Fault Tolerance Through Redundant Execution

on COTS Multicores:

Exploring Trade-offs

Yanyan Shen* Gernot Heiser! Kevin Elphinstone?
UNSW Sydney and Data61, CSIRO, Australia
Email: *yanyan.shen@unsw.edu.au, Tgernot@unsw.edu.au, ik.elphinstone@unsw.edu.au

Abstract—High availability and integrity are paramount in
systems deployed in life- and mission-critical scenarios. Such
fault-tolerance can be achieved through redundant co-execution
(RCoE) on replicated hardware, now cheaply available with
multicore processors. RCoE replicates almost all software, includ-
ing OS Kkernel, drivers, and applications, achieving a sphere of
replication that covers everything except the minimal interfaces to
non-replicated peripherals. We complement our original, loosely-
coupled RCoE with a closely-coupled version that improves
transparency of replication to application code, and investigate
the functionality, performance and vulnerability trade-offs.

Index Terms—sel.4; microkernel; SEU; replication; fault tol-
erance;

I. INTRODUCTION

Computer systems in control of life- and mission-critical
functions require high levels of integrity and availability, even
in the case of component failure. The standard approach
to achieving the required fault tolerance is to use dual or
triple modular redundancy (DMR or TMR, respectively),
where all critical functions (hardware as well as software)
are replicated [1f]. Such redundant hardware architectures are
traditionally employed in scenarios where the cost of failure
is unbearably high.

Traditional redundant designs are expensive, in terms of
capital cost and often also in performance, they also tend to be
robustly engineered and correspondingly bulky and heavy [1]]—
[4]]. This creates space, weight and power (SWaP) problems
that limit the use of such systems.

Computer control of critical systems is rapidly becom-
ing more widespread, especially with the move towards au-
tonomous land and aerial vehicles, and the explosive growth
of small-satellite launches [5]. Many of those systems are
too cost- and SWaP-sensitive for traditional fault-tolerance
approaches. At the same time, on-going miniaturisation of
commercial off-the-shelf (COTS) processors is increasing their
vulnerability to transient faults, such as single-event upsets
(SEUs) caused by ambient ionising radiation [[6]—[10]. In other
words, there is an increased risk of failure at the same time
as critical systems are becoming more widespread.

Recent progress in formal verification has now made it
possible to achieve 100% reliability in critical software com-
ponents, such as the OS [11], file system [[12], and security
protocol implementations [13]. However, such verification
inevitably assumes perfect hardware that always operates
according to its specification. A single, transient bit flip can

invalidate verification assumptions, and can lead to security
violations, just as in unverified systems [14]-[16].

COTS hardware is far from perfect, and reliability issues
are well established [17]-[22], making hardware redundancy
particularly important. However, the abundance of multi-
core processors, especially high-performance, energy-efficient
systems-on-chip designed for phone use, makes processor
redundancy relatively cheap in terms of capital cost as well
as SWaP. We have previously shown that on a multicore, a
redundant OS can run a redundant software stack, where the
application software is unaware of replication [23], with a
sphere of replication (SoR) [24]] covering almost all software.

This earlier work on redundant co-execution (RCoE) used
loosely synchronised replication that is advantageous for per-
formance but cannot support applications that contain data
races, such as concurrency control using lock-free algorithms
or atomic instructions. This also rules out supporting virtual
machines (VMs), as we cannot assume that applications inside
a VM are free from data races. Here we generalise the RCoE
approach to support such use cases. Specifically:

e We introduce closely-coupled redundant co-execution
(CC-RCoE), which makes fewer assumptions about ap-
plication behaviour, and present its design and implemen-
tation on x86 and Arm multicore processors (Section II).

« We introduce an error-masking approach for RCoE that
allows a TMR configuration to downgrade to DMR
operation (Section TV).

e We perform an extensive performance comparison of
CC-RCoE against the original, loosely-coupled variant
(LC-RCoE), using microbenchmarks and
system benchmarks (Section V-B);

« We evaluate the ability of the schemes to detect errors
in memory or CPU registers (Section V-C)), and to mask
errors (Section V-D).

II. BACKGROUND
A. Soft Errors

A single-event upset is a non-destructive (transient) change
of state in a storage element, affecting single or multiple bits,
usually caused by high-energy particles originating in cosmic
radiation or ambient natural radioactivity [6], [25].

Shrinking feature sizes, and reductions of supply voltage,
noise margins, and node capacitance increase sensitivity to soft
errors and lower-energy particles [26[]—[28[. Increased device

density also increases the likelihood of a single strike affecting
multiple components, resulting in SEC-DED ECC memory
providing insufficient protection for modern memory systems,
with up to 20 undetected failures in time (FIT) per DRAM
device reported [22]. Failure rates of CPU and DRAM are
significant even under terrestrial conditions: 1 in 190 for CPU
subsystems and 1 in 1700 for DRAM (one bit-flip) during a
period of 30-day total accumulated CPU time [20]].

B. Redundant Co-Execution

A standard approach to redundancy is using lock-
stepping [29] or loosely-synchronised [1f] processors with
hardware-supported voting. The purchase and maintenance
costs of such commercial systems are significant, and their
sizes and power requirements make them unsuitable for em-
bedded systems. There is also growing demand for perfor-
mance in embedded systems, for instance satellites [30]], which
is at odds with the performance characteristics of radiation-
hardened processors [31], [32].

COTS multicore processors are not sufficiently synchro-
nised to support lock-step execution of replicas, and even if
they were, such an approach would be prohibitively expensive
without hardware-supported voting. Instead, redundant co-
execution (RCoE) runs multiple replicas of a software system
concurrently and independently on different CPU cores, until
they reach an explicit synchronisation point [23].

Apps Drivers Apps Drivers

@selg Microkemel @selg Microkemel

Memory Image

Redundant co-execution (DMR configuration).

Memory Image

Fig. 1.

shows an example DMR system based on RCoE.
The whole software system running on Coreq is replicated
onto Core;, with memory partitioned between replicas. RCoE
redundantly executes most components of the software system,
including the OS kernel and device drivers, and all manage-
ment of replication and its synchronisation is done by the ker-
nel. We can consider each replica running on a physical core a
state machine [33|], where state transitions result from device
inputs. As devices are not physically replicated, only one
replica, the primary on Coreg, can perform low-level device
access and interrupt handling. All replicas must synchronise
at the boundary of this non-replicated device code, so the state
machines can process the same events. The non-replicated
code at the primary is minimal, essentially device-register
reads and writes. All the device driver logic is replicated.

III. CLOSELY-COUPLED RCOE
A. Nondeterminism

To ensure all replica state machines perform the same state
transitions, it is sufficient to replicate the events that trigger

preempt R, = bt
preempt Ry =~ ¢ (x == 1)
else { ... }

Fig. 2. Data race creating divergence between replicas R, and Rj.

transitions, i.e. input data and interrupts. LC-RCoE assumes
that the system executes deterministically between events, and
therefore can synchronise at any time between state transitions.
It uses a logical time that counts deterministic events, i.e.
system calls and application-triggered exceptions.

Data races introduce internal non-determinism that will
cause replicas to diverge. To understand this, assume an
application, running on a single logical core, consisting of
two threads Ty and 7. Both threads execute the same code
segment shown in which has a shared counter x
initialised to 0. Assume at the previous time slice, T of two
replicas, R, and Rj,, was preempted at the points shown.
Assume now that on the present timer tick, the replicas of
Ty start and keep running to the if statement. The replicas
will diverge since they observe different values: x is 1 on R,,
but 2 on R,.

Divergence will also happen with any multitasking work-
load running on a guest OS when using hardware-supported
virtualisation (where the kernel coordinating the replication is
now the hypervisor), not only with races in the application, but
also lock-free synchronisation in the guest OS. This generally
rules out supporting virtual machines with LC-RCoE.

B. Precise Logical Clock

CC-RCoE avoids this divergence by instruction-accurate
synchronisation. We define the CC-RCoE logical time by
adding the exact point in execution since the last deterministic
event (i.e. the LC-RCoE clock tick). To obtain this clock,
we make use of the fact that the number of backward
branches taken, together with the current instruction pointer
(IP), identify a unique point in the instruction stream [34].
A CC-RCoE replica’s logical clock thus consists of the triple
(LC-RCOoE_time, user_branches, user_IP). Note that we do not
include instructions executed in the kernel, as kernel repli-
cas inherently execute somewhat different instruction streams
upon non-deterministic events (the primary differs from other
replicas).

C. Synchronisation and Voting

RCoE synchronises on kernel entries, which is straight-
forward for system calls and other exceptions. Interrupts are
only received by the primary replica; to force synchronisation
on receiving an interrupt, the primary sets a flag and sends
inter-processor interrupts (IPIs) to the other replicas. When
all replicas observe the event, they vote a leading replica by
comparing logical times of all replicas. The leading replica
waits for the others to catch up by spinning on a kernel barrier.
While spinning, it monitors the per-core cycle counter. If the
spinning time exceeds a system-defined timeout value, this is
taken as an indication of divergence (hanging replica).

When a replica must catch up, it sets a global instruction
breakpointﬂ at the address of the next user-level instruction
of the leading replica, and resumes execution. When the
breakpoint exception fires, and the replica is still behind the
leader (which can happen if the breakpoint is inside a loop),
it repeats the process, else it joins the wait if there are more
followers outstanding.

Once synchronised, the replicas need to vote, i.e. compare
their state. Comparing all state would be prohibitive. We make
this tractable by reducing critical kernel state updates, driver-
contributed state updates, and system-call parameters to a
three-word signature, consisting of the present event count
plus a checksum representing state changes. To maximise the
signature’s sensitivity to historical changes, we use a Fletcher
checksum [35]], which is dependent on the values forming the
checksum as well as the order in which they are applied.

We justify not comparing all system state by the observation
that not all user state is critical, e.g. bit flips in image data
are usually harmless, and the application should determine
its integrity needs. In contrast, any updates to kernel data
structures, such as page tables or capability storage, are
potentially critical. Furthermore, divergence of an application’s
execution path will almost certainly lead to changes in system-
call parameters, resulting in observed divergence.

Detection latency can be reduced by configuring the kernel’s
timer tick. In addition we allow an application to add critical
data to the signature at any time through a new system call,
FT_Add_Trace. Device drivers in particular should use
this system call to contribute output data into the signature
and reduce detection latency. We will examine the reliability

benefits in

D. Implementation Challenges

One might think that the precise logical clock would be
easy to obtain with the help of the performance monitoring
unit (PMU). However, on the COTS x86 and Arm processors,
many PMU events are imprecise, exhibiting over- or under-
counting [36].

Fortunately, on Intel processors [37] the difference between
the number of branch instructions retired and the number
of far branches retired is deterministic and equal to the
number of branches executed in user mode, if we program the
PMU counters to count only user-mode events. We confirm
this experimentally on a number of Intel processors of the
Haswell (Core i7-4770 and 15-4590) and Skylake (i7-6700)
microarchitectures. ReVirt [38] uses a similar approach to
record and replay nondeterministic events. Note that when
running a virtual machine (VM), we count branches in user
code as well as the guest kernel.

The x86 architecture presents an additional challenge
through string operations with rep-family prefixes (e.g.,
rep movsb), which logically execute in a loop but do not
increment branch counters. This makes it impossible to de-
termine a precise logical time if a breakpoint is set at such

'A global breakpoint triggers an exception when any thread’s program
counter matches the breakpoint.

1ldr r0, [r3]
bl _IO_getc
uxtb r0, r0
cmp r0, #66
ldmegfd sp!, {r3,
pc}

ldr r0, [r3]

add r9, r9, #1

bl _IO_getc

uxtb r0, r0

cmp r0, #66

add r9, r9, #1

ldmegfd sp!, {r3,
pc}

cmp r0, #55
moveq r0, #56

cmp r0, #55

moveq r0, #56

add r9, r9, #1
ldmfd sp!, {r3, pc}

ldmfd sp!, {r3, pc}

Listing 1. Original code. Listing 2. Modified code.

an instruction. To avoid this case, we need to examine the
memory referenced by the instruction pointer. If the code is
in a VM, this requires locating the instruction by a software
walk of the guest page table and the extended page table,
which significantly adds to the cost of supporting VMs.

For Armv7-A processors, including the Cortex-A9 cores
we are using, we find no PMU events that produce accurate
branch counts. Instead we adopt a compiler-based branch-
counting technique demonstrated by Slye and Elnozahy [39],
who built a record-replay fault-tolerant solution on a DEC
Alpha processor. We use their ideas to develop a plugin for
GCC to count branches, by inserting a count instruction before
each call or jump instruction.

To avoid the overhead of accessing memory and minimise
the number of extra instructions required, we reserve a register
for maintaining the counter (using the —-ffixed-r9 argu-
ment to GCC). The register can be incremented in a single
cycle, at the cost of stealing a register from the compiler’s
optimiser. The plugin iterates lists of insns, which are
GCC’s internal representation of instructions, and prepends
each call_insn (function call) or jump_insn (jump) with
an increment instruction on register a 9. For example, the code
of is transformed into that of

We ensure that the plugin is called after various optimisation
passes, to avoid the extra instructions being optimised away.
The reserved register is thread-local, i.e. context-switched like
any register. The kernel only treats it as special during the
synchronisation protocol, where it is monitored to determine
when replicas have caught up. After syncing, it is reset to
avoid overflow.

Synchronisation instructions also cause a problem: Armv7-
A provides the load exclusive (1drex) and store exclusive
(strex) instructions, which are used in a retry-loop, for
implementing atomic updates. As a result, the number of
executions may differ between replicas, even when they do
not diverge. We avoid this problem by requiring the use of a
system call for atomic updates. This step can be automated in
the future by using a binary rewriting tool, which scans the
ldrex-strex pairs and converts them into system calls.

Armv7 does not have an equivalent of the x86 resume flag,
which can temporarily disable a breakpoint without clearing
it. We therefore need to handle two debug exceptions for every
breakpoint: one for the target breakpoint and a second one for a

1000: add r7, r7, #1
1004: add r8, r8, #1
1108: add r9, r9, #1
110c: b 1000

Listing 3. Race condition on counter maintenance.

mismatch breakpoint, to single-step over the target breakpoint
before re-enabling it again. This increases the overhead of
synchronising the branch counter.

Another complication arises from the fact that our branch
counter is not updated atomically with the branch, and execu-
tion may be preempted between the two instructions. Consider
the code in and assume the primary has just executed
the back branch, i.e. its instruction pointer is 0x1000. If
another replica with the same counter value is about to
execute address 0x110c, its branch counter already reflects
the branch that has not yet been taken. Simply comparing
instruction pointers would falsely indicate the primary as
trailing. Therefore, we also need to check whether the last
instruction executed by a replica is the counter incrementation
and handle the case accordingly when voting the leader.

As CC-RCoE on Armv7-A depends on a compiler ex-
tension, all code (including libraries) must be recompiled.
The critical systems we target tend have strict assurance
requirements, which require source-code access. We also need
to scan for necessary modifications to any assembly files or
in-line assembly. It would be straightforward to build a tool
that checks for such cases of assembly, to reduce the chance
of overlooking some.

E. Device-Driver Support

The two RCoE models differ significantly in the support
required for device drivers. Our implementation is based on
the seL4 microkernel [11], which runs drivers in user mode.
As such, they are almost normal processes, automatically
replicated by RCoE. However, as mentioned in
the actual device access is done by the primary replica only,
so drivers are aware of the SoR boundary.

In LC-RCoE, device drivers are supported by augmented
system calls, ARM_Page_Map and IA32_Page_Map, which
create cross-replica shared memory regions; this allows the
driver replicas to conduct input data replication in user mode.

In CC-RCOE, the replicas of a device driver must behave
identically due to the requirement for precise preemption.
This means that, unlike normal selL4 drivers, which directly
access memory-mapped device registers, replicated drivers
must delegate device-memory access and its input data repli-
cation to the kernel (where branches are not counted). We
support this with two new system calls, FT_Mem_Access
and FT_Mem_Rep; their signatures are shown in
These calls are synchronisation points, so they only perform
operations when all replicas are in sync.

FT_Mem_Access performs a read or write (as specified by
access_type) of the device memory at address va_mmio,
transferring the data to/from memory address va_src_dest.

int FT_Mem_Access (Word access_type, Word
va_mmio, Word va_src_dest, Word size);
int FT_Mem_Rep (Word va, Word size);

Listing 4. Signatures of driver-support system calls.

When called by the primary for reading, this will copy from
device memory to the kernel shared-memory region. Non-
primaries block until the primary has performed the read, after
that, each replica copies the shared value to va_src_dest.
On writing, the primary replica writes the data to the device
memory. The driver may optionally call FT_Add_Trace
to force the output data into the signature. FT_Mem_Rep
replicates a buffer used for direct memory access (DMA).
Executed by the primary, it copies the specified buffer to the
shared memory region, executed by another replica, it copies
from the shared region to the caller’s address space.

F. CC-RCoE vs LC-RCoE trade-offs

CC-RCoE requires more effort to maintain the logical clock
than LC-RCoE, which means that we can expect a higher
performance degradation. Hence, LC-RCoE is the preferred
approach when its requirements are met.

For code that is known to contain data races, or that is too
complex to assure free from races (including virtual machines),
CC-RCOoE is the only option. LC-RCOoE is also more restricted
in its ability to recover from errors, see

For hardware-assisted CC-RCoE, as we use it on X860,
overheads result from (i) reading performance counters, (ii)
programming debug registers, and (iii) handling debug ex-
ceptions. These overheads can be significant if an instruction
breakpoint is inside a tight loop. Furthermore, it is by no means
sure that all future x86 processors (or even present, non-Intel
ones) will provide the required hardware support.

The overhead of compiler-assisted CC-RCoE, as we use it
on Arm, also has overheads beyond that of reserving a register.
For each breakpoint we must program debug registers and
handle the resulting debug exceptions. The catch-up overhead
is again high if a breakpoint is inside a loop.

IV. ERROR RECOVERY

Once an error is detected, recovery is desirable. One ap-
proach would be to roll the system back to a checkpoint,
or just restart the faulty replica and roll it forward from
logged inputs. These options could be combined with RCoE,
but checkpointing raises its own dependability issues (fault-
tolerant storage of the checkpoints and logs), and would
result in high storage overheads. Furthermore, restore and roll-
forward would take considerable time, impacting availability.

A. Downgrading on Errors

A DMR configuration can only defect divergence, after
which the only safe operation is to shut the system down
(presumably after raising some alerts). In contrast, a TMR
configuration can safely continue operation without service
disruption by downgrading to DMR.

We support this [40], within limits. At present, we only
recover from a failed vote on the state signature, not from a
timeout while waiting for a straggler replica (although this
limitation would not be hard to lift by shutting down the
straggler’s core). Also we require agreement on the identity
of the diverging replica for downgrading.

All replicas independently vote on the signatures. If they
agree that the signatures agree, execution continues normally.
If all replicas agree that there is divergence, and they agree
on the identity of the diverging replica, we downgrade: the
faulty replica removes itself while the others wait for this
to complete. If there is no consensus, we halt the system.
Disagreement may result from faults in multiple replicas,
corruption of the checksums, or a fault during voting.

When removing the primary, the other replicas need to elect
a new primary (the remaining node with the smallest ID) and
re-route interrupts to it. CC-RCoE handles I/O operations in
the primary kernel, requiring reconfiguration of DMA buffers
if the primary is removed. On x86 we support this by marking
DMA buffers, using an unused bit in the page tables, and
patching page-table entries when removing the primary. We
do not have an unused bit in the page tables of Cortex-A9
processors, so we presently do not support error masking for
CC-RCoE on Arm. The 64-bit Armv8 architecture as well as
Armv7 processors with the large-physical-address extension
do have such bits, so we will be able to support error masking
for CC-RCoE on newer Arm processors.

Since I/O operations are not redundantly executed, we
cannot downgrade if the primary is faulty and any replica
is currently accessing I/O devices, as we cannot determine
whether the faulty primary has initiated I/O operations that
might corrupt the system.

B. Voting Algorithm

shows the voting algorithm, which is invoked if the
checksums differ. It returns the ID of the diverging replica if
there is consensus on the faulter, or flags an error otherwise.
Note that the voting algorithm can be affected by transient
faults as well, although the window is tiny. Thus, the algorithm
is designed to be executed by all the replicas redundantly, with
barriers to ensure fail-stop behaviour.

We first compare each replica’s state signature with that of
the other replicas, and increment a per-replica counter if the
signatures match (lines 8—11). The barrier at line 12 ensures all
replicas finish before proceeding to the next stage, or halts the
system if the barrier times out. Lines 13—18 find the smallest
value in the array ft_votes; the values in the array represent
the number of checksums in the array checksum which agree
with the one indexed by my_rid. Thus, the replica with the
smallest value is the faulty one.

Lines 19-22 check for the following cases: (1) more than
one replica is faulty, (2) all the checksums are the same.
The votes received by each non-faulty replica should be
the replica number (N) minus one if only one checksum is
incorrect. Each replica stores the ID of the replica it has
determined as faulty in the globally shared, per-replica variable

24 for

28 }
29 kbarrier (bar,

I global_shared int ft_votes|[N];
global_shared int ft_fault_replicalN];

4+ 1int vote_fault_replica(void) {

int least_vote = N + 1;
6 int fault_replica = N + 1;
7 ft_votes[my_rid] = 0;
8 for (int i = 0; 1 < N; 1i++) {
9 if (checksum[i] == checksum[my_rid])

10 ft_votes[my_rid]++;
1 }

12 kbarrier (bar, N);

13 for (int i = 0; 1 < N; 1i++) {

14 if (ft_votes[i] < least_vote) {
15 least_vote = ft_votes[i];

16 fault_replica = 1i;

17 }

18 }

19 if (ft_votes[my_rid] != N - 1)

20 ft_fault_replicalmy_rid] = my_rid;

21 else

ft_fault_replical[my_rid] =
fault_replica;
kbarrier (bar, N);
(int 1 = 0; 1 < N; i++) {
if (ft_fault_replicali] !=
ft_fault_replical[my_rid]) {

2 return ERROR_DIFF_FAULT REPLICA;

}

N) ;
30 return fault_replica;

Listing 5. The algorithm for voting a faulty replica.

ft_fault_replica[my_rid] if the check succeeds; oth-
erwise, the replica stores its own ID. The barrier at line 23
ensures that all the replicas have finished the checking stage.

Finally, all the replicas check if the faulty replica voted by
others is the same as the one chosen by itself. An error is
returned if the faulty replica IDs are different, and the system
halts (lines 24-28). If all replicas agree on the faulty replica,
they pass the third barrier and the faulty replica ID is returned
by the function (lines 29-30).

[Table I| shows two examples of voting. In the first, Rs has
an incorrect checksum, resulting in the lowest ft_votes, a
consensus of Ry being faulty. In the second example, all the
checksums differ, resulting in all £t_votes being 1. In this

TABLE I
EXAMPLES OF VOTING.

Ry R, Ry
checksum Oxdeadbeef Oxdeadbeef Oxdeedbeef
ft_votes 2 2 1
ft_fault_replica 2 2 2
checksum Oxdeadbeaf Oxdeadbeef Oxdeedbeaf
ft_votes 1(<2) 1(<2) 1(<2)
ft_fault_replica 0 1 2

case, each replica set its ft_fault_replica[my_rid]
to its own ID; thus the check (lines 24-28) returns
ERROR_DIFF_FAULT_REPLICA to indicate multiple faulty
replicas. Note that this voting algorithm supports any number
of replicas N > 3.

C. Re-integration

Re-integrating an off-lined replica is the same as upgrading
from DMR to TMR operation. While not a critical feature, it
is definitely desirable for systems unattended for an extended
period. Upgrading is possible by copying all kernel and user
state of the present non-primary replica to the new replica [40]].
We have not implemented this yet, and for now require a full
reboot to upgrade a DMR configuration to TMR.

V. EVALUATION

We evaluate RCoE on both architectures. Our x86 processor
is a Core i7 6700 quad-core running at 3.40 GHz, 2x32KiB
L1 and 256KiB L2 cache per-core and a shared 8 MiB L3
cache, equipped with 8 GiB of DDR4-2133 memory, and an
Intel I1219-LM network card. The kernel and native apps run in
64-bit mode. For x86 VM benchmarks, the kernel and sel.4’s
virtual-machine manager (VMM) run in 32-bit mode, and the
VMM presently only supports 32-bit guests.

Our Arm platform is a SABRE Lite board based on an
i.MX6 SoC [41]], which features a quad-core Cortex A-9
processor (32-bit Armv7-A ISA), 2x32KiB L1 caches, a
shared 1 MiB L2 and 1GiB of DDR3-1066 memory.

We use LC-D, LC-T, CC-D, and CC-T to represent DMR
and TMR configurations using the LC-RCoE or CC-RCoE
models. Note that the benchmarks for virtual machines are
only conducted on the x86 machine, since running replicated
virtual machines is not yet supported on the Arm board.

In tables, numbers in parentheses indicate standard
deviations in units of the least significant digit.

A. Microbenchmarks

1) Tolerating Data Races: We use a simple program to
demonstrate that CC-RCoE is able to tolerate multithreaded
applications with data races. The benchmark starts 32 threads;
each thread reads a shared counter to a local register, idles
for a short interval, increases the local register, and writes the
register back to the shared counter, in a loop. When all threads
finish, we compare the shared counters of different replicas.
The shared counter is not protected by a lock, so this setup
contains data races.

For LC-RCoE, we observe that the counter values of the
replicas diverge with high probability. With CC-RCoE, while
the counter values tend to differ from the “correct” value (i.e.
if locking were used), we never see a divergence between
replicas in 1,000 runs on each architecture.

2) Dhrystone and Whetstone: To evaluate our framework’s
effect on CPU-bound applications, we port the Dhrystone [42]]
integer benchmark, as well as the Whetstone [43]] floating-
point suite, to run natively on selL4. shows execution
times (average of 10 runs) for the various configurations,

TABLE II
DHRYSTONE/WHETSTONE EXECUTION TIMES IN SECONDS.

Dhrystone Whetstone

Arm x86 Arm x86
Loops 200M 1000 M 0.5M 2M
Base 146.098 (2) 108.1(0) 1089 (1) 120.3 (0)
LC-D 146.991(0) 108.6(1) 109.8 (5) 120.3 (1)
LC-T 146.992(0) 108.6(0) 109.8 (4) 1204 (1)
CC-D 153.422(0) 110.7(1) 122.9(66) 138.7(40)
CC-T 153.427(0) 111.9(1) 133.5(42) 143.0(55)

as measured by the CPU cycle counters. We observe that
for both benchmarks and on both architectures, LC-RCoE
shows negligible overhead, in both the DMR (row LC-D)
and TMR (LC-T) configurations. This is not surprising, as
these benchmarks are CPU-bound, perform no system calls,
and have small working sets that fit into the caches, avoiding
contention on the memory bus. As such, they represent a best
case for RCoE. The only overheads are from kernel entries
resulting from preemption-timer ticks.

A striking feature of the CC-RCOoE results is that the relative
standard deviation of Whetstone runs is up to 5%. This is
a consequence of the overhead being very sensitive to the
location of the synchronisation point: if it is inside a loop,
overhead will be high as explained in else it
will be low. These simple benchmarks approach a worst-case
scenario for maintaining our precise logical times, as they
consist mostly of tight loops. The main difference is that
Whetstone is structured as several tight loops, resulting in
about 20% TMR overhead, while the main body of Dhrystone
is one long loop, resulting in a TMR overhead of 4-5%.

3) Virtualised Dhrystone and Whetstone: To examine the
cost of RCoE in virtualised environments, we run the bench-
marks inside a Linux VM on top of our CC-RCoE sel.4 kernel
acting as the hypervisor (remember from that LC-
RCoE cannot support VMs). As the seL4 kernel version we
use does not support hypervisor mode on Arm (it was added
in a later version) we can run virtualised setups only on x86.

[Table T10] shows the results. Note that the baseline numbers
are not comparable to [Table II} as the benchmarks are built
quite differently: The native versions run in 64-bit mode,
are compiled with optimisation disabled (per the comments
in the source file of Dhrystone) and statically linked, while
the virtualised programs run in 32-bit mode (seL4 does not

TABLE III
VIRTUALISED MICROBENCHMARK EXECUTION TIMES (S) AND
SLOWDOWNS ON X86.

Dhrystone Whetstone
Base 86 (0) 55 (0)
CC-D 130(11) 1.5x 159(11) 2.9x

TABLE IV
VIRTUALISED SPLASH-2 EXECUTION TIME (S) ON X86 FOR N RUNS.

Name N Base CC-D Fact
BARNES 30 61(0) 93 (19) 1.52
CHOLESKY 300 66(0) 792(150) 12.08
FFT 100 64 (0) 142(13) 2.22
FFM 20 76(0) 160(37) 2.11
LU-C 30 64(0) 437(17) 6.83
LU-NC 20 62(0) 381(27) 6.12
OCEAN-C 1000 64(0) 173(1) 2.71
OCEAN-NC 1000 65(1) 171(1) 2.65
RADIOSITY 25 66(0) 75(0) 1.12
RADIX 20 66(0) 89 (4) 1.34
RAYTRACE 1000 60(0) 65(1) 1.09
VOLREND 100 86(0) 133(1) 1.54
WATER-NS 600 66(1) 92(2) 1.41
WATER-S 600 67(0) 84 (0) 1.25
Geometric mean 2.30

presently support 64-bit VMs) are built with optimisation level
—Os and dynamically linked (the Buildroot [44]] settings to
create Linux user-mode applications optimised for size); they
also use different libraries.

The results show a high performance impact of CC-RCoE
in a virtualised environment, with execution time increasing
55% for Dhrystone and almost tripling on Whetstone.

The overheads are dominated by the cost of VM exits and
entries. Intel virtualisation support reduces the impact of this
cost by minimising the need for VM exits through system-
call redirection, extended page tables and other optimisations;
so normal execution has few VM exits. In contrast, our
breakpoints force VM exits. The take-away is that CC-RCoE’s
support for virtualisation comes at significant cost.

4) SPLASH-2: SPLASH-2 [45] is a suite of parallel scien-
tific computing kernels, which we again run in a Linux VM on
x86, with NPROC=2 (i.e. two threads); results are summarised
in Overheads range from 10% to a factor 12, with
mean execution time around 2.3 times the baseline, which
is comparable to the virtualised Whetstone overhead and
thus in the expected range. The different sensitivities of the
benchmarks is a reflection of the time spent in tight loops. The
results confirm that the code taking a signficant share of overall
execution time should be ported to native execution, rather
than virtualised. With NPROC=1 (single-threaded applications)
the mean overhead drops slightly to 2.02.

5) Memory Bandwidth: To quantify the effect of redundant
co-execution on the memory bandwidth available to appli-
cations, we stress the memory system with a simple copy
benchmark. It uses memcpy () between two page-aligned
memory buffers, each of which is four times the size of the
last-level cache. We pre-map the buffers to avoid page faults,
and each run repeats the copy 100 times. We report the average
of 100 runs (i.e. 10,000 memcpy () invocations) in

TABLE V
MEMORY COPY BANDWIDTH (BW, GIB/S), AND REMAINING FRACTION
(%) UNDER RCOE.

Base LC-D CC-D LC-T CC-T
BW BW % BW % BW % BW %
x86 254 12549 12449 79 31 7.8 31
Arm 1.7 1.1 64 1.164 0740 0.6 32

We synchronise the replicas by executing a barrier at the start
and end of each run. Relative standard deviations are < 1%.

As expected, the replicas competing for memory bandwidth
reduces observable throughput to roughly 50% for DMR and
33% for TMR on x86. On Arm, a single core cannot saturate
the memory system, and this bandwidth reserve lessens the
impact on throughput. Predictably, there is little difference
between the LC and CC approaches.

B. System Benchmarks

We run Redis [46], a key-value store, as a system bench-
mark. Redis has a number of desirable features, such as exer-
cising CPU, memory, and network. It is implemented in ANSI
C without external dependencies, and adopts a single-threaded,
event-driven design and thus saves us from analysing source
code for data races. To avoid hiding overheads behind 1/O
latencies, we run Redis as a volatile store without persistence.

We run Redis as a native seL4 process, with a second
process running the IwIP network stack [47] and an Ethernet
driver. Due to the different handling of I/O interfaces, the
drivers for the two configurations are slightly different. We
investigate three configuration options for each setup, which
differ in the effort put into detecting divergence:

No arguments (N): minimal effort, synchronise on I/O only
(device register or DMA buffer access and interrupt
handling);

Arguments (A): in addition, add all arguments to the sig-
nature on each syscall. This is the default version, as

described in

Synchronise (S): as above, but also vote on each syscall.

Obviously, from N to S cost will increase but detection latency
will decrease, so this represents a performance-safety trade-off.

We evaluate performance of the Redis server using the
Yahoo! cloud serving benchmarks (YCSB) [48]], running on
dedicated load generator machines, connected to the evaluation
platforms by dedicated Gigabit Ethernet links. We ensure that
throughput is not limited by the load generators. For all runs
we set recordcount to 70,000; we set operationcount
to 10xrecordcount, except for YCSB-E, where it is
Ixrecordcount. These settings result in a database size
of around 160 MiB on Arm and 190 MiB on x86 (as reported
by the info memory Redis client command), significantly
larger than the last-level cache sizes. For each platform, we run
the YCSB benchmark set 10 times. Error bars show standard
deviations.

=

O ==

Fig. 3. Average Redis throughput (A-D: 1000 transactions per second, E: 20
transactions per second) on x86 (top) and Arm.

Results are shown in we summarise the performance
degradation in [Table VI For readability we omit results for
YCSB-F, which is very similar to A and always shows virtually
indistinguishable results. We also observe that the results are
remarkably similar for the two platforms, so we can examine
them together without making reference to the processor.

Loosely-coupled DMR loses 20-38% throughput, the addi-
tional degradation of TMR is smaller, about an extra 15% over
DMR. The additional cost of including syscall arguments in
the signature (“A” vs “N”) is negligible, which justifies using
“A” as the default configuration. Voting on each system call
(“‘S”) has a higher cost impact, but that impact is less than the
baseline cost of replication.

The overhead of the CC approach is significantly higher
than LC. The cost is dominated by the need to move all device
accesses into the kernel, significantly increasing the number
of system calls. The extra cost of voting on system calls is
comparatively small, indicated by the fairly moderate cost of
reducing the error-detection latency.

C. Error Detection

We use software fault injection to test the ability of RCoE
to detect errors, and also experiment with over-clocking.

1) Random memory faults: We run the Redis server from
and use a spare CPU core to flip random bits in
memory. We modify the client to embed CRC32 checksums
into the values sent to the store on the server. When the

TABLE VI
REDIS THROUGHPUTS NORMALISED TO BASELINE.

LC-RCoE CC-RCoE

Mode Arm x86 Arm x86

D-N 78-80% 74-719% 53-56% 51-54%
D-A 77-719% 74-719% 52-56% 50-54%
D-S 72-75% 61-66% 48-53% 38-42%
T-N 71-72% 68-73% 45-48% 46-49%
T-A 69-71% 68-73% 45-48% 46-49%
T-S 63-66% 53-58% 39-43% 34-38%

client reads back the values, it can detect data corruptions
by comparing the embeded checksums and the recalcuated
checksums of the return vaules. We run until the server fails,
the client detects a checksum mismatch, or the error-detection
mechanisms report an error, then restart the system and repeat.

The left-hand columns of show results on x86,
using the default LC-A configuration of We
target the memory of all kernel replicas, including the kernel
shared region, as well as the user memory of the primary
replica. When injecting faults we ensure the same sequence
of pseudo-random numbers for all configurations by seeding
the generator with the same number.

For the base case, we find that about 4% of injected
faults lead to observed errors, the majority of which lead to
corruption detected by the client or even the client faulting
(“YCSB errors”), the remainder leading to faults in the server.

DMR and TMR are about equally effective in detecting
errors, with both LC configurations failing in about 1% and
CC in about 1.4% of cases to detect the error before leading
to corrupt output or YCSB errors. The slightly higher failure
rate of CC results from the slightly reduced SoR: The primary
copies input data from its private DMA buffer to a shared one,
from which the non-primaries replicate the data.

Uncontrolled errors are due to the following reasons: (1)
The DMA buffers are outside the SoR. Data corruptions
in input buffers cannot be detected if they do not lead to
divergence, and data in output buffers can be corrupted after
the replicas have voted (with FT_Add_Trace) and released
the data into the output buffers. (2) If the primary becomes
unresponsive, it cannot trigger synchronisations for interrupts,
leading to a hang. (3) Errors in the shared kernel-memory
regions can affect multiple replicas.

The kernel exceptions merit further scrutiny. An analysis of
the logs of the LC-T configuration reveals that two of them
were caused by corrupted kernel instructions, the third was
potentially caused by a change of kernel-object type, result-
ing de-referencing an invalid pointer. The seL4 verification
proves that there are no kernel exceptions (assuming correctly-
functioning hardware) and the kernel halts if an exception is
raised, so these are controlled errors.

In the right-hand columns of we show results
obtained on Arm. Here we inject faults into all replicas’

TABLE VII
ERRORS RESULTING FROM MEMORY FAULT INJECTIONS ON X86 AND ARM.

x86 — no exception-handler barriers Arm — with exception-handler barriers

Base LC-D LC-T CC-D CC-T | Base LC-D LC-T LC-D-N LC-T-N CC-D CC-T
Injected faults 60k 91k 92k 86k 89k | 243k 202k 184k 224k 214k 205k 185k
Observed errors 2297 2340 2340 2500 2500 | 1000 1000 1000 1000 1000 1000 1000
YCSB corrup 1001 11 16 22 13 | 647 3 1 381 299 3 0
YCSB errors 137 6 4 10 24 57 1 0 13 10 3 6
User mem faults 820 2 2 0 0] 291 0 0 0 0 0 0
Other user faults 339 0 0 0 0 5 0 0 0 0 0 0
Kernel exceptions 0 0 3 3 2 0 0 0 0 0 0 0
Barrier timeouts N/A 1238 1184 1632 1675 | N/A 304 304 602 678 536 516
Signature mism N/A 1083 1131 833 786 | N/A 692 695 4 13 458 478
Uncontrolled 2297 19 22 32 37 | 1000 4 1 394 309 6 6
Controlled N/A 2321 2318 2468 2463 | N/A 996 999 606 691 994 994

memory, not just the primary. Furthermore, we avoid the kernel
exceptions observed on x86 by adding barriers to the kernel’s
exception handler.

We observe that the failure rates are reduced in all four
configurations, although the change is not statistically signif-
icant. Importantly, there are no kernel exceptions. According
to the log, there were several kernel-data aborts, which were
caught by barrier timeouts, indicating that this mechanism is
effective.

We show a further configuration, labelled LC-D-N/LC-T-N,
where we do not include checksums of output network pack-
ages in the state signature. It shows a dramatically increased
failure rate of 39% for DMR and 31% for TMR, meaning
the benefit of replication is dramatically reduced. This clearly
demonstrates the importance of allowing drivers to contribute
data into the state signature to trigger a vote.

We finally observe that the CC variants have about double
the kernel-barrier timeout rates of the LC variants. CC-RCoE
is sensitive to execution divergence, which is results in incon-
sistent numbers of branches, which can result in the replicas
voting an incorrect leader.

2) CPU register faults: Standard fault-injection experi-
ments target memory. However, cosmic rays are not partic-
ularly discriminatory and can also cause faults in registers,
which are much harder to defend against.

To inject faults into user registers we utilise the fact that on
an interrupt, the kernel preempts the running thread and saves
its context. We pick a random bit in the saved user register
state and flip it, then restore context and continue the user
program. We only inject into the primary replica.

As workload we run the CPU-bound md5sum from
BusyBox [49], which implements the MDS5 [50] algorithm
and produces a 128-bit hash value of a file. Secure hashes
like MDS5 are designed to be sensitive to random bit flips. We
run MD5 [50] in a Linux VM on the base system, as well as
a CC-RCoE DMR VM configuration.

For each run we generate a file filled with 128 MiB random
data, and its fault-free digest. We then run md5sum in a loop,
each iteration computing a digest and comparing it with the
correct value. If the digests differ we count this as a data
corruption, while we count abnormal termination as a crash.

At each run we inject faults until the digests differ, the
application crashes, or CC-RCoE detects a divergence, up
to a total of 2500 errors. shows the results. We
find that the CC-RCoE DMR VM setup is 100% effective in
detecting divergence without ever producing corrupted outputs,
with most corruption caught by voting on signatures, and 4%
by timeouts resulting from control-flow corruption.

3) Physically-induced CPU faults: The standard practice of
software fault injection has a degree of artificiality, as it can
only reveal faults in explicitly targeted components, and may
not be representative of SEUs produced by ionising radiation.
Ideally this would be complemented by radiation experiments,
but we were unable to access a suitable radiation source.

Instead we resort to overclocking the processor, which
is known to degrade reliability [51]], and is not limited to
software-accessible parts of the system. We do not claim that
faults resulting from overclocking are representative of SEUs,

TABLE VIII
REGISTER FAULT INJECTIONS ON MD55UM ON X86.

Base CC-D
Total Injected 2872 2812
Crashes 887 0
Corruptions 1613 0
Timeouts N/A 99
Mismatches N/A 2401
Uncontrolled Errors 2500 0
Controlled Errors 0 2500

TABLE IX
ERRORS RESULTING FROM OVERCLOCKING THE ARM BOARD.

Base LC-D LC-T
Observed errors 1000 1000 1000
User memory fault 632 0 0
User other exception 345 0 0
Kernel exceptions 2 0 0
YCSB corruptions 1 0 0
YCSB errors 20 25 24
Timeouts N/A 724 853
Signature mismatches N/A 251 123
Uncontrolled 1000 25 24
Controlled N/A 975 976

only that they test a different scenario. In fact, overclocking
is likely to first affect parts of the circuitry that are, as a
result of random fluctuations in the manufacturing process,
closest to the borders of design-tolerance windows. As such,
overclocking is more likely to cause multiple faults in the
same circuitry within a short period, which is a much more
pessimistic scenario than the true randomness of SEUs.

We overclock our Arm system at 1.092 GHz, 9% above the
manufacturer-specified maximum rate. Again we run the Redis
benchmark of [Section V-B] [Table IX] shows LC results.

We find quite a different error pattern compared to the
Arm results of with user-mode errors dominating.
The system crashes very quickly, usually before entering the
actual benchmarking stage. In the RCoE configurations, 2.5%
of errors are not detected but lead to externally observable
failures. Inspection of the logs reveal that in 6 of these 49
cases overclocking caused system reboots, the remaining 43
were network exceptions, indicating an unresponsive system.

The overclocking experiments reveal an important, although
expected, limitation of our RCoE schemes: when multiple
components experience errors within a short time window,
the system may enter the state of complete failure that is be-
yond the capability of our software-implemented mechanisms,
which are based on the assumption that the hardware functions
mostly correctly. This kind of failure is easy to handle with
a watchdog. Also, this scenario is unlikely to occur with
radiation, unless it is very intense.

LC Primary = - CC Primary - -
LC Othe CC Other

Q 55 - [U I F ,I,_,_, I
é 50 pramsmr s s s s e £ -~
5 45
C
~ 30 = T T,I "o ,',I,,',' o Sy

SR I I RN

Seconds

Fig. 4. Redis throughputs with error masking on x86.

TABLE X
TIME (MICROSECONDS) TAKEN FOR ERROR RECOVERY.

LC primary LC other CC primary CC other
x86 532 8 2,869 3
Arm 2,621 21 N/A N/A

D. Error Recovery

We now examine a TMR system, running the Redis bench-
mark, recovering from a signature mismatch by downgrading
to DMR. We distinguish between triggering an error in the
primary, where the system needs to select a new primary, and
another replica, where this step is not needed.

shows reported YCSB-B throughput on x86 every
10 seconds. The graph shows a throughput increase after
the error is triggered about 50 seconds after YCSB started.
This is the result of the downgrade to the lower-overhead
DMR. The actual recovery operation is not visible in the
throughput graphs, nor do we see a performance difference
between removing the primary or another replica.

Table X]| shows the measured cost for recovery on x86 as
well as Arm (remember from that we cannot
implement downgrading for CC on our 32-bit Arm platform).
Removing the primary is two orders of magnitude more
expensive than removing another replica, but the overall cost
is still only about 2 ms, small enough to be virtually invisible
from the outside.

VI. DISCUSSION

To understand how RCoE-provided fault tolerance compares
to the use of radiation-hardened hardware, we compare our
Cortex-A9 processor with the widely used RAD750 proces-
sor [52]. Running at 133 MHz, the RAD750 achieves around
240 Dhrystone 2.1 MIPS (DMIPS) and draws less than 6 W
of power [53]], or 40 DMIPS/W.

The Cortex-A9 achieves 2.50 DMIPS per MHz per
core [54], or 2,000 DMIPS per core at 800 MHz. We get
2,000 DMIPS overall if we use three cores for TMR and leave
the remaining core idle. Even if we pessimistically assume a
factor-two performance overhead for TMR, the system can
achieve 1000 DMIPS with a total power draw of 5 W, or
200 DMIPS/W. (Power is measured for the whole SABRE
Lite board [55]], which over-estimates the power draw of the
processor.)

This is over five times the energy efficiency of the RAD750.
Each RAD750 processor costs around $ 200,000 [56], while
the price tag for a SABRE Lite board is around $ 200 [57]. The
RAD750 processors can tolerate a more stringent operating
environment in terms of temperature ranges and radiation
intensities, but within the SABRE’s operating range, RCoE
clearly has strong SWaP and cost advantages.

In the current form, the highly-variable overhead suggest
that CC-RCoE will add significant pessimism in the worst-case
execution-time (WCET) analysis for hard real-time systems.

We observe that reducing the number of breakpoint exceptions
when synchronising the replicas is vital to improve the per-
formance CC-RCoE. We plan to explore using performance
counter interrupts instead of breakpoints when a catching-
up replica needs to cover a large number of branches, and
switching to breakpoints when the remaining branch number
is smaller than a predefined value [38]]. Furthermore, for a
particular system, we can reduce overheads by profiling offline
to identify preemption points that are not in tight loops.

Although the physical memory is split and assigned to the
replicas equally, several small memory regions are shared
among the replicas to implement the RCoE framework (in-
cluding barriers and checksums) harnessing the replicas and
buffers for replicating input data (Section III-E). Errors in
the framework region mostly result in barrier timeouts or
checksum mismatches, but we have not performed a complete
analysis of all the possible scenarios. Errors in the input buffers
can cause silent data corruptions, manifested as data corruption
errors in the Redis fault injection experiments.

VII. RELATED WORK

There are a number of approaches to software-implemented
fault tolerance in the literature, providing redundancy at the
instructions, processes, or virtual-machine level.

SWIFT [58] is a compiler-based solution for Itanium 2 pro-
cessors. It detects transient hardware faults using a modified
compiler, which duplicates instructions in order to recompute
results with different registers. SWIFT assumes memory and
caches are protected by ECC so that store instructions are not
replicated. HAFT [59] takes a hybrid approach, combining
compiler-based instruction-level replication for error detection
with Intel’s TSX transactional memory support for error recov-
ery. Like SWIFT, HAFT does not duplicate memory load/store
instructions, assumes ECC memory, and also assumes that
the Linux kernel operates correctly, a courageous assumption
even in the absence of hardware faults [60]. Also, SEC-
DED ECC memory is insufficient to protect modern memory
systems [22]].

Wang et al. [61]] exploit multiple cores, with a research
version of Intel’s ICC 9.0 compiler automatically generating
a pair of threads for each thread in source code; system calls
are only executed by one thread. PLR [62]] targets unmodified
single-threaded binary applications by creating replicas at the
process level with Pin [63]], transparently forking replicas.
Both assume a reliable OS.

Romain [|64]] is an OS service based on the Fiasco.OC
microkernel. It replicates user-level processes assuming the
kernel, device drivers and the replication framework to operate
correctly. Ulbrich et al. [[65] hardens crtical user-mode code
with CoRed (combined redundancy), which combines TMR,
data encoding, and control-flow encoding, to eliminate the
single point of failure in software-based redundancy; these
techniques for protecting user code complement our aims.
Rex [[66]] proposes an execute-agree-follow model to efficiently
replicate multithreaded applications on multicore servers. The

model allows a primary replica to handle requests concur-
rently; non-deterministic decisions are recorded in traces. After
all replicas agree on the traces by executing a consensus
protocol, secondary replicas replay the traces concurrently to
reach the same state as the primary.

Bressoud and Schneider [67] design protocols for coordi-
nating non-deterministic event delivery for a hypervisor run-
ning on HP’s PA-RISC architecture, enabling the hypervisor
to manage a primary-backup virtual machine pair for fault
tolerance. The approach relies on the PA-RISC processor’s
ability to deterministically deliver interrupts and on correct
operation of the hypervisor.

Remus [[68]] aims for high availability by replicating the
protected and backup virtual machines on a pair of physical
hosts using the live-migration capability of the Xen virtual
machine monitor to support fine-grained checkpoints, and
relying on correct operation of Xen. The fault-tolerant feature
of VMware vSphere 4.0 [69]] runs primary and backup virtual
machines in virtual lockstep on different physical machines,
where the hypervisor, assumed to be reliable, manages the
virtual CPU of the backup VM to execute the same instructions
committed by the primary VM. A logging channel is used to
transmit input data and nondeterministic events captured by
the primary VM to the backup VM, which applies the data
and replays the events deterministically. These fault-tolerant
systems based on virtual machines assume that the kernel or
hypervisor is not affected by hardware faults.

FT-Linux [70] is the only other system in the literature (al-
though predated by LC-RCoE [23])) that replicates virtually the
complete software stack without hardware support. It imple-
ments a full-stack, primary-backup, fault-tolerant Linux sys-
tem on a single machine by partitioning hardware resources,
instantiating two Linux kernels, and replicating OS services
as well as selected applications. Non-deterministic events are
logged on the primary and replayed on the secondary. Failure
detection is achieved by interchanging heartbeat messages
between the Linux kernels and also relying on hardware error-
detection features. The replicas managed by RCoE sychronise
before they observe non-deterministic events, removing the
latency of recording and replaying non-deterministic events
and thus extending the SoR.

VIII. CONCLUSIONS AND FUTURE WORK

Our results show that it is feasible to provide protection
against random hardware faults, by redundantly executing a
complete software stack on commodity multicore processors.
Without non-standard hardware support we can replicate ev-
erything except low-level device access. Specifically, replicat-
ing applications is transparent: we do not have to modify
user-mode code other than drivers and for porting to sel4.
This paper introduces CC-RCoE to overcome some limitations
of LC-RCOoE, significantly extending the range of supported
applications.

Our evaluation shows that while performance cost are
noticeable, we can trade them against the latency of error
detection, by choosing voting frequency, and deciding on how

much state to accumulate into the state signatures which the
kernel replicas use for voting.

Compared to other software approaches, which only protect
selected applications and rely on the kernel not being affected
by faults, we dramatically extend the sphere of replication to
include practically the complete system.

Current RCoE can only replicate a logical single-core
system. With increasing core counts in commodity processors,
it is now feasible (and desirable) to replicate multicore systems
on a single processor. Furthermore we found that a significant

portion of errors is detected by barrier timeouts (Section V-C),

recovering from those would be beneficial. Finally we would
like to investigate how we can provide real-time guarantees
with RCoE.

ACKNOWLEDGEMENT

The authors would like to thank the shepherd, Sameh
Elnikety, and anonymous reviewers for their feedback and
suggestions.

AVAILABILITY

Source code for our RCoE implementations, as well as eval-
uation rigs and complete raw data sets are available for down-
load from https://trustworthy.systems/projects/TS/cots.pml.

REFERENCES

[1] D. Bernick, B. Bruckert, P. Del Vigna, D. Garcia, R. Jardine, J. Klecka,
and J. Smullen, “NonStop advanced architecture,” in Proceedings of the
35th International Conference on Dependable Systems and Networks
(DSN), Washington, DC, US, 2005, pp. 12-21.

[2] J. Bartlett, W. Bartlett, R. Carr, D. Garcia, J. Gray, R. Horst,
R. Jardine, D. Lenoski, and D. McGuire. (1990) Fault tolerance in
Tandem computer systems. [Online]. Available: http://www.hpl.hp.com/
techreports/tandem/TR-90.5.pdf

[3] L. Spainhower and T. A. Gregg, “IBM S/390 parallel enterprise server
G5 fault tolerance: A historical perspective,” IBM Journal of Research
and Development, vol. 43, no. 5, pp. 863-873, Sep. 1999.

[4] W. Bartlett and L. Spainhower, “Commercial fault tolerance: A tale of
two systems,” IEEE Transactions on Dependable and Secure Computing,
vol. 1, pp. 87-96, Jan. 2004.

[5] M. N. Sweeting, “Modern small satellites—changing the economics of
space,” Proceedings of the IEEE, vol. 106, pp. 343-361, Mar. 2018.

[6] J. F. Ziegler and W. A. Lanford, “Effect of cosmic rays on computer
memories,” Science, vol. 206, no. 4420, pp. 776-788, 1979. [Online].
Available: http://science.sciencemag.org/content/206/4420/776

[71 R. Baumann, “Technology scaling trends and accelerated testing for
soft errors in commercial silicon devices,” in 9th IEEE On-Line Testing
Symposium, Jul. 2003, pp. 4—.

[8] ——, “Radiation-induced soft errors in advanced semiconductor tech-
nologies,” IEEE Transactions on Devices and Materials Reliability,
vol. 5, no. 3, pp. 305-316, Sep. 2005.

[91 N. Seifert, P. Slankard, M. Kirsch, B. Narasimham, V. Zia, C. Brookre-

son, A. Vo, S. Mitra, B. Gill, and J. Maiz, “Radiation-induced soft error

rates of advanced CMOS bulk devices,” in Proceedings of the 44th IEEE

International Reliability Physics Symposium, San Jose, CA, US, Mar.

2006, pp. 217-225.

V. Ferlet-Cavrois, L. W. Massengill, and P. Gouker, “Single event

transients in digital CMOS - a review,” IEEE Transactions on Nuclear

Science, vol. 60, no. 3, pp. 1767-1790, Jun. 2013.

G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolan-

ski, and G. Heiser, “Comprehensive formal verification of an OS

microkernel,” ACM Transactions on Computer Systems, vol. 32, no. 1,

pp. 2:1-2:70, Feb. 2014.

H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek, and

N. Zeldovich, “Using Crash Hoare logic for certifying the FSCQ

file system,” in ACM Symposium on Operating Systems Principles,

Monterey, CA, Oct. 2015, pp. 18-37.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang,
and B. Zill, “Ironclad apps: End-to-end security via automated
full-system verification,” in USENIX Symposium on Operating Systems
Design and Implementation, Broomfield, CO, US, Oct. 2014, pp. 165—
181. [Online]. Available: https://www.usenix.org/conference/osdil4/
technical-sessions/presentation/hawblitzel

S. Chen, J. Xu, Z. Kalbarczyk, R. K. Iyer, and K. Whisnant, “Mod-
eling and evaluating the security threats of transient errors in firewall
software,” Performance Evaluation, vol. 56, no. 1-4, pp. 53-72, Mar.
2004.

J. Xu, S. Chen, Z. Kalbarczyk, and R. K. Iyer, “An experimental study
of security vulnerabilities caused by errors,” in Proceedings of the
International Conference on Dependable Systems and Networks (DSN),
2001, pp. 421-430.

S. Govindavajhala and A. W. Appel, “Using memory errors to attack a
virtual machine,” in IEEE Symposium on Security and Privacy, 2003,
pp. 154-165.

X. Li, K. Shen, M. C. Huang, and L. Chu, “A memory soft error
measurement on production systems,” in Proceedings of the 2007
USENIX Annual Technical Conference, Santa Clara, CA, US, 2007.

S. Z. Shazli, M. Abdul-Aziz, M. B. Tahoori, and D. R. Kaeli, “A field
analysis of system-level effects of soft errors occurring in micropro-
cessors used in information systems,” in 2008 IEEE International Test
Conference, Oct. 2008, pp. 1-10.

B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM errors in the wild:
A large-scale field study,” in Proceedings of the ACM Conference on
Measurement and Modeling of Computer Systems, Seattle, WA, US,
2009, pp. 193-204.

E. B. Nightingale, J. R. Douceur, and V. Orgovan, “Cycles, cells
and platters: An empirical analysis of hardware failures on a million
consumer PCs,” in Proceedings of the 6th EuroSys Conference, Salzburg,
AT, Apr. 2011.

V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and S. Gu-
rumurthi, “Feng shui of supercomputer memory: Positional effects
in DRAM and SRAM faults,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, Denver, CO, US, 2013.

V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley,
J. Shalf, and S. Gurumurthi, “Memory errors in modern systems: The
good, the bad, and the ugly,” in Proceedings of the 20th International
Conference on Architectural Support for Programming Languages and
Operating Systems, Istanbul, TR, Mar. 2015, pp. 297-310.

Y. Shen and K. Elphinstone, “Microkernel mechanisms for improving
the trustworthiness of commodity hardware,” in European Dependable
Computing Conference, Paris, France, Sep. 2015, p. 12.

S. K. Reinhardt and S. S. Mukherjee, “Transient fault detection via
simultaneous multithreading,” in Proceedings of the 27th International
Symposium on Computer Architecture, Jun. 2000, pp. 25-36.

T. C. May and M. H. Woods, “Alpha-particle-induced soft errors in
dynamic memories,” IEEE Transactions on Electron Devices, vol. 26,
no. 1, pp. 2-9, 1979.

K. P. Rodbell, D. F. Heidel, H. H. K. Tang, M. S. Gordon, P. Oldiges, and
C. E. Murray, “Low-energy proton-induced single-event-upsets in 65 nm
node, silicon-on-insulator, latches and memory cells,” IEEE Transactions
on Nuclear Science, vol. 54, no. 6, pp. 2474-2479, Dec. 2007.

B. D. Sierawski, M. H. Mendenhall, R. A. Reed, M. A. Clemens,
R. A. Weller, R. D. Schrimpf, E. W. Blackmore, M. Trinczek, B. Hitti,
J. A. Pellish, R. C. Baumann, S.-J. Wen, R. Wong, and N. Tam,
“Muon-induced single event upsets in deep-submicron technology,”
IEEE Transactions on Nuclear Science, vol. 57, no. 6, pp. 3273-3278,
Dec. 2010.

M. P. King, R. A. Reed, R. A. Weller, M. H. Mendenhall, R. D.
Schrimpf, B. D. Sierawski, A. L. Sternberg, B. Narasimham, J. K. Wang,
E. Pitta, B. Bartz, D. Reed, C. Monzel, R. C. Baumann, X. Deng, J. A.
Pellish, M. D. Berg, C. M. Seidleck, E. C. Auden, S. L. Weeden-Wright,
N. J. Gaspard, C. X. Zhang, and D. M. Fleetwood, “Electron-induced
single-event upsets in static random access memory,” IEEE Transactions
on Nuclear Science, vol. 60, no. 6, pp. 4122-4129, Dec 2013.

NEC. (2011, Mar.) Fault tolerant server white paper. [Online]. Avail-
able: http://www.nec.com/en/global/prod/express/collateral/whitepaper/
ft_WhitePaper_E.pdf]

https://trustworthy.systems/projects/TS/cots.pml
http://www.hpl.hp.com/techreports/tandem/TR-90.5.pdf
http://www.hpl.hp.com/techreports/tandem/TR-90.5.pdf
http://science.sciencemag.org/content/206/4420/776
https://www.usenix.org/conference/osdi14/technical-sessions/ presentation/hawblitzel
https://www.usenix.org/conference/osdi14/technical-sessions/ presentation/hawblitzel
http://www.nec.com/en/global/prod/express/collateral/ whitepaper/ft_WhitePaper_E.pdf
http://www.nec.com/en/global/prod/express/collateral/ whitepaper/ft_WhitePaper_E.pdf

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]
[47]

[48]

[49]

[50]

[51]

C. M. Fuchs, T. P. Stefanov, N. M. Murillo, and A. Plaat, “Bringing
fault-tolerant Gigahertz-computing to space: A multi-stage software-side
fault-tolerance approach for miniaturized spacecraft,” in 2017 IEEE 26th
Asian Test Symposium (ATS), Nov. 2017.

BAE. (2018) Radiation-hardened processors products. [Online].
Available: https://www.baesystems.com/en/our-company/our-
businesses/electronic-systems/product-sites/space-products-and-
processing/processors

D. D. Corporation. (2018) SCS750 single board computer
for space. [Online]. Available: http://www.ddc-web.com/Products/
Microelectronics/images/documents/SCS750_rev8_r6.pdf]

F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Computing Surveys, vol. 22, no. 4,
pp. 299-319, Dec. 1990.

J. M. Mellor-Crummey and T. J. LeBlanc, “A software instruction
counter,” in Proceedings of the 3rd International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
1989, pp. 78-86.

J. G. Fletcher, “An arithmetic checksum for serial transmissions,” IEEE
Transactions on Communications, vol. 30, no. 1, pp. 247-252, Jan. 1982.
V. Weaver, D. Terpstra, and S. Moore, “Non-determinism and overcount
on modern hardware performance counter implementations,” in /EEE
International Symposium on Performance Analysis of Systems and
Software, Apr. 2013.

Intel 64 and IA-32 Architectures Software Developer’s Manual Vol-
ume 3: System Programming Guide, Intel Corp., 2016, https://
software.intel.com/en-us/articles/intel-sdm.,

G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen,
“Revirt: Enabling intrusion analysis through virtual-machine logging and
replay,” in Proceedings of the 5th USENIX Symposium on Operating
Systems Design and Implementation, Boston, MA, US, 2002.

J. H. Slye and E. N. Elnozahy, “Supporting nondeterministic execution
in fault-tolerant systems,” in Proceedings of the 26th International
Symposium on Fault-Tolerant Computing, Jun. 1996, pp. 250-259.

Y. Shen, “Microkernel mechanisms for improving the trustworthiness of
commodity hardware,” Ph.D. dissertation, UNSW, Mar. 2019.

i.MX 6Dual/6Quad Applications Processor Reference Manual,
NXP, 2015, http://www.nxp.com/assets/documents/data/en/reference-
manuals/IMX6DQRM.pdf.

R. P. Weicker, “Dhrystone benchmark: Rationale for version 2 and
measurement rules,” SIGPLAN Notices, vol. 23, no. 8, pp. 49-62, Aug.
1988.

R. Painter, “C converted Whetstone double precision benchmark,” http:
/Iwww .netlib.org/benchmark/whetstone.c, 1998.

Buildroot, “Buildroot,” 2018. [Online]. Available: https://buildroot.org
S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological considera-
tions,” in Proceedings of the 22nd International Symposium on Computer
Architecture. S. Margherita Ligure, IT: ACM, 1995, pp. 24-36.
RedisLabs. (2009) Redis. [Online]. Available: https://redis.io

A. Dunkels, “Minimal TCP/IP implementation with proxy support,”
SICS, Tech. Rep. T2001-20, Feb. 2001, http://www.sics.se/~adam/
thesis.pdf.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in ACM Symposium
on Cloud Computing. Indianapolis, IN, US: ACM, Jun. 2010, pp. 143—
154.

BusyBox, “BusyBox: The Swiss army knife of embedded Linux,” https:
/lbusybox.net/, 2017.

R. Rivest, “The MDS5 message-digest algorithm,” Internet Requests for
Comments, Internet Engineering Task Force, RFC 1654, Apr. 1992.
[Online]. Available: https://tools.ietf.org/html/rfc1321

G. Memik, M. H. Chowdhury, A. Mallik, and Y. I. Ismail, “Engineering
over-clocking: reliability-performance trade-offs for high-performance
register files,” in Proceedings of the 35th International Conference on
Dependable Systems and Networks (DSN), Jun. 2005, pp. 770-779.

[52]

(53]

(54

[55]
[56]
[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

BAE Systems. (2016) Rad750® radiation-hardened PowerPC
microprocessor. [Online]. Available: https://www.baesystems.com/en-
us/download-en-us/20161103152954/1434555668211.pdf

R. W. Berger, D. Bayles, R. Brown, S. Doyle, A. Kazemzadeh,
K. Knowles, D. Moser, J. Rodgers, B. Saari, D. Stanley, and B. Grant,
“The RAD750™ - a radiation hardened PowerPC™ processor for high

performance spaceborne applications,” in 2001 IEEE Aerospace Con-
ference Proceedings (Cat. No.0ITH8542), vol. 5, Mar. 2001, pp. 2263—

2272.

ARM. (2009) The ARM Cortex-A9 processors. [On-
line]. Available: |https://web.archive.org/web/20120522214159/http:
/Iwww.arm.com:80/files/pdf/ARMCortex A-9Processors.pdf]

(2011) SABRE Lite hardware user manual. [Online]. Available: https:
//boundarydevices.com/SABRE_Lite_Hardware_Manual_rev11.pdf

R. Ginosar, “Survey of processors for space,” in Proceedings of DASIA
2012, data systems in aerospace, May 2012.
BD-SL-i.MX6 development board. [Online].
/fboundarydevices.com/product/sabre-lite-imx6-sbc/
G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“SWIFT: Software implemented fault tolerance,” in Proceedings of the
3rd IEEE Symposium on Code Generation and Optimization, 2005, pp.
243-254.

D. Kuvaiskii, R. Fageh, P. Bhatotia, P. Felber, and C. Fetzer, “HAFT:
Hardware-assisted fault tolerance,” in Proceedings of the 11th EuroSys
Conference, London, UK, Apr. 2016.

S. Biggs, D. Lee, and G. Heiser, “The jury is in: Monolithic OS design
is flawed,” in Asia-Pacific Workshop on Systems (APSys). Korea: ACM
SIGOPS, Aug. 2018, Conference Paper - Refereed.

C. Wang, H. S. Kim, Y. Wu, and V. Ying, “Compiler-managed software-
based redundant multi-threading for transient fault detection,” in Pro-
ceedings of the 5th International Symposium on Code Generation and
Optimization, 2007, pp. 244-258.

A. Shye, J. Blomstedt, T. Moseley, V. J. Reddi, and D. A. Connors,
“PLR: A software approach to transient fault tolerance for multicore ar-
chitectures,” IEEE Transactions on Dependable and Secure Computing,
vol. 6, no. 2, pp. 135-148, Apr. 2009.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in Proceedings of
the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation, Jun. 2005, pp. 190-200.

B. Dobel, H. Hirtig, and M. Engel, “Operating system support for
redundant multithreading,” in Proceedings of the 12th International
Conference on Embedded Software, Tampere, SF, Oct. 2012, pp. 83—
92.

P. Ulbrich, M. Hoffmann, R. Kapitza, D. Lohmann, W. Schroder-
Preikschat, and R. Schmid, “Eliminating single points of failure in
software-based redundancy,” in Ninth European Dependable Computing
Conference, May 2012, pp. 49-60.

Z. Guo, C. Hong, M. Yang, D. Zhou, L. Zhou, and L. Zhuang, “Rex:
Replication at the speed of multi-core,” in Proceedings of the 9th
EuroSys Conference, Amsterdam, NL, Jan. 2014.

T. C. Bressoud and F. B. Schneider, “Hypervisor-based fault tolerance,”
ACM Transactions on Computer Systems, vol. 14, pp. 80-107, 1996.
B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield, “Remus: High availability via asynchronous virtual machine
replication,” in Proceedings of the 5th Symposium on Networked Systems
Design and Implementation (NSDI), San Francisco, CA, US, 2008.

D. J. Scales, M. Nelson, and G. Venkitachalam, “The design of a
practical system for fault-tolerant virtual machines,” ACM Operating
Systems Review, vol. 44, no. 4, pp. 30-39, Dec. 2010.

G. Losa, A. Barbalace, Y. Wen, M. Sadini, H.-R. Chuang, and B. Ravin-
dran, “Transparent fault-tolerance using intra-machine full-software-
stack replication on commodity multicore hardware,” in Proceedings
of the 37th IEEE International Conference on Distributed Computing
Systems, Jun. 2017, pp. 1521-1531.

Available: |https:

https://www.baesystems.com/en/our-company/our-businesses/ electronic-systems/product-sites/ space-products-and-processing/processors
https://www.baesystems.com/en/our-company/our-businesses/ electronic-systems/product-sites/ space-products-and-processing/processors
https://www.baesystems.com/en/our-company/our-businesses/ electronic-systems/product-sites/ space-products-and-processing/processors
http://www.ddc-web.com/Products/Microelectronics/images/ documents/SCS750_rev8_r6.pdf
http://www.ddc-web.com/Products/Microelectronics/images/ documents/SCS750_rev8_r6.pdf
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
http://www.nxp.com/assets/documents/data/en/reference-manuals/IMX6DQRM.pdf
http://www.nxp.com/assets/documents/data/en/reference-manuals/IMX6DQRM.pdf
http://www.netlib.org/benchmark/whetstone.c
http://www.netlib.org/benchmark/whetstone.c
https://buildroot.org
https://redis.io
http://www.sics.se/~adam/thesis.pdf
http://www.sics.se/~adam/thesis.pdf
https://busybox.net/
https://busybox.net/
https://tools.ietf.org/html/rfc1321
https://www.baesystems.com/en-us/download-en-us/ 20161103152954/1434555668211.pdf
https://www.baesystems.com/en-us/download-en-us/ 20161103152954/1434555668211.pdf
https://web.archive.org/web/20120522214159/http:// www.arm.com:80/files/pdf/ARMCortexA-9Processors.pdf
https://web.archive.org/web/20120522214159/http:// www.arm.com:80/files/pdf/ARMCortexA-9Processors.pdf
https://boundarydevices.com/ SABRE_Lite_Hardware_Manual_rev11.pdf
https://boundarydevices.com/ SABRE_Lite_Hardware_Manual_rev11.pdf
https://boundarydevices.com/product/sabre-lite-imx6-sbc/
https://boundarydevices.com/product/sabre-lite-imx6-sbc/

	Introduction
	Background
	Soft Errors
	Redundant Co-Execution

	Closely-Coupled RCoE
	Nondeterminism
	Precise Logical Clock
	Synchronisation and Voting
	Implementation Challenges
	Device-Driver Support
	CC-RCoE vs LC-RCoE trade-offs

	Error Recovery
	Downgrading on Errors
	Voting Algorithm
	Re-integration

	Evaluation
	Microbenchmarks
	Tolerating Data Races
	Dhrystone and Whetstone
	Virtualised Dhrystone and Whetstone
	SPLASH-2
	Memory Bandwidth

	System Benchmarks
	Error Detection
	Random memory faults
	CPU register faults
	Physically-induced CPU faults

	Error Recovery

	Discussion
	Related Work
	Conclusions and Future Work
	References

