
Hardware-Supported Virtualization on ARM

Prashant Varanasi
prashant.varanasi@gmail.com

Gernot Heiser
gernot@nicta.com.au

NICTA, University of New South Wales and Open Kernel Labs
Sydney, Australia

ABSTRACT
ARM is the dominant processor architecture for mobile devices and
many other high-end embedded systems. Late last year ARM announced
architectural support for virtualization, which will allow execution of
unmodified guest operating system binaries. We have designed and im-
plemented what we believe is the first hypervisor supporting pure virtu-
alization using those hardware extensions and evaluated it on simulated
hardware. We describe our approach and report our initial experience
with the architecture.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design

General Terms
Design

Keywords
Hypervisors, virtual machines, architecture, hardware support, ARM

1. INTRODUCTION
Virtualization, formerly mostly at home in data centres and enter-

prise computing infrastructure, is now spreading to embedded systems,
driven by cost and security concerns [Hei08, Kro09]. ARM, the domi-
nant architecture of high-end processors for mobile devices, is not trap-
and-emulate virtualizable. This means that virtualization of ARM pro-
cessors requires binary translation or para-virtualization. Binary trans-
lation is generally too resource intensive for mobile devices, which is
why all known commercial and research hypervisors for ARM use this
approach. Para-virtualization has the drawback of high engineering
cost for having to adapt each supported operating system (OS) to the
hypervisor-specific platform interface.

In the server world, which is dominated by the (also not trap-and-
emulate virtualizable) x86 architecture, the virtualization boom lead
hardware extensions to support virtualization [NSL+06]. These allow
running an unmodified, native OS binary in a virtual machine (VM) with
minimal performance degradation, and greatly simplify the implemen-
tation of hypervisors and reduce run-time overheads.

The same is now happening with embedded processors: last
year, ARM announced virtualization extensions for their architecture
[ARM10], along similar lines as the manufacturers of x86 processors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
APSys’11, July 11–12, 2011, Shanghai, China.
Copyright 2011 ACM 978-1-4503-1179-3/11/07 ...$10.00.

In this paper we present the first hypervisor which uses these exten-
sions to support pure virtualization on ARM, and is able to run multiple
concurrent unmodified Linux guests. We report on our experience with
using the new extensions. Unfortunately, only extremely limited perfor-
mance evaluation is possible, as the hardware extensions are presently
only available in a simulator which is not timing-accurate.

The rest of the paper is structured as follows. Section 2 outlines ex-
isting work. Section 3 presents an overview of the ARM architecture,
the virtualization extensions, and a comparison to x86 approach. Sec-
tion 4 outlines the design and Section 5 presents the implementation of
our hypervisor. We show TCB size and indicative performance num-
bers for our hypervisor in Section 6. We discuss our experience with the
extensions in Section 7, and draw our conclusions in Section 8.

2. RELATED WORK
Commercial virtualization solutions for ARM platforms are provided

by Open Kernel Labs [OKL11], VMware [VMwa10] and Red Bend
Software [RedB10], these all use para-virtualization. Green Hills Soft-
ware’s Integrity product [Gree10] uses the TrustZone features of the
ARM architecture to run a native guest binary, but architecture limi-
tations restrict this to a single guest.

A port of Xen to ARM was performed by Samsung [HSH+08], but
performance is poor: a Linux guest runs at about half of native speed. In
contrast, the OKL4 microvisor from OK Labs, which is the only com-
mercial product for which performance data is available, exhibits over-
heads which are about an order of magnitude lower [HL10]. NOVA
[SK10] is a hypervisor for x86 which, like the OKL4 microvisor and
our current design, uses a microkernel architecture aimed at minimising
the trusted computing base TCB of virtual machines (VMs).

Fisher-Ogden presented a thorough analysis of virtualization exten-
sions for x86 from Intel and AMD [FO06]. Adams and Agesen [AA06]
found that binary translation outperformed pure virtualization, but this
evaluation was completed before the hardware extensions included
MMU virtualization. A later evaluation [Bha09] found MMU virtualiza-
tion significantly reduced overheads, especially when using large pages.
The ARM virtualization extensions already include MMU virtualization.

3. ARM ARCHITECTURE
The ARM architecture has evolved over the decades. Here we focus

on the latest version, v7, which is the one for which the virtualization
extensions are specified.

3.1 Overview
ARM is a 32-bit RISC architecture, featuring 16 general-purpose

(GP) registers (which includes the program counter). There is one un-
privileged processor mode (user) and six privileged kernel modes. All
kernel modes have the same level of privilege, they differ in the kind of
exception which forces their entry, the exceptions allowed while execut-
ing in them, and the number of banked registers.

The architecture supports a feature called TrustZone, which provides
an orthogonal processor mode, called secure mode. Hardware resources

mailto:prashant.varanasi@gmail.com
mailto:gernot@nicta.com.au

(memory and on-chip devices) are configured to be accessible always or
only in secure mode. A super-privileged mode, called monitor mode,
is used to switch between secure and insecure mode. On power-up the
processor enters secure kernel mode. TrustZone can be used to run an
unmodified native OS binary next to other native code, similar to vir-
tualization. This is achieved by running the guest in non-secure mode
and all other code in secure mode. Unlike real virtualization, this only
supports a single guest.

The standard “ARM” instruction set uses 32-bit instructions. Notable
features are predication of all instructions, and a barrel shifter which
supports complex indexing and address-register updates. A system
co-processor contains the MMU, cache control and the performance-
monitoring unit (PMU). Further (up to 15) co-processors can be used to
implement optional functionality, such as the FPU. There are two further
instruction sets: Thumb-2, which uses variable-width (16- and 32-bit)
instructions, achieves higher code density at a performance close to that
of the ARM instruction set. A third instruction set, Jazelle, is designed
for efficient execution of Java bytecode.

There are two levels of on-chip cache: a virtually indexed, physically
tagged split I/D-L1, and a unified physically-addressed L2. The TLB is
hardware-loaded from a two-level page table (PT) with 32-bit entries.
TLB entries are tagged with an 8-bit address-space ID (ASID). Sup-
ported page sizes are 4KiB, 64KiB and 1 MiB. I/O is memory-mapped.

The architecture defines a generic interrupt controller (GIC) which
contains two parts. The per-CPU GIC CPU interface performs interrupt
priority masking and preemption handling, while the global distribu-
tor receives interrupts and controls interrupt priorities, enabling and the
CPU interface to which it is routed. Software acknowledges an interrupt
to the interface.

A number of unprivileged instructions reveal privileged information,
thus preventing ARM from being trap-and-emulate virtualizable. For
example, the cps (change processor state) instruction is silently ignored
in user mode. In addition, while traps on ARM are relatively cheap
(kernel entry- and exit costs are about a dozen cycles on ARM, compared
to hundreds of cycles on x86), pure virtualization, if it was possible,
would still have a high overhead. The reason is that modern OSes tend
to perform frequent manipulations of privileged state, such as processor
status and page table.

3.2 Virtualization extensions
The virtualization extensions [ARM10] to the ARM architecture are

superficially similar to those for x86, in that they provide a new proces-
sor mode and a number features to improve performance.

The extensions only apply to non-secure mode. They introduce a new
processor mode, hyp mode, which is more privileged than the existing
non-secure kernel modes. This leaves the existing kernel and user modes
for unmodified guest OSes and applications, as shown in Figure 1.

User Mode

Kernel Modes

Non-secure World Secure World

User Mode

Kernel Modes

Hyp Mode

Secure Monitor

Figure 1: ARM processor modes

Hyp mode is entered from kernel mode via a new instruction (hvc),
and optionally on a configurable set of exceptions from user or kernel
mode. It has banked registers, as well as additional hyp-only registers for
system configuration and information on the event which caused entry
of hyp mode. There is a hyp-only virtual machine identifier (VMID)
register. TLB entries are tagged with the VMID, which supports co-

existence of mappings from multiple guests and thus eliminates the need
to flush the TLB on a world switch.

The hypervisor’s own PTs (for translating guest-physical as well as
hypervisor-virtual addresses) use a new, wider format which supports
64-bit physical addresses (and has the potential to support 64-bit virtual
addresses in the future). It increases the largest page size from 1 MiB to
2 MiB. The new format can optionally be used by the guest as well.

ARM supports a number of mechanisms for reducing the cost of pure
virtualization, which we discuss now.

3.2.1 Configurable traps
Many exceptions can be configured to trap either into the hypervisor

or the guest kernel. This drastically reduces the frequency of hypervisor
entries, e.g. by configuring the syscall trap to be handled directly by
the guest. Interrupt traps are configured globally, so either all interrupts
invoke the hypervisor, or all are delivered directly to the guest of the
presently active VM.

3.2.2 Emulation support
Load and store instructions are not inherently virtualization-sensitive,

but become sensitive when operating on privileged data (eg. device reg-
isters). The hypervisor must decode such an instruction and emulate
it. The overhead of emulation is not just the extra instructions executed
(which include translating guest physical to physical addresses) but also
the D-cache miss generated when loading the offending instruction (de-
spite the fact that it has already been fetched into the instruction register
and the I-cache). ARM’s emulation support in most cases eliminates
both the load and the software decode, by keeping the relevant informa-
tion in hypervisor registers (source or target registers, whether it was a
load or a store, the size of the data item to be transferred etc.)

3.2.3 Second-stage translation
Similar to extended PTs on x86, ARM supports two-stage address

translation: guest-virtual to guest-physical (called intermediate physical
by ARM) followed by guest-physical to physical. On a TLB miss in
non-hyp mode, the hardware page-table walker traverses first the guest
and then the hypervisor PT, and constructs a TLB entry representing the
guest-virtual to physical translation. While this requires traversal of four
levels of page tables, this can be reduced to three if the hypervisor uses
2 MiB superpages. Obviously, only a single translation stage is used
when running in hyp mode.

3.2.4 Virtual interrupts
In order to avoid emulation of the interrupt controller (which would

add significant complexity and require frequent traps into hyp mode),
ARM introduced the concept of virtual interrupts. It is supported by a
new hardware component, the virtual CPU (VCPU) interface. This can
be mapped into the guest as the GIC CPU interface, and can be used by
the guest to acknowledge and clear interrupts without trapping into the
hypervisor. The hypervisor must still emulate the interrupt distributor;
all guest accesses to it trap. This is not expected to cause performance
issues, as the distributor is normally only accessed at boot time (or mod-
ule load time) to register drivers for particular interrupts and route them
to specific (virtual) CPUs.

If interrupts are configured to be handled by the hypervisor, the hyper-
visor can explicitly forward the interrupt to the current guest by raising
the appropriate virtual interrupt on the guest’s VCPU interface. A vir-
tual interrupt can be linked to the physical interrupt, in which case the
physical interrupt will be cleared without hypervisor intervention when
the guest clears its virtual interrupt. The sequence of events is shown in
Figure 2. The hardware drops the current interrupt priority during vir-
tual interrupt processing, in order to allow further interrupts of the same
priority, which may be destined for other VMs.

3.3 Comparison to x86
Unlike x86, where VT-x root mode is orthogonal to the existing pro-

tection rings, ARM’s hyp mode is strictly more privileged than the ex-

Distributor

1

Hypervisor Guest

CPU Interface Virtual CPU Interface

2

3 4 5 6

7

Figure 2: Virtual interrupt processing (actions 4 and 6 are initiated
by software).

isting kernel modes. ARM requires the hypervisor to save guest register
state, while on x86 this is done automatically by hardware. Second-stage
translation and TLB tagging with a VMID are similar. While both ar-
chitectures allow the hypervisor to inject interrupts into a running guest,
ARM allows the guest to acknowledge, clear and mask interrupts with-
out trapping; on x86 these trap into the hypervisor.

ARM’s emulation support mostly frees the hypervisor from having to
load and decode sensitive instructions. In contrast, the CISC nature of
the x86 ISA does not support such a simple and elegant solution, and
requires a complete ISA emulator in the hypervisor, adding significant
run-time overhead as well as tens of thousands of lines of code (LOC)
to the hypervisor [SK10].

ARM will support I/O virtualization via a system MMU (SMMU)
[ARM11] similar to the IOMMU on x86, but this is a platform feature,
and ARM has to date only released their extensions to the core ISA.

4. HYPERVISOR DESIGN

4.1 General
Our hypervisor supports a fixed, statically-configured number of

VMs. Dynamic creation and destruction of VMs is a complication which
reveals nothing of interest about the architecture, and therefore has no
benefit for the prototype. Furthermore, virtualization use cases in the
embedded-systems world typically do not require dynamic VMs, which
is why they are not even supported by the commercial OKL4 microvi-
sor. Hence even a productised successor of our prototype is likely to
have this restriction.

We also decided against the use of virtual memory inside the hyper-
visor, as it would provide no benefit (especially when not supporting
dynamic VMs). In fact, not using virtual memory has performance ben-
efits, by avoiding PT walks inside the hypervisor and preventing the hy-
pervisor from competing for TLB entries. Of course, virtual memory is
available for use by guest OSes without limitation, and running the hy-
pervisor in physical memory does not eliminate the need to set up PTs
for the translation of guest-physical addresses.

As the OKL4 microvisor [HL10], and unlike other microkernel-like
hypervisors (e.g. Nova [SK10]), we do not split the hypervisor into a
privileged and a user-mode part. Nova, like other x86 hypervisors, re-
quire large amounts of code for instruction emulation, device emulation
and BIOS emulation; separating these into user-level modules enhances
robustness. In contrast, instruction emulation on ARM is almost trivial
(thanks to the RISC architecture and architectural support), and there is
no BIOS to emulate. Furthermore, thanks to virtual interrupts, the bulk
of functionality required for device emulation is emulation of the distrib-
utor component of the GIC, which needs to be done in hyp mode any-
way. Hence there is little functionality which could sensibly be moved

to user-mode, and the hypervisor can be kept small nevertheless.
These design decisions helped to keep the hypervisor simple (without

limiting its use in embedded systems). Beyond that we made one design
decision which would be an unacceptable shortcut for a production sys-
tem: not to support multiple cores. This is acceptable for the prototype
as it avoids unnecessary complexity for the purpose of our evaluation,
as multicore support would be mostly orthogonal to the use of the vir-
tualization architecture. The structure of our kernel should make adding
multicore support relatively straightforward.

4.2 Inter-VM communication
In addition to standard hypervisor functionality, our prototype pro-

vides a high-performance inter-VM communication (IVC) mechanism
and the ability to set up shared buffers. This is essential to support
shared device drivers encapsulated in their own VM, as well as the tight
integration of subsystems typical of embedded systems [Hei09]. Such a
mechanism is also provided by the OKL4 microvisor [HL10].

As in the microvisor, and unlike most other microkernels, IVC is
fully asynchronous: A short (three-word) message is deposited in vir-
tual registers in the receiver VM, and a virtual interrupt is delivered to
the receiver. Further sends to the same receiver fail until the receiver ac-
knowledges the interrupt. For the prototype we do not implement access
control for IVCs, other than requiring the sender to know the receiver’s
VMID. Broadcast send to all other VMs is also supported.

A shared buffer needs to be set up between VMs at system-
configuration time. A VM may have read-only or read-write access to a
shared buffer. Within the bounds of this limited form of protection, VMs
are fully responsible to manage access to a shared buffer. They can use
virtual interrupts for synchronisation.

Remember that this simple model of IVC is designed for evalua-
tion purposes. For a production system, more sophisticated access-
control will be desirable, most likely an adaptation of the capability-
based protection system of the OKL4 microvisor [HL10]. Furthermore,
the message-passing semantics would need to be refined to avoid creat-
ing covert channels.

5. IMPLEMENTATION
The above design choices allowed us to based our implementation on

an existing code base, the OK Labs “pico” product, which is an execu-
tive for MMU-less microcontrollers. No hardware supporting the virtu-
alization extensions is available yet, so we used the ARM Fast Models
simulator, which models the RealView emulation baseboard plus the vir-
tualization extensions. The simulator is efficient yet functionally very
accurate, but it is not timing-accurate. Also, it does not model com-
plex external devices such as Ethernet, so we only support simple de-
vices such as the UART consoles, the LCD controller, and the on-board
timers. Here we highlight some implementation details.

5.1 World switch
A context switch performed by an OS needs to switch the GP regis-

ters plus the PT pointer and the address-space ID register, a total of 18
registers. The FPU state (16 or 32 double-word registers) is normally
switched lazily. A world switch is more heavyweight, as it requires
handling of additional state: the banked registers for all kernel modes
(21), the system coprocessor registers, including the MMU state (22),
all VCPU interface (interrupt controller) state (3 plus virtual interrupt
registers, up to 96), all timer state (20), the second-stage PT pointer and
the VMID register. In total this is up to 164 additional registers. Further-
more, co-processor registers and device registers are more expensive to
access than GP registers.

World switches occur as a result of a timer tick (indicating the end of
a time slice for a VM running on a shared core) and on an interrupt of
priority higher than that of the presently running VM. The extensions
introduce new timers which can be used by the hypervisor without in-
terfering with the guests’ use of timers. In our prototype we did not
implement VM priorities and hence only perform world switches at the

expiry of a (33 ms) time slice.

5.2 Instruction emulation
For most instructions which trap into the hypervisor, the information

provided in hypervisor registers is sufficient to emulate them. One ex-
ception is an ARM peculiarity known as write-back. It allows adding
an immediate value to the address register in a load instruction. For
example, the instruction

ldr rd, [rs], #imm

is equivalent to

ldr rd, [rs]
add rs, #imm

except that it is atomic and executes as fast as a normal load.
Write-back is not supported by the emulation support. Also, the (pre-

viously fetched) instruction is not made available to the hypervisor, so
it must be loaded explicitly from guest memory, decoded and emulated,
and the guest instruction pointer must be incremented before returning to
the guest. A very simple (50 LOC) emulator for write-back instructions
was sufficient to support all Linux code we tried to run in a VM.

Note that loading the faulting instruction will cause at an L1 D-cache
miss, as on fetch the instruction would have been placed in the I-cache.

5.3 Device pass-through
Pass-through allows a device to be exclusively used by a single guest,

a situation common in embedded systems, where many devices are
owned by individual subsystems. This does not incur any virtualiza-
tion overhead and usually only requires mapping the correct memory
regions, and ensuring that the device interrupt is routed to the guest.
We used this for a range of devices, including the SMC flash chip, the
network controller, and the audio controller.

Some cases require a bit more work, for example the LCD con-
troller, which requires a physically-contiguous buffer and translating
guest physical to physical addresses. In our implementation this is sim-
ple, as we map all guest physical memory (other than shared buffers)
onto a contiguous memory region and trap the write to the buffer pointer
register in the controller.

5.4 Shared devices
So far we have only added support for some very simple shared de-

vices: a console (UART0), the distributor component of the GIC, the
SP804 dual timer and the PL031 PrimeCell real-time clock.

The virtual console device runs in a VM in user mode on top of a
real-time OS (we use the microvisor for this). It can be accessed from
other VMs via an IVC protocol using a shared (single-page) buffer for
transferring the data, and a virtual interrupt to indicate to the driver that
data is available. Completion is indicated by a virtual interrupt back to
the client.

We world-switch timer state, which means that guests see virtual time
rather than real time. This is appropriate in many circumstances even
in embedded systems (a trivial example are the BogoMIPS calculation
loops in Linux).

We provide a second-resolution real-time clock by wrapping the hard-
ware RTC to produce ticks every second, and sending virtual interrupts
to all VMs that have enabled the RTC device. VMs with real-time re-
quirements would be allocated a timer as pass-through device, but we
did not do this in our prototype.

5.5 Limitations
The main limitations of our prototype are the lack of VM priori-

ties (VM scheduling is round-robin) and no support for multiple cores.
These limitations will be removed in a forthcoming production version
of the hypervisor.

Other limitations do not affect anticipated embedded-systems use
cases (at least in the near future). One is the lack of support for dy-
namic creation and destruction of VMs; in most embedded use cases the

Table 1: Estimated instruction latencies
Operation Estimated cycles
L1 access 2-3
L2 access 10-15

Memory access 50-150
CP15 read 10-20

CP15 write 100
FPU access 10-20

Hyp entry 50

number of VMs are fixed at least between firmware upgrades. Similarly,
there is little benefit expected from deduplicating pages, as embedded
use cases tend to be heterogenous, running different guest OSes in dif-
ferent VMs (eg. Linux and an RTOS) [Hei08].

6. EVALUATION

6.1 Hypervisor size
Our prototype comprises 5,730 LOC. We estimate that VM priorities

would add at most 500 LOC, while multicore support would add about
1,000 LOC. This is offset by removing about 1,600 LOC of unneeded
functionality from the executive we used as the starting point of our
implementation, so a fully-fledged hypervisor would still be less than
6 kLOC. This compares to 9 kLOC kernel plus 27 kLOC user-mode code
in NOVA on x86 [SK10].

6.2 Performance
Given the lack of a hardware implementation of the architecture, or

at least a cycle-accurate simulator, no real performance evaluation is
possible. However, we can get very rough estimates by collecting traces
and weighting instructions with their known or estimated latencies. We
use the estimated latencies shown in Table 1, which are appropriate for
an ARM A9 core and a typical memory system.

The most uncertain of these latencies is the cost of entering hyp mode,
estimated at 50 cycles. This may look incredibly optimistic to those used
to x86, where VM exits are more than an order of magnitude more ex-
pensive. Remember that ARM is a RISC architecture; kernel entry/exit
costs of the order of ten cycles, compared to many hundreds on x86.
Also, the ISA avoids inherently-expensive operations, such as automatic
saving of guest state (see Section 3.3).

For a number of microbenchmarks we measured instruction counts
and converted them into approximate cycle counts under the above as-
sumptions. The result is shown in Table 2, where instr. refers to the in-
struction count extracted form the simulation and cycles is the resulting
estimate of execution time in cycles. Note that even if our estimate for a
hypervisor trap was off by a factor of four (which seems extreme, given
our experience with the architecture), this would add 150 cycles to each
of the entries in the table, and would not change the picture significantly.

The hypervisor entry/exit costs are the estimated mode-switch costs
plus the software cost of saving/restoring enough state to execute C code
in the hypervisor. Hypervisor entry is the entry cost for a hypercall,
while IRQ entry is the cost of entering hyp mode via an interrupt vector.
The comparable x86 figure (NOVA) is 4,000 cycles. Page fault is the
cost of handling the case where the guest faults on a (guest-physical)
page which has not yet been mapped by the hypervisor.

The device emulation figures refer to trapping and emulating access to
a device register, and acc refers to the case where this is accelerated by
hardware support for emulation. The results show that device emulation
is expensive even with emulation support, and production systems will
likely continue to use para-virtualization of device drivers.

World switch refers to switching VM context, using ARM’s multi-
register operations for efficiently saving and restoring state. Much of this
state is kept in co-processor (MMU) or core-external (virtual interrupt
controller, devices) registers which are more expensive to access than
internal registers. Lazy FPU switch refers to the cost of switching the

Table 2: Microbenchmarks: Estimated overheads
Operation Instr. Est. Cycles
Hypervisor entry 89 450
IRQ entry 239 700
Hypervisor exit 31 200
Page fault 356 1500
Device emulation 249 1040
Device emulation (acc) 176 740
World switch 2824 7555
Lazy FPU switch 127 950

FPU lazily, i.e. when a guest application attempts to access it.

7. EXPERIENCE
We found that the ARM virtualization extensions significantly reduce

complexity of a hypervisor (compared to para-virtualization) and are
also likely to reduce virtualization overheads.

Compared to x86 there is some added complexity, for example saving
and restoring VM state in software, but this is minor (about 200 LOC).
The advantage of the ARM model is that the hypervisor can optimise
the handling of VM state. For example, if an interrupt is received which
is destined for the presently running VM, no state needs to be switched
beyond what is needed to run the hypervisor, while x86 would save and
restore redundant state in this case. The downside is that a full world
switch seems to be more expensive than on x86. However, this cost
could be reduced if there was a single (pipelined) instruction for saving
the complete MMU (CP15) context, a saving which could be of the order
of 1000+ cycles.

IRQ handling is also simple and fast on ARM, as the hypervisor can
inject interrupts “blindly”, while on x86 the hypervisor needs to check
masks and guest priorities, and modifications of masks by the guest trap
into the hypervisor. One drawback of the ARM model is that interrupt
handling is configured all-or-nothing. Unless all IRQs can be handled
by the guest (which seems an unusual situation), the hypervisor must be
invoked on each IRQ and forward it to the respective guest. Per-IRQ
configuration would be a significant improvement (shaving an estimated
700 cycles off IRQ processing), even though it would slightly increase
the (anyway high) cost of a world switch (for saving/restoring the IRQ
bitmap).

Instruction-emulation support is one of the strengths of the ARM
model, which dramatically reduces hypervisor complexity and signif-
icantly improves performance. The exception are write-back instruc-
tions, for which no support is available. Given that the instruction has
already been loaded into the core, having the hardware save it into a ded-
icated hypervisor register could reduce emulation cost by an estimated
250 cycles. However, this may not add much to overall performance, as
emulating write-back instructions seems a rare event.

In fact, given the thorough virtualization of the processor hardware,
including the MMU, instruction emulation is mostly needed for virtual-
ising devices. However, pure virtualization of device-register accesses
is likely very expensive even where the architecture fully supports em-
ulation. We therefore expect that drivers for most shared devices will
continue to be para-virtualized, making the lack of emulation support
for write-back even less critical.

8. CONCLUSIONS AND FUTURE WORK
In the course of this project we encountered numerous simulator bugs

which were new to ARM (but confirmed as bugs). This is strong indica-
tion that no-one had exercised the simulator as we have, and most likely
means that we were the first to produce a fully-functional hypervisor
for hardware-supported virtualization on ARM able to run unmodified
Linux guests.

We found that while the ARM extensions superficially look very sim-
ilar to those of the x86 architecture, the RISC nature of ARM allows for

a much simpler implementation. Especially the support for instruction
emulation benefits from the RISC design, and allows all required emu-
lations to be done with very little code. While our prototype still lacks a
few features, most importantly VM priorities and support for multicores,
it is clear that a fully-functional ARM hypervisor can be implemented
in around 6,000 LOC, vastly smaller than on x86. Work on turning the
prototype into a commercial product is under way.

Acknowledgements
We would like to thank the OK Labs engineering team for their support,
especially Carl van Schaik for sharing his thorough knowledge of the
ARM architecture. NICTA is funded by the Australian Government as
represented by the Department of Broadband, Communications and the
Digital Economy and the Australian Research Council through the ICT
Centre of Excellence program.

9. REFERENCES
[AA06] K. Adams and O. Agesen. A comparison of software and

hardware techniques for x86 virtualization. In 12th
ASPLOS, San Jose, California, USA, Oct 2006.

[ARM10] ARM Architecture Group. Virtualization Extensions
Architecture Specification, 2010. URL
http://infocenter.arm.com/help/index.jsp?topic=/com.
arm.doc.ddi0406b_virtualization_extns/index.html.

[ARM11] CoreLink system controllers for AMBA. http://www.arm.
com/products/system-ip/controllers/index.php, 2011.

[Bha09] N. Bhatia. Performance evaluation of Intel EPT hardware
assist. Technical report, VMWare, 2009.

[FO06] J. Fisher-Ogden. Hardware support for efficient
virtualization. Technical report, University of California,
San Diego, 2006.

[Gree10] INTEGRITY Secure Virtualization. http://www.ghs.com/
products/rtos/integrity_virtualization.html, May 2010.

[Hei08] G. Heiser. The role of virtualization in embedded systems.
In 1st WS Isolation & Integration Emb. Syst., pages 11–16,
Glasgow, UK, Apr 2008. ACM SIGOPS.

[Hei09] G. Heiser. Hypervisors for consumer electronics. In 6th
IEEE Consumer Comm. & Networking Conf., pages 1–5,
Las Vegas, NV, USA, Jan 2009.

[HL10] G. Heiser and B. Leslie. The OKL4 Microvisor:
Convergence point of microkernels and hypervisors. In 1st
APSys, pages 19–24, New Delhi, India, Aug 2010.

[HSH+08] J.-Y. Hwang, S.-b. Suh, S.-K. Heo, C.-J. Park, J.-M. Ryu,
S.-Y. Park, and C.-R. Kim. Xen on ARM: System
virtualization using Xen hypervisor for ARM-based secure
mobile phones. In 5th IEEE Consumer Comm. &
Networking Conf., pages 257–261, Las Vegas, NV, USA,
Jan 2008.

[Kro09] K. L. Kroeker. The evolution of virtualization. CACM,
52(3):18–20, 2009.

[NSL+06] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and R. Uhlig.
Intel virtualization technology: Hardware support for
efficient processor virtualization. Intel Technology J., 10(3),
Aug 2006.

[OKL11] Open Kernel Labs Website.
http://www.ok-labs.com/about/about-ok-labs, Jan 2011.

[RedB10] Red Bend Software website. http://www.redbend.com/,
Dec 2010.

[SK10] U. Steinberg and B. Kauer. NOVA: A
microhypervisor-based secure virtualization architecture. In
5th EuroSys Conf., Paris, France, Apr 2010.

[VMwa10] VMware mobile virtualization platform website.
http://www.vmware.com/products/mobile/, Dec 2010.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406b_virtualization_extns/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406b_virtualization_extns/index.html
http://www.arm.com/products/system-ip/controllers/index.php
http://www.arm.com/products/system-ip/controllers/index.php
http://www.ghs.com/products/rtos/integrity_virtualization.html
http://www.ghs.com/products/rtos/integrity_virtualization.html
http://www.ok-labs.com/about/about-ok-labs
http://www.redbend.com/
http://www.vmware.com/products/mobile/

	Introduction
	Related Work
	ARM Architecture
	Overview
	Virtualization extensions
	Configurable traps
	Emulation support
	Second-stage translation
	Virtual interrupts

	Comparison to x86

	Hypervisor Design
	General
	Inter-VM communication

	Implementation
	World switch
	Instruction emulation
	Device pass-through
	Shared devices
	Limitations

	Evaluation
	Hypervisor size
	Performance

	Experience
	Conclusions and Future Work
	References

