
Operating Systems Technology for Converged ECUs
Extended Abstract

André Hergenhan
OpenSynergy GmbH

Berlin
andre.hergenhan@opensynergy.com

Gernot Heiser
Open Kernel Labs and NICTA and UNSW

Sydney, Australia
gernot@ok-labs.com

Abstract

Introduction

The number of ECUs in modern cars is increas-
ing, with top-of-the-line luxury cars featuring in
excess of 100 processors. For example Volkswa-
gen’s Phaeton possesses about 70 to 100, depend-
ing on the version. The large number of ECUs is
causing problems with cost, complexity and even
space.

AUTOSAR [AUT] is the automotive industry’s
emerging standard software architecture, specifi-
cally designed to support merging separate con-
trol functions, formerly provided on individual
ECUs, onto a single processor platform. It pro-
vides real-time operating-system (RTOS) function-
ality with hardware-enforced protection to isolate
subsystems, and defines a component framework
that is designed to integrate software components
provided by different suppliers. These communi-
cate via a virtual functional bus (VFB).

Infotainment

AUTOSAR is well suited for converging ECUs
used for a vehicle’s control and comfort functions.
However, it fails to address the increasingly impor-
tant infotainment functions. This not only limits
the potential for ECU consolidation. It also gets
into the way of the increasing need for interaction
between infotainment and connectivity and com-
fort functions.

Imagine a driver assistance systems which ex-
ploits map materials provided by navigation sys-
tems in order to improve prediction of traffic situa-
tions. Or a park distance-control system may make
use of a display controlled by the infotainment sys-
tem. These examples show that even the classifi-

cation of applications into specific car domains are
becoming blurred.

In addition, the so-called head unit running the
automotive infotainment system is normally the
best-resourced ECU of the car. Hence, this ECU
is ideally suited for computationally-intensive ap-
plications, as driver assistance systems are.

Thus, there are clear benefits from combining in-
fotainment with driver systems and comfort func-
tions on the same ECU.

The challenge in achieving this is a result of
the dramatically-different nature of infotainment
on one hand, and the functions served by AUTO-
SAR on the other. Specifically, control and com-
fort functions are characterised by strict require-
ments for real-time behaviour, and strong reliabil-
ity, which imply strong temporal and spatial par-
titioning and an emphasis on worst-case perfor-
mance.

Infotainment, on the other hand, is charactered
by best-effort or soft real-time needs, high and
varying resource requirements, and an emphasis on
average-case performance. Furthermore, infotain-
ment requires operating systems with rich function-
ality and high-level APIs, and consequently large
and untrustworthy code bases.

Hence, there are conflicting requirements of
strong separation yet close cooperation between
infotainment and the AUTOSAR-based real-time
world.

Virtualization

We argue that system virtual machines (see Fig-
ure 1) can be used to bridge this gap. A virtual
machine can host a rich operating system, such
as Linux, to support infotainment requirements.
Other virtual machines can run an AUTOSAR en-
vironment. Such a setup, using the OKL4 micro-

1

mailto:andre.hergenhan@opensynergy.com
mailto:gernot@ok-labs.com


kernel [OKL] to support concurrent rich-OS and
RTOS environments, is successfully deployed in
mobile phones and settop-boxes. While a strict vir-
tualization approach is too inflexible to meet the
requirements of embedded systems, such as cars,
OKL4 is a flexible and general-purpose platform
that provides the right mechanisms [Hei08].

Hardware

Virtual
Machine

Guest
OS

Virtual
Machine

Guest
OS

Hypervisor

Figure 1: System virtualization creates a software
environment where several “guest” operating sys-
tems, each running on virtual hardware, can share
the same physical hardware.

COQOS

OpenSynergy is developing the COQOS software
framework which uses virtualization to provide an
environment where any combination of automotive
computing functionality can be consolidated.

The essential elements of the COQOS architec-
ture are shown in Figure 2. The framework mainly
consists of three parts: the OKL4 microkernel and
virtualization platform, any rich operating system
that is able to serve for automotive infotainment
(e.g., Linux) running in a virtual machine and a
complete AUTOSAR environment.

The OKL4 microkernel ensures strict partition-
ing of the hardware resources between the two
sides, while providing low-latency, high-bandwidth
communication via its native high-performance
message-passing mechanism and the ability to set
up shared memory buffers.

The right side of the COQOS architecture de-
picts two layers of the AUTOSAR architecture
for ECUs. The AUTOSAR Basic Software layer
provides hardware and microcontroller abstraction

Figure 2: The software framework COQOS
enables the integration of automotive multime-
dia/infotainment as well as AUTOSAR systems
onto a single ECU.

as well as higher-order services. The so-called
AUTOSAR RTE (run-time environment), however,
denotes a middleware layer that provides a com-
ponent framework that supports the integration of
software components. All in all, AUTOSAR pro-
vides an environment within COQOS for automo-
tive open- and closed-loop applications with hard
real-time requirements.

Due to this design, the AUTOSAR layers are
tightly integrated with OKL4. This requires that
OKL4 can satisfy the requirements of automotive
software paradigms.

One interesting issue here is that OKL4 tradi-
tionally uses priority-based scheduling. This nat-
urally supports event-triggered architectures, but
does not map easily onto the time-triggered ap-
proach favoured by the automotive industry. RBED
[BBLB03], a generalisation of EDF scheduling,
has recently been implemented in OKL4 [LSP08].
It naturally supports OSEK-style scheduling [OSE]
and can be extended to fully support time-triggered
architectures.

The OKL4-based COQOS architecture specifi-
cally addresses the needs of automotive applica-
tions to communicate across domain boundaries
(Linux/AUTOSAR), and that a specific application
may be integrated on either side. For this purpose,
COQOS extends the AUTOSAR virtual functional
bus (or RTE on an particular ECU) into the Linux
side.

This concept of a unified virtual application bus
will simplify the integration of infotainment appli-
cations in a similar manner as the VFB/RTE does

2



for the AUTOSAR side. In addition, the virtual ap-
plication bus will enable transparent communica-
tion between any applications irrespective of their
location (on top of COQOS) or classification.

Summary

We made a case for a convergence of infotainment
with control/convenience functionality in automo-
biles. We presented the COQOS software frame-
work which supports this convergence, with the
help of virtualization and microkernel technology.
A COQOS prototype is to be demonstrated at this
year’s IAA and a first release will be launched by
the end of the year.

References

[AUT] AUTOSAR. http://www.autosar.org.

[BBLB03] Scott A. Brandt, Scott Banachowski,
Caixue Lin, and Timothy Bisson. Dy-
namic integrated scheduling of hard
real-time, soft real-time and non-real-
time processes. In Proceedings of
the 24th IEEE Real-Time Systems Sym-
posium, Cancun, Mexico, December
2003.

[Hei08] Gernot Heiser. The role of virtualiza-
tion in embedded systems. In 1st Work-
shop on Isolation and Integration in
Embedded Systems (IIES), pages 11–
16, Glasgow, UK, April 2008. ACM
SIGOPS.

[LSP08] Martin P. Lawitzky, David C. Snow-
don, and Stefan M. Petters. Integrating
real time and power management in a
real system. In Proceedings of the 4th
Workshop on Operating System Plat-
forms for Embedded Real-Time Appli-
cations, Prague, Czech Republic, July
2008.

[OKL] OKL4 community site. http://okl4.org.

[OSE] OSEK VDX portal. http://www.
osek-vdx.org/.

3

http://www.autosar.org
http://okl4.org
http://www.osek-vdx.org/
http://www.osek-vdx.org/

