
IEEE DESIGN & TEST, VOL. X, NO. Y, MMM YYYY 1

For Safety’s Sake: We Need a New
Hardware-Software Contract!

Gernot Heiser
UNSW and Data61, CSIRO

Sydney, Australia
gernot@unsw.edu.au

Abstract—The ISA is the established hardware-software con-
tract. As the ISA hides hardware features that affect timing of
execution, it is no longer sufficient for ensuring system security
and safety. We argue that a new contract is required, which
exposes such features.

Index Terms—C.0.b Hardware/software interfaces, C.3.d Real-
time and embedded systems, D.4.6.d Information flow controls

I. INTRODUCTION

Safety as well as security of critical systems requires tem-
poral isolation, which means that one computing task cannot
affect the execution speed of another, unrelated one. If the
affected task is a critical real-time one, its execution might get
delayed to the point of missing a deadline. Deadline misses are
integrity violations that lead to loss of system safety. In safety-
critical systems, temporal isolation is therefore as important as
the more established spatial isolation, i.e. memory safety.

Lack of temporal isolation can also lead to security viola-
tions: The exact effect the execution of one task has on the
execution speed of another can depend on confidential data
the former task is processing, and thus can leak secrets to the
latter task. Such information leakage is called a timing side
channel and can, for example, lead to the theft of encryption
keys [Q. Ge, et al., “A Survey of Microarchitectural Tim-
ing Attacks Countermeasures on Contemporary Hardware”,
J. Cryptographic Engin., https://link.springer.com/article/10.
1007/s13389-016-0141-6]. Such confidentiality violations are
a clear threat to system security.

In modern cyberphysical systems, security violations are
also a threat to safety, as demonstrated by the recent spate
of car hacking, with attackers controlling breaks and engine
throttle [A. Greenberg, “Hackers Remotely Kill a Jeep on the
Highway—With me in It”, July 2015, https://www.wired.com/
2015/07/hackers-remotely-kill-jeep-highway/.]

In summary, temporal isolation, the prevention of such
integrity and confidentiality violations, is of critical importance
for the safety of future cyberphysical systems. But achieving
it is only possible with sufficient understanding and control
of the hardware. We will argue that contemporary hardware
is deficient in this respect, making it effectively impossible to
build safe systems, and that the trend is for the worse.

II. ENSURING TEMPORAL ISOLATION

Hard real-time systems, where failure to complete an ac-
tion by a deadline is disastrous, used to be small control
programs running on simple microcontrollers without internal
protection. This model has reached its use-by date, with even
critical systems becoming complex and rich in functionality.
This means that modern real-time systems are increasingly
mixed-criticality systems (MCS), where functions of differ-
ent criticality co-exist on the same processor [J. Barhorst
et al., “A Research Agenda for Mixed-Criticality Systems”,
April 2009, http://www.cse.wustl.edu/∼cdgill/CPSWEEK09
MCAR/]. A core property of an MCS is that the ability of
a critical task to meet its deadlines must not depend on the
correct behaviour of less critical components. In other words,
less critical components cannot be trusted, and hence the OS
must protect the critical components from interference (in time
and space) by less critical ones.

This requires, among others, a worst-case execution time
(WCET) analysis of any OS functionality that is required for
enforcing isolation. The WCET analysis process is without
doubt explained elsewhere in the special issue [cross-reference
to suitable article in this special issue]. suffice to say here that
it requires hard bounds on the maximum execution latency of
all instructions of the processor. ARM used to publish these, up
to the Cortex-A8 cores. With the introduction of out-of-order
(OoO) cores ARM has discontinued this practice, even for the
lower-end in-order A-series cores. This makes it impossible to
provide safe execution-time bounds on any recent ARM cores.
The situation is not at all better in the x86 world, Intel has
not published instruction latencies for a long time (if they ever
did).

Others will argue that not only the bounds are important,
but also that they need to be reasonably tight, to prevent ex-
cessive latency. Tight bounds require predictable architectures,
but this predictability constrains the architect and precludes
many of the optimisations which enable contemporary high-
performance architectures; mainstream architectures are highly
unlikely to adopt such an approach. Furthermore, this should
not be major issue for future MCS, as they allow reusing
the scheduling slack resulting from WCET pessimism for less
critical activities.

If the safety story was not bad enough, the security situation
is worse. One defence against timing-channel attacks, espe-

DT DTSI2017030051 c© 2017 IEEE



2 IEEE DESIGN & TEST, VOL. X, NO. Y, MMM YYYY

cially for crypto algorithms, is constant-time implementations,
where execution time is independent of inputs. However, these
are only possible if the implementer understands exactly what
the hardware does, and in general they do not have sufficient
information about the hardware. The result is frequently that
“constant-time” implementations are not constant-time at all,
as we have recently demonstrated on the supposedly constant-
time implementation of TLS in OpenSSL 1.0.1e [D. Cock
et al., “The Last Mile: An Empirical Study of Some Timing
Channels on seL4”, Computer and Communications Security
Conference, Nov. 2014, p 570–581.]

At the core of many timing channels are microarchitectural
features, which architects use to improve average-case perfor-
mance. These are mostly caches that utilise temporal or spatial
locality of programs, and include the translation-lookaside
buffer (TLB) and branch prediction units, or state machines
used in prefetchers. They carry information about execution
history and affect the timing of subsequent execution. If such
state is left intact across a context switch, i.e. when the OS
switches between tasks, they can reveal secrets.

The problem is that present hardware does not provide suf-
ficient (documented) mechanisms that allow the OS to sanitise
such state, in order to prevents its use as an information
channel [Q. Ge et al., “Your Processor Leaks Information
– and There’s Nothing You Can Do About It”, Sep 2017,
https://arxiv.org/pdf/1612.04474.pdf. This means that it is not
possible to close such timing channels.

III. THE ROOT OF THE PROBLEM: THE ISA
The two aspects of temporal isolation, and the challenges

they face, seem very different from each other. However, the
cause of both is the same: lack of information on the temporal
aspects of execution of programs on a processor. Ultimately,
the cause is the increasing ineffectiveness of the instruction-set
architecture (ISA) as the hardware-software contract.

The ISA describes the functional interface of the hardware
to software. Specifically, it describes all you need to know
for writing a functionally correct program, i.e. a program
which is adequately described as a mathematical function
that transforms some state and inputs into modified state and
outputs. But safety and security, as argued above, requires
more than functional correctness, it must account for time as
well. However, the ISA hides all such information.

This hiding of temporal information by the ISA is considered
a feature by processor architects and many software writers
alike. For software it has the advantage that much of the
complexities of the hardware are abstracted away into a simpli-
fied programming model, consisting mostly of instructions, a
relatively small set of registers, and a memory-management
unit (MMU). This eases programming and helps software
portability.

For architects, the ISA provides freedom to change the
hardware implementation without (functionally) affecting soft-
ware, e.g. by adding new caches for improving (average case)
performance, or for picking a particular point on a scale of
performance vs. energy-efficiency tradeoffs.

However, once temporal behaviour of program execution
becomes important, the abstraction provided by the ISA is

no longer a feature, it is a bug. And, as with any bug, we
need to work on fixing it. In our case, this means we need a
new hardware-software contract, one which allows us to write
software that is safe and secure.

IV. AISA: A NEW HARDWARE-SOFTWARE CONTRACT

What would such a new contract look like?
Obviously we want to retain as many of the ISA’s desirable

properties as possible. In particular, we want to
1) keep the HW-SW interface as simple as possible,
2) minimise the additional hardware features the software

writer must understand in order to write correct software,
ideally keeping this additional complexity to zero where
only functional correctness is needed, and

3) minimise constraints on the hardware architect’s ability
to optimise and innovate.

This set of requirements speaks in favor of a minimal
addition to the ISA, let’s call it the augmented ISA, short
AISA (rhymes with Elisa). It must expose some of the mi-
croarchitectural features the architects put into the hardware
for performance reasons.

Exposing microarchitectural features constrains the archi-
tect. We acknowledge the need to minimise such constraints
by accepting that some of these AISA details will change
between implementations of the underlying ISA, meaning that
some software must be adapted to the microarchitecture. We
consider this an acceptable burden for the software developer,
primarily as most software will remain unaffected – in most
case only WCET analysis tools, crypto libraries and the
temporal-security enforcement modules of the OS are affected,
an acceptable prize to pay for safety.

In fact, it would be permissible if the AISA-specified
hardware behaviour is enabled by an OS-controlled switch,
provided enabling it does not significantly reduce the proces-
sor’s performance or energy efficiency. However, it is not clear
that such a switch would really help the architects.

V. WHAT DOES THE AISA CONTAIN?

One feature the AISA must expose are instruction and
data caches, including their associativity, line size, hit and
miss latencies, and replacement policy. All these properties
are needed for determining cache residency and access costs
during WCET analysis.

This requirement is not revolutionary, of course. In fact,
most of this is routinely documented in reference manuals
for the particular processor implementation, meaning there is
no additional burden on the architect, and the software folks
already use this information and adapt to changing details. The
main change would be to remove the utterly unhelpful “ran-
dom” cache replacement policy. Of course, the real hardware
is not random anyway, but uses some undocumented state to
determine the victim line that needs replacing. So the real
requirement here is that the policy be fully documented (and
that the controlling state be analysable).

An additional requirement for WCET analysis is exposition
of the pipeline structure, and especially worst-case instruction



HEISER: FOR SAFETY’S SAKE: WE NEED A NEW HARDWARE-SOFTWARE CONTRACT! 3

latencies. These will, on average, be quite pessimistic on out-
of-order processors, but they should not be unbounded. On
in-order processors, they should be much tighter.

Again, this is nothing new, ARM used to publish this kind
of information until they introduced OoO cores.

More is needed for security. The information on caches,
discussed above, is sufficient to let the OS partition physically-
addressed caches (this includes the L2 and all caches further
down the hierarchy) using page colouring [J. Liedtke et al.,
“OS-controlled cache predictability for real-time systems”,
IEEE Real-Time Technology and Applications Symposium,
Jun 1997, p 213–223].

There is plenty of other microarchitectural state that affects
timing, and thus provides potential timing channels, that
cannot be partitioned by the OS, or at least it is not obvious
how the OS could do it. This includes all forms of on-core
cache, which are virtually addressed, and frequently too small
for colouring. This kind of state includes the L1 I- and D-
caches, the TLB and the branch predictor. But it also includes
other stateful accelerators, such as prefetchers and DRAM row
buffers.

The AISA must identify each of these, suitably abstracted,
and, importantly, must also identify how this state can be
either partitioned or completely flushed by the OS. This part
of our proposal is probably the one architects will be least
comfortable with, but it is a real necessity for security. Any
microarchitectural state that is not specified in this way by
the AISA will result in a timing channel which the OS is
powerless to close, and thus render the processor inherently
insecure.

Again, this requirement is not really revolutionary, for
example, all processors support an instruction to flush the com-
plete cache hierarchy. Unfortunately, on many contemporary
processors, this is incomplete (despite statements in the manual
to the contrary). Such incompleteness of the flush functionality
is not acceptable, the AISA contract must be strictly obeyed.
And it must extend to features that are not considered caches
but nevertheless maintain state that depends on execution
history, the prefetcher state machine is an example.

Off-chip features, such as DRAM row buffers, are not
covered by the ISA but must nevertheless included in the
AISA. This should not cause any particular difficulty, as
no new functionality is required. As long as the addressing
structure of DRAM is sufficiently well specified, the OS can
force the row buffers into a defined state (independent of prior
execution history) by accessing certain addresses.

VI. WILL ARCHITECTS ACCEPT IT?

There are two main reasons why manufacturers are reluctant
to disclose more details about their (micro-)architectures: They
want to avoid constraining their design space, and they want
to protect their intellectual property.

We have already argued that, unlike the ISA, the AISA does
not lose its value if it changes frequently, e.g. with each new
processor implementation. This avoids constraining the design.

In many cases such changes would be updates to the values
of parameters, such as latencies of multi-cycle instructions or
properties of the cache, which are easily adapted in hardware
models.

Most of these required properties can be reverse-engineered
anyway, although often with substantial effort, and certainly
not with the dependability that is required for safety-critical
systems. And for most of the relevant hardware features,
say branch-predictors, a relatively high-level abstraction, that
glosses over many details, is sufficient for a sound model of
the hardware, since there is no strong reason for tight bounds,
as argued earlier.

And for ensuring confidentiality we really just need depend-
able mechanisms for scrubbing shared hardware of residual
state. This itself does not expose anything about the internals
of the architecture. In summary, IP protection should not stand
in the way of providing the specifications needed for building
safe systems.

The proposed AISA is much less drastic than that of the
precision-timed (PRET) machine (Lee, “Computing Needs
Time”, CACM, May 2009). While PRET certainly greatly
simplifies temporal safety, it does strongly constrain the ar-
chitects, and they seem very reluctant to accept this approach.
The AISA specifically aims to reduce that barrier to uptake.
Still, can obviously not be sure that manufacturers will accept
this recommendation, but for safety’s sake, let us hope they
will!

VII. CONCLUSIONS

In summary, we observe that the existing hardware-software
contract, the ISA, is insufficient for enforcing security and
safety in computer systems, as it hides important temporal
behaviour of the hardware. It must be replaced by a new
contract, in the form of an augmented ISA that exposes the
relevant detail and the mechanisms the OS can use to manage
microarchitectural state safely and securely.


