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ABSTRACT
We report on the formal, machine-checked verification of
the seL4 microkernel from an abstract specification down to
its C implementation. We assume correctness of compiler,
assembly code, hardware, and boot code.

seL4 is a third-generation microkernel of L4 provenance,
comprising 8,700 lines of C and 600 lines of assembler. Its
performance is comparable to other high-performance L4
kernels.

We prove that the implementation always strictly follows
our high-level abstract specification of kernel behaviour. This
encompasses traditional design and implementation safety
properties such as that the kernel will never crash, and it
will never perform an unsafe operation. It also implies much
more: we can predict precisely how the kernel will behave in
every possible situation.

1. INTRODUCTION
Almost every paper on formal verification starts with the

observation that software complexity is increasing, that this
leads to errors, and that this is a problem for mission and
safety critical software. We agree, as do most.

Here, we report on the full formal verification of a critical
system from a high-level model down to very low-level C
code. We do not pretend that this solves all of the software
complexity or error problems. We do think that our approach
will work for similar systems. The main message we wish to
convey is that a formally verified commercial-grade, general-
purpose microkernel now exists, and that formal verification
is possible and feasible on code sizes of about 10,000 lines of C.
It is not cheap; we spent significant effort on the verification,
but it appears cost-effective and more affordable than other
methods that achieve lower degrees of trustworthiness.

To build a truly trustworthy system, one needs to start at
the operating system (OS) and the most critical part of the
OS is its kernel. The kernel is defined as the software that
executes in the privileged mode of the hardware, meaning
that there can be no protection from faults occurring in the
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Figure 1: Call graph of the seL4 microkernel. Ver-
tices represent functions, and edges invocations.

kernel, and every single bug can potentially cause arbitrary
damage. The kernel is a mandatory part of a system’s
trusted computing base (TCB)—the part of the system that
can bypass security [10]. Minimising this TCB is the core
concept behind microkernels, an idea that goes back 40 years.

A microkernel, as opposed to the more traditional mono-
lithic design of contemporary mainstream OS kernels, is
reduced to just the bare minimum of code wrapping hard-
ware mechanisms and needing to run in privileged mode. All
OS services are then implemented as normal programs, run-
ning entirely in (unprivileged) user mode, and therefore can
potentially be excluded from the TCB. Previous implemen-
tations of microkernels resulted in communication overheads
that made them unattractive compared to monolothic ker-
nels. Modern design and implementation techniques have
managed to reduced this overhead to very competitive limits.

A microkernel makes the trustworthiness problem more
tractable. A well-designed high-performance microkernel,
such as the various representatives of the L4 microkernel
family, consists of the order of 10,000 lines of code (10 kloc).
This radical reduction to a bare minimum comes with a price
in complexity. It results in a high degree of interdependency
between different parts of the kernel, as indicated in Fig. 1.
Despite this increased complexity in low-level code, we have
demonstrated that with modern techniques and careful de-



sign, an OS microkernel is entirely within the realm of full
formal verification.

Formal verification of software refers to the application of
mathematical proof techniques to establish properties about
programs. Formal verification can cover not just all lines of
code or all decisions in a program, but all possible behaviours
for all possible inputs. For example, the very simple fragment
of C code if (x < y) z = x/y else z = y/x for x, y, and
z being int tested with x=4,y=2 and x=8,y=16, results in
full code coverage: every line is executed at least once, every
branch of every condition is taken at least once. Yet, there
are still two potential bugs remaining. Of course, any human
tester will find inputs such as x=0,y=-1 and x=-1,y=0 that
expose the bugs, but for bigger programs it is infeasible to
be sure of completeness. This is what formal verification can
achieve.

The approach we use is interactive, machine-assisted and
machine-checked proof. Specifically, we use the theorem
prover Isabelle/HOL [8]. Interactive theorem proving re-
quires human intervention and creativity to construct and
guide the proof. It has the advantage that it is not con-
strained to specific properties or finite, feasible state spaces.
We have proved the functional correctness of the seL4 micro-
kernel, a secure embedded microkernel of the L4 [6] family.
This means we have proved mathematically that the im-
plementation of seL4 always strictly follows our high-level
abstract specification of kernel behaviour. This property is
stronger and more precise than what automated techniques
like model checking, static analysis or kernel implementa-
tions in type-safe languages can achieve. We not only analyse
specific aspects of the kernel, such as safe execution, but also
provide a full specification and proof for the kernel’s precise
behaviour.

In the following, we describe what the implications of the
proof are, how the kernel was designed for verification, what
the verification itself entailed and what its assumptions are,
and finally what effort it cost us.

2. IMPLICATIONS
In a sense, functional correctness is one of the strongest

properties to prove about a system. Once we have proved
functional correctness with respect to a model, we can use
this model to establish further properties instead of having
to reason directly about the code. For instance, we prove
that every system call terminates by looking at the model
instead of the code. However, there are some security-relevant
properties, such as transmission of information via covert
channels, for which the model may not be precise enough.

So our proof does not mean that seL4 is secure for any
purpose. We proved that seL4 is functionally correct. Secure
would first need a formal definition and depends on the
application. Taken seriously, security is a whole-system
question, including the system’s human components.

Even without proving specific security properties on top,
a functional correctness proof already has interesting impli-
cations for security. If the assumptions listed in Sect. 4.5 are
true, then in seL4 there will be:

No code injection attacks. If we always know precisely
what the system does, and if the spec does not explicitly
allow it, then we can never have any foreign code executing
as part of seL4.

No buffer overflows. This is mainly a classic vector for
code injection, but buffer overflows may also inject unwanted

data and influence kernel behaviour that way. We prove that
all array accesses are within bounds and we prove that all
pointer accesses are well typed, even if they go via casts to
void or address arithmetic.

No NULL pointer access. Null pointer bugs can allow
local privilege escalation and execution of arbitrary code in
kernel mode [9]. Absence of NULL pointer dereference is a
direct proof obligation for us for every pointer access.

No ill-typed pointer access. Even though the kernel
code deliberately breaks C type safety for efficiency at some
points, in order to predict that the system behaves according
to specification, we prove that circumventing the type system
is safe at all these points.

No memory leaks and no memory freed that is still in
use. This is not purely a consequence of the proof itself.
Much of the design of seL4 was focussed on explicit memory
management. Users may run out of memory, but the kernel
never will.

No non-termination. We have proved that all kernel
calls terminate. This means the kernel will never suddenly
freeze and not return from a system call. This does not mean
that the whole system will never freeze. It is still possible
to write bad device drivers and bad applications, but set up
correctly, a supervisor process can always stay in control of
the rest of the system.

No arithmetic or other exceptions. The C standard
defines a long list of things that can go wrong and that should
be avoided: shifting machine words by a too-large amount,
dividing by zero, etc. We proved explicitly that none of these
occur, including the absence of errors due to overflows in
integer arithmetic.

No unchecked user arguments. All user input is
checked and validated. If the kernel receives garbage or
malicious arguments it will respond with the specified error
messages, not with crashes. Of course, the kernel will allow
a thread to kill itself if that thread has sufficient capabilities.
It will never allow anything to crash the kernel, though.

Many of these are general security traits that are good to
have for any kind of system. We have also proved a large
number of properties that are specific to seL4. We have
proved them about the kernel design and specification. With
functional correctness, we know they are true about the code
as well. Some examples are:

Aligned objects. Two simple low-level invariants of the
kernel are: all objects are aligned to their size, and no two
objects overlap in memory. This makes comparing memory
regions for objects very simple and efficient.

Wellformed data structures. Lists, doubly linked,
singly linked, with and without additional information, are
a pet topic of formal verification. These data structures also
occur in seL4 and we proved the usual properties: lists are
not circular when they should not be, back pointers point to
the right nodes, insertion, deletion etc, work as expected.

Algorithmic invariants. Many optimisations rely on
certain properties being always true, so specific checks can be
left out or can be replaced by other, more efficient checks. A
simple example is that the distinguished idle thread is always
in thread state idle and therefore can never be blocked or
otherwise waiting for I/O. This can be used to remove checks
in the code paths that deal with the idle thread.

Correct book-keeping. The seL4 kernel has an explicit
user-visible concept of keeping track of memory, who has
access to it, who access was delegated to and what needs to



be done if a privileged process wants to revoke access from
delegates. It is the central mechanism for re-using memory
in seL4. The data structure that backs this concept is corre-
spondingly complex and its implications reach into almost
all aspects of the kernel. For instance, we proved that if a
live object exists anywhere in memory, then there exists an
explicit capability node in this data structure that covers
the object. And if such a capability exists, then it exists
in the proper place in the data structure and has the right
relationship towards parents, siblings and descendants within.
If an object is live (may be mentioned in other objects any-
where in the system) then the object itself together with that
capability must have recorded enough information to reach
all objects that refer to it (directly or indirectly). Together
with a whole host of further invariants, these properties allow
the kernel code to reduce the complex, system-global test
whether a region of memory is mentioned anywhere else in
the system to a quick, local pointer comparison.

We have proved about 80 such invariants on the executable
specification such that they directly transfer to the data
structures used in the C program.

A verification like this is not an absolute guarantee. The
key condition in all this is if the assumptions are true. To
attack any of these properties, this is where one would have
to look. What the proof really does is take 7,500 lines of
C code out of the equation. It reduces possible attacks and
the human analysis necessary to guard against them to the
assumptions and specification. It also is the basis for any
formal analysis of systems running on top of the kernel or
for further high-level analysis of the kernel itself.

3. KERNEL DESIGN FOR VERIFICATION
The challenge in designing a verifiable and usable kernel

lies in reducing complexity to make verification easier while
maintaining high performance.

To achieve these two objectives, we designed and imple-
mented a microkernel from scratch. This kernel, called seL4,
is a third-generation microkernel, based on L4 and influenced
by EROS [11]. It is designed for practical deployment in
embedded systems with high trustworthiness requirements.
One of its innovations is completely explicit memory manage-
ment subject to policies defined at user level, even for kernel
memory. All authority in seL4 is mediated by capabilities [2],
tokens identifying objects and conveying access rights.

We first briefly present the approach we used for a ker-
nel/proof co-design process. Then we highlight the main
design decisions we made to simplify the verification work.

3.1 Kernel/Proof Co-Design Process
One key idea in this project was bridging the gap between

verifiability and performance by using an iterative approach
to kernel design, based around an intermediate target that is
readily accessible to both OS developers and formal methods
practitioners. We used the functional language Haskell to
provide a programming language for OS developers, while
at the same time providing an artifact that can readily be
reasoned about in the theorem proving tool: the design
team wrote increasingly complete prototypes of the kernel in
Haskell, exporting the system call interface via a hardware
simulator to user-level binary code. The formal methods
team imported this prototype into the theorem prover and
used it as an intermediate executable specification. The
approach aims at quickly iterating through design, prototype

implementation and formal model until convergence.
Despite its ability to run real user code, the Haskell ker-

nel remains a prototype, as it does not satisfy our high-
performance requirement. Furthermore, Haskell requires a
significant run-time environment (much bigger than our ker-
nel), and thus violates our requirement of a small TCB. We
therefore translated the Haskell implementation manually
into high-performance C code. An automatic translation
(without proof) would have been possible, but we would
have lost most opportunities to micro-optimise the kernel in
order to meet our performance targets. We do not need to
trust the translations into C and from Haskell into Isabelle —
we formally verify the C code as it is seen by the compiler
gaining an end-to-end theorem between formal specification
and the C semantics.

3.2 Design Decisions

Global Variables and Side Effects. Use of global vari-
ables and functions with side effects is common in operating
systems—mirroring properties of contemporary computer
hardware and OS abstractions. Our verification techniques
can deal routinely with side effects, but implicit state up-
dates and complex use of the same global variable for different
purposes make verification more difficult. This is not sur-
prising: the higher the conceptual complexity, the higher the
verification effort.

The deeper reason is that global variables usually require
stating and proving invariant properties. For example, sched-
uler queues are global data structures frequently implemented
as doubly-linked lists. The corresponding invariant might
state that all back links in the list point to the appropriate
nodes and that all elements point to thread control blocks
and that all active threads are in one of the scheduler queues.

Invariants are expensive because they need to be proved
not only locally for the functions that directly manipulate the
scheduler queue, but for the whole kernel—we have to show
that no other pointer manipulation in the kernel destroys
the list or its properties. This proof can be easy or hard,
depending on how modularly the global variable is used.

Dealing with global variables was simplified by deriving
the kernel implementation from Haskell, where side effects
are explicit and drawn to the design team’s attention.

Kernel Memory Management. The seL4 kernel uses a
model of memory allocation that exports control of the in-
kernel allocation to appropriately authorised applications.
While this model is mostly motivated by the need for precise
guarantees of memory consumption, it also benefits verifica-
tion. The model pushes the policy for allocation outside the
kernel, which means we only need to prove that the mecha-
nism works, not that the user-level policy makes sense. The
mechanism works if it keeps kernel code and data structures
safe from user access, if the virtual memory subsystem is
fully controlled by the kernel interface via capabilities, and
if it provides the necessary functionality for user level to
manage its own virtual memory policies.

Obviously, moving policy into userland does not change the
fact that memory-allocation is part of the trusted computing
base. It does mean, however, that memory-allocation can be
verified separately, and can rely on verified kernel properties.

The memory-management model gives free memory to the
user-level manager in the form of regions tagged as untyped.



The memory manager can split untyped regions and re-type
them into one of several kernel object types (one of them,
frame, is for user-accessible memory); such operations create
new capabilities. Object destruction converts a region back
to untyped (and invalidates derived capabilities).

Before re-using a block of memory, all references to this
memory must be invalidated. This involves either finding
all outstanding capabilities to the object, or returning the
object to the memory pool only when the last capability
is deleted. Our kernel uses both approaches. In the first
approach, a so-called capability derivation tree is used to find
and invalidate all capabilities referring to a memory region.
In the second approach, the capability derivation tree is used
to ensure, with a check that is local in scope, that there
are no system-wide dangling references. This is possible
because all other kernel objects have further invariants on
their own internal references that relate back to the existence
of capabilities in this derivation tree.

Similar book-keeping would be necessary for a traditional
malloc/free model in the kernel. The difference is that the
complicated free case in our model is concentrated in one
place, whereas otherwise it would be repeated numerous
times over the code.

Concurrency and non-determinism. Concurrency is the
execution of computation in parallel (in the case of multiple
hardware processors), or by non-deterministic interleaving
via a concurrency abstraction like threads. Reasoning about
concurrent programs is hard, much harder than reasoning
about sequential programs. For the time being, we limited
the verification to a single-processor version of seL4.

In a uniprocessor kernel, concurrency can result from three
sources: yielding of the processor from one thread to an-
other, (synchronous) exceptions and (asynchronous) inter-
rupts. Yielding can be synchronous, by an explicit handover,
such as when blocking on a lock, or asynchronous, by pre-
emption (but in a uniprocessor kernel the latter can only
happen as the result of an interrupt).

We limit the effect of all three by a kernel design which
explicitly minimises concurrency.

Exceptions are completely avoided, by ensuring that they
never occur. For instance, we avoid virtual-memory excep-
tions by allocating all kernel data structures in a region of
virtual memory which is always guaranteed to be mapped to
physical memory. System-call arguments are either passed in
registers or through pre-registered physical memory frames.

The complexity of synchronous yield we avoid by using an
event-based kernel execution model, with a single kernel stack,
and a mostly atomic application programming interface. This
is aided by the traditional L4 model of system calls which
are primitive and mostly short-running.

We minimise the effect of interrupts (and hence preemp-
tions) by disabling interrupts during kernel execution. Again,
this is aided by the L4 model of short system calls.

However, not all kernel operations can be guaranteed to
be short; object destruction especially can require almost
arbitrary execution time, so not allowing any interrupt pro-
cessing during a system call would rule out the use of the
kernel for real-time applications, undermining the goal of
real-world deployability.

We ensure bounded interrupt latencies by the standard
approach of introducing a few, carefully-placed, interrupt
points. On detection of a pending interrupt, the kernel explic-
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Figure 2: The refinement layers in the verification
of seL4

itly returns through the function call stack to the kernel/user
boundary and responds to the interrupt. It then restarts
the original operation, including re-establishing all the pre-
conditions for execution. As a result, we completely avoid
concurrent execution in the kernel.

I/O. Interrupts are used by device drivers to affect I/O. L4
kernels traditionally implement device drivers as user-level
programs, and seL4 is no different. Device interrupts are
converted into messages to the user-level driver.

This approach removes a large amount of complexity from
the kernel implementation (and the proof). The only excep-
tion is an in-kernel timer driver which generates timer ticks
for scheduling, which is straightforward to deal with.

4. VERIFICATION OF SEL4
This section gives an overview of the formal verification of

seL4 in the theorem prover Isabelle/HOL [8]. The property
we are proving is functional correctness. Formally, we are
showing refinement : A refinement proof establishes a corre-
spondence between a high-level (abstract) and a low-level
(concrete, or refined) representation of a system.

The correspondence established by the refinement proof
ensures that all Hoare logic properties of the abstract model
also hold for the refined model. This means that if a secu-
rity property is proved in Hoare logic about the abstract
model (not all security properties can be), our refinement
guarantees that the same property holds for the kernel source
code. In this paper, we concentrate on the general functional
correctness property. We have also modelled and proved the
security of seL4’s access-control system in Isabelle/HOL on
a high level [3].

Fig. 2 shows the specification layers used in the verification
of seL4; they are related by formal proof. In the following
sections we explain each layer in turn.

4.1 Abstract specification
The abstract level describes what the system does without

saying how it is done. For all user-visible kernel operations it
describes the functional behaviour that is expected from the
system. All implementations that refine this specification
will be binary compatible.

We precisely describe argument formats, encodings and
error reporting, so, for instance, some of the C-level size
restrictions become visible on this level. We model finite
machine words, memory and typed pointers explicitly. Oth-



schedule ≡ do

threads ← all_active_tcbs;

thread ← select threads;

switch_to_thread thread

od OR switch_to_idle_thread

Figure 3: Isabelle/HOL code for scheduler at ab-
stract level.

erwise, the data structures used in this abstract specification
are high-level — essentially sets, lists, trees, functions and
records. We make use of non-determinism in order to leave
implementation choices to lower levels: If there are multiple
correct results for an operation, this abstract layer would
return all of them and make clear that there is a choice. The
implementation is free to pick any one of them.

An example of this is scheduling. No scheduling policy is
defined at the abstract level. Instead, the scheduler is mod-
elled as a function picking any runnable thread that is active
in the system or the idle thread. The Isabelle/HOL code
for this is shown in Fig. 3. The function all_active_tcbs

returns the abstract set of all runnable threads in the system.
Its implementation (not shown) is an abstract logical predi-
cate over the whole system. The select statement picks any
element of the set. The OR makes a non-deterministic choice
between the first block and switch_to_idle_thread. The
executable specification makes this choice more specific.

4.2 Executable specification
The purpose of the executable specification is to fill in the

details left open at the abstract level and to specify how the
kernel works (as opposed to what it does). While trying to
avoid the messy specifics of how data structures and code
are optimised in C, we reflect the fundamental restrictions
in size and code structure that we expect from the hardware
and the C implementation. For instance, we take care not
to use more than 64 bits to represent capabilities, exploiting
known alignment of pointers. We do not specify in which
way this limited information is laid out in C.

The executable specification is deterministic; the only non-
determinism left is that of the underlying machine. All data
structures are now explicit data types, records and lists with
straightforward, efficient implementations in C. For example
the capability derivation tree of seL4, modelled as a tree on
the abstract level, is now modelled as a doubly linked list
with limited level information. It is manipulated explicitly
with pointer-update operations.

Fig. 4 shows part of the scheduler specification at this
level. The additional complexity becomes apparent in the
chooseThread function that is no longer merely a simple pred-
icate, but rather an explicit search backed by data structures
for priority queues. The specification fixes the behaviour
of the scheduler to a simple priority-based round-robin al-
gorithm. It mentions that threads have time slices and it
clarifies when the idle thread will be scheduled. Note that
priority queues duplicate information that is already available
(in the form of thread states), in order to make it available
efficiently. They make it easy to find a runnable thread of
high priority. The optimisation will require us to prove that
the duplicated information is consistent.

We have proved that the executable specification correctly
implements the abstract specification. Because of its extreme
level of detail, this proof alone already provides stronger

schedule = do
action <- getSchedulerAction
case action of

ChooseNewThread -> do
chooseThread
setSchedulerAction ResumeCurrentThread
...

chooseThread = do
r <- findM chooseThread’ (reverse [minBound .. maxBound])
when (r == Nothing) $ switchToIdleThread

chooseThread’ prio = do
q <- getQueue prio
liftM isJust $ findM chooseThread’’ q

chooseThread’’ thread = do
runnable <- isRunnable thread
if not runnable then do

tcbSchedDequeue thread
return False

else do
switchToThread thread
return True

Figure 4: Haskell code for schedule.

design assurance than has been shown for any other general-
purpose OS kernel.

4.3 C implementation
The most detailed layer in our verification is the C imple-

mentation. The translation from C into Isabelle is correctness-
critical and we take great care to model the semantics of
our C subset precisely and foundationally. Precisely means
that we treat C semantics, types, and memory model as the
C99 standard [4] prescribes, for instance with architecture-
dependent word size, padding of structs, type-unsafe casting
of pointers, and arithmetic on addresses. As kernel program-
mers do, we make assumptions about the compiler (GCC)
that go beyond the standard, and about the architecture
used (ARMv6). These are explicit in the model, and we can
therefore detect violations. Foundationally means that we
do not just axiomatise the behaviour of C on a high level,
but we derive it from first principles as far as possible. For
example, in our model of C, memory is a primitive function
from addresses to bytes without type information or restric-
tions. On top of that, we specify how types like unsigned

int are encoded, how structures are laid out, and how im-
plicit and explicit type casts behave. We managed to lift this
low-level memory model to a high-level calculus that allows
efficient, abstract reasoning on the type-safe fragment of the
kernel. We generate proof obligations assuring the safety of
each pointer access and write. They state that the pointer
in question must be non-null and of the correct alignment.
They are typically easy to discharge. We generate similar
obligations for all restrictions the C99 standard demands.

We treat a very large, pragmatic subset of C99 in the veri-
fication. It is a compromise between verification convenience
and the hoops the kernel programmers were willing to jump
through in writing their source. The following paragraphs
describe what is not in this subset.

We do not allow the address-of operator & on local vari-
ables, because, for better automation, we make the assump-
tion that local variables are separate from the heap. This
could be violated if their address was available to pass on.
It is the most far-reaching restriction we implement, because
it is common in C to use local variable references for re-
turn parameters to avoid returning large types on the stack.
We achieved compliance with this requirement by avoiding



void setPriority(tcb_t *tptr, prio_t prio) {
prio_t oldprio;
if(thread_state_get_tcbQueued(tptr->tcbState)) {
oldprio = tptr->tcbPriority;
ksReadyQueues[oldprio] =
tcbSchedDequeue(tptr, ksReadyQueues[oldprio]);

if(isRunnable(tptr)) {
ksReadyQueues[prio] =
tcbSchedEnqueue(tptr, ksReadyQueues[prio]);

}
else {
thread_state_ptr_set_tcbQueued(&tptr->tcbState,

false);
}

}
tptr->tcbPriority = prio;

}

Figure 5: C code for part of the scheduler.

reference parameters as much as possible, and where they
were needed, used pointers to global variables (which are not
restricted).

One feature of C that is problematic for verification (and
programmers) is the unspecified order of evaluation in ex-
pressions with side effects. To deal with this feature soundly,
we limit how side effects can occur in expressions. If more
than one function call occurs within an expression or the
expression otherwise accesses global state, a proof obligation
is generated to show that these functions are side-effect free.
This proof obligation is discharged automatically.

We do not allow function calls through function pointers.
(We do allow handing the address of a function to assembler
code, e.g. for installing exception vector tables.) We also do
not allow goto statements, or switch statements with fall-
through cases. We support C99 compound literals, making it
convenient to return structs from functions, and reducing the
need for reference parameters. We do not allow compound
literals to be lvalues. Some of these restrictions could be
lifted easily, but the features were not required in seL4.

We did not use unions directly in seL4 and therefore do
not support them in the verification (although that would
be possible). Since the C implementation was derived from a
functional program, all unions in seL4 are tagged, and many
structs are packed bitfields. Like other kernel implementors,
we do not trust GCC to compile and optimise bitfields pre-
dictably for kernel code. Instead, we wrote a small tool that
takes a specification and generates C code with the neces-
sary shifting and masking for such bitfields. The tool helps
us to easily map structures to page table entries or other
hardware-defined memory layouts. The generated code can
be inlined and, after compilation on ARM, the result is more
compact and faster than GCC’s native bitfields. The tool not
only generates the C code, it also automatically generates
Isabelle/HOL specifications and proofs of correctness.

Fig. 5 shows part of the implementation of the schedul-
ing functionality described in the previous sections. It is
standard C99 code with pointers, arrays and structs. The
thread_state functions used in Fig. 5 are examples of gen-
erated bitfield accessors.

4.4 The proof
This section describes the main theorem we have shown

and how its proof was constructed.
As mentioned, the main property we are interested in is

functional correctness, which we prove by showing formal
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Figure 6: Forward Simulation.

refinement. We have formalised this property for general
state machines in Isabelle/HOL, and we instantiate each
of the specifications in the previous sections into this state-
machine framework.

We have also proved the well-known reduction of refinement
to forward simulation, illustrated in Fig. 6 where the solid
arrows mean universal quantification and the dashed arrows
existential: To show that a concrete state machineM2 refines
an abstract one M1, it is sufficient to show that for each
transition in M2 that may lead from an initial state s to a
set of states s′, there exists a corresponding transition on the
abstract side from an abstract state σ to a set σ′ (they are
sets because the machines may be non-deterministic). The
transitions correspond if there exists a relation R between
the states s and σ such that for each concrete state in s′

there is an abstract one in σ′ that makes R hold between
them again. This has to be shown for each transition with
the same overall relation R. For externally visible state, we
require R to be equality. For each refinement layer in Fig. 2,
we have strengthened and varied this proof technique slightly,
but the general idea remains the same.

We now describe the instantiation of this framework to
the seL4 kernel. We have the following types of transition in
our state machines: kernel transitions, user transitions, user
events, idle transitions, and idle events. Kernel transitions
are those that are described by each of the specification layers
in increasing amount of detail. User transitions are specified
as non-deterministically changing arbitrary user-accessible
parts of the state space. User events model kernel entry
(trap instructions, faults, interrupts). Idle transitions model
the behaviour of the idle thread. Finally, idle events are
interrupts occurring during idle time; other interrupts that
occur during kernel execution are modelled explicitly and
separately in each layer of Fig. 2.

The model of the machine and the model of user programs
remain the same across all refinement layers; only the details
of kernel behaviour and kernel data structures change. The
fully non-deterministic model of the user means that our
proof includes all possible user behaviours, be they benign,
buggy, or malicious.

Let machine MA denote the system framework instan-
tiated with the abstract specification of Sect. 4.1, let ma-
chine ME represent the framework instantiated with the
executable specification of Sect. 4.2, and let machine MC

stand for the framework instantiated with the C program
read into the theorem prover. Then we prove the following



two, very simple-looking theorems:

Theorem 1. ME refines MA.

Theorem 2. MC refines ME.

Therefore, because refinement is transitive, we have

Theorem 3. MC refines MA.

4.5 Assumptions
Formal verification can never be absolute; it always must

make fundamental assumptions. The assumptions we make
are correctness of the C compiler, the assembly code,
the hardware, and kernel initialisation. We explain
each of them in more detail below.

The initialisation code takes up about 1.2 kloc of the
kernel. The theorems in Sect. 4.4 only state correspondence
between entry and exit points in each specification layer for
a running kernel.

Assuming correctness of the C compiler means that we
assume GCC correctly translates the seL4 source code in our
C subset according to the ISO/IEC C99 standard [4], that the
formal model of our C subset accurately reflects this standard
and that the model makes the correct architecture-specific
assumptions for the ARMv6 architecture on the Freescale
i.MX31 platform.

The assumptions on hardware and assembly mean that
we do not prove correctness of the register save/restore and
the potential context switch on kernel exit. Cache consistency,
cache colouring, and TLB flushing requirements are part of
the assembly-implemented machine interface. These machine
interface functions are called from C, and we assume they do
not have any effect on the memory state of the C program.
This is only true if they are used correctly.

The virtual memory (VM) subsystem of seL4 is not as-
sumed correct, but is treated differently from other parts
of the proof. For our C semantics, we assume a traditional,
flat view of in-kernel memory that is kept consistent by the
kernel’s VM subsystem. We make this consistency argument
only informally; our model does not oblige us to prove it.
We do however substantiate the model and informal argu-
ment by manually stated, machine-checked properties and
invariants. This means we explicitly treat in-kernel virtual
memory in the proof, but this treatment is different from
the high standards in the rest of our proof where we reason
from first principles and the proof forces us to be complete.

This is the set of assumptions we picked. If they are
too strong for a particular purpose, many of them can be
eliminated combined with other research. For instance, we
have verified the executable design of the boot code in an
earlier design version. For context switching, Ni et al. [7]
report verification success, and the Verisoft project [1] shows
how to verify assembly code and hardware interaction. Leroy
verified an optimising C compiler [5] for the PowerPC and
ARM architectures.

An often-raised concern is the question What if there is
a mistake in the proof? The proof is machine-checked by
Isabelle/HOL. So what if there is a bug in Isabelle/HOL?
The proof checking component of Isabelle is small and can be
isolated from the rest of the prover. It is extremely unlikely
that there is a bug in this part of the system that applies
in a correctness-critical way to our proof. If there was rea-
son for concern, a completely independent proof checker

Haskell/C Isabelle Invar- Proof
pm kloc kloc iants py klop

abst. 4 — 4.9 ∼ 75
exec. 24 5.7 13 ∼ 80

8 110

impl. 2 8.7 15 0
3 55

Table 1: Code and proof statistics.

could be written in a few hundred lines of code. Provers
like Isabelle/HOL can achieve a degree of proof trustworthi-
ness that far surpasses the confidence levels we rely on in
engineering or mathematics for our daily survival.

5. EXPERIENCE AND LESSONS LEARNT

5.1 Verification effort
The project was conducted in three phases. First an initial

kernel with limited functionality (no interrupts, single ad-
dress space and generic linear page table) was designed and
implemented in Haskell, while the verification team mostly
worked on the verification framework and generic proof li-
braries. In a second phase, the verification team developed
the abstract spec and performed the first refinement while
the development team completed the design, Haskell pro-
totype and C implementation. The third phase consisted
of extending the first refinement step to the full kernel and
performing the second refinement. The overall size of the
proof, including framework, libraries, and generated proofs
(not shown in the table) is 200,000 lines of Isabelle script.

Table 1 gives a breakdown for the effort and size of each
of the layers and proofs. About 30 person months (pm)
went into the abstract specification, Haskell prototype and
C implementation (over all project phases), including design,
documentation, coding, and testing.

This compares well with other efforts for developing a new
microkernel from scratch: The Karlsruhe team reports that,
on the back of their experience from building the earlier
Hazelnut kernel, the development of the Pistachio kernel
cost about 6 py. SLOCCount with the “embedded” profile
estimates the total cost of seL4 at 4 py. Hence, there is
strong evidence that the detour via Haskell did not increase
the cost, but was in fact a significant net cost saver.

The cost of the proof is higher, in total about 20 person
years (py). This includes significant research and about 9 py
invested in formal language frameworks, proof tools, proof
automation, theorem prover extensions and libraries. The
total effort for the seL4-specific proof was 11 py.

We expect that re-doing a similar verification for a new
kernel, using the same overall methodology, would reduce
this figure to 6 py, for a total (kernel plus proof) of 8 py. This
is only twice the SLOCCount estimate for a traditionally-
engineered system with no assurance.

The breakdown in Table 1 of effort between the two refine-
ment stages is illuminating: almost 3:1. This is a reflection
of the low-level nature of our Haskell prototype, which cap-
tures most of the properties of the final product. This is
also reflected in the proof size—the first proof step contained
most of the deep semantic content. 80 % of the effort in
the first refinement went into establishing invariants, only
20 % into the actual correspondence proof. We consider this
asymmetry a significant benefit, as the executable spec is
more convenient and efficient to reason about than C.



The first refinement step led to some 300 changes in the
abstract spec and 200 in the executable spec. About 50 % of
these changes relate to bugs in the associated algorithms or
design. Examples are missing checks on user supplied input,
subtle side effects in the middle of an operation breaking
global invariants, or over-strong assumptions about what is
true during execution. The rest of the changes were intro-
duced for verification convenience. The ability to change and
rearrange code in discussion with the design team was an
important factor in the verification team’s productivity and
was essential to complete the verification on time.

The second refinement stage from executable spec to C
uncovered 160 bugs, 16 of which were also found during
testing, early application and static analysis. The bugs
discovered in this stage were mainly typos, misreading the
specification, or failing to update all relevant code parts for
specification changes. Even though their cause was often
simple, understandable human error, their effect in many
cases was sufficient to crash the kernel or create security
vulnerabilities. There were no deeper, algorithmic bugs in
the C level, because the C code was written according to a
very precise, low-level specification.

5.2 The cost of change
One issue of verification is the cost of proof maintenance:

how much does it cost to re-verify after changes are made
to the kernel? This obviously depends on the nature of the
change. We are not able to precisely quantify such costs, but
our iterative verification approach has provided us with some
relevant experience.

The best case is a local, low-level code change, typically an
optimisation that does not affect the observable behaviour.
We made such changes repeatedly, and found that the effort
for re-verification was always low and roughly proportional
to the size of the change.

Adding new, independent features, which do not interact in
a complex way with existing features, usually has a moderate
impact. For example, adding a new system call to the seL4
API that atomically batches a specific, short sequence of
existing system calls took one day to design and implement.
Adjusting the proof took less than 1 person week.

Adding new, large, cross-cutting features, such as adding
a complex new data structure to the kernel supporting new
API calls that interact with other parts of the kernel, is
significantly more expensive. We experienced such a case
when progressing from the first to the final implementation,
adding interrupts, ARM page tables and address spaces.
This change cost several pms to design and implement, and
resulted in 1.5–2 py to re-verify. It modified about 12 % of
existing Haskell code, added another 37 %, and re-verification
cost about 32 % of the time previously invested in verifica-
tion. The new features required only minor adjustments
of existing invariants, but lead to a considerable number of
new invariants for the new code. These invariants had to be
preserved over the whole kernel, not just the new features.

Unsurprisingly, fundamental changes to existing features
are bad news. We experienced one such change when we
added reply capabilities for efficient RPC as an API optimi-
sation after the first refinement was completed. Even though
the code size of this change was small (less than 5 % of the
total code base), it violated key invariants about the way ca-
pabilities were used in the system until then and the amount
of conceptual cross-cutting was huge. It took about 1 py or

17 % of the original proof effort to re-verify.
There is one class of otherwise frequent code changes that

does not occur after the kernel has been verified: implemen-
tation bug fixes.

6. CONCLUSIONS
We have presented our experience in formally verifying

seL4. We have shown that full, rigorous, formal verification
is practically achievable for OS microkernels.

The requirements of verification force the designers to
think of the simplest and cleanest way of achieving their
goals. We found repeatedly that this leads to overall better
design, for instance in the decisions aimed at simplifying
concurrency-related verification issues.

Our future research agenda includes verification of the
assembly parts of the kernel, a multi-core version of the
kernel, as well as formal verification of overall system security
and safety properties, including application components. The
latter now becomes much more meaningful than previously
possible: application proofs can rely on the abstract, formal
kernel specification that seL4 is proven to implement.
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