.3 Example: testing refinement of an ADT library

	4 Discussion
	4.1 Modular testing
	4.2 Enforcing Cogent's contract
	4.3 Improving the test data generation
	4.4 Testing kernel modules
	4.5 Future work

	5 Related Work
	References

