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Abstract

To date, measurement-based WCET analysis and
static analysis have largely been seen as being at
odds with each other. We argue that they should
be considered complementary, and that the com-
bination of both represents a promising approach.
In this paper we discuss in some detail how we aim
to improve on our probabilistic measurement-based
technique by adding static cache analysis. Specif-
ically we are planning to make use of recent ad-
vances in the functional languages research com-
munity. The objective of this paper is not to present
finished or almost finished work. Instead we hope
to trigger discussion and solicit feedback from the
community in order to avoid pitfalls experienced
by others and help focus our research.

1 Introduction

Embedded systems are becoming more pervasive
by the day, and many of these embedded systems
are subject to temporal requirements. While many
of these systems are not life critical, missing dead-
lines may well be a costly excersise if experienced
as degraded functionality or quality of service by
millions of end users.

The analysis of worst-case execution times
(WCET) is a fundamental building block of any
form of real-time analysis. Most of the work
to date has been based either on static analy-
sis or on measurements. The research commu-
nity has predominantly focussed on static analysis,
but measurement-based techniques have gained in-
creased significance in the last ten years.
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The two approaches have largely been seen as
mutually exclusive, and proponents of either ap-
proach tend to be quite critical of the other. Com-
mon concerns voiced about measurement-based
analysis are that. . .
1. is unsafe, as there are no guarantees that the

worst case has been observed and
2. measurements are too expensive if sufficient

coverage is to be achieved.
On the other hand, critics of the static-analysis

approaches claim that static analysis . . .
1. is unsafe, as modern architectures are highly

complex and thus modelling them is an error
prone process, not last due to lack of documen-
tation,

2. raises substantial challenges in terms of porta-
bility, and

3. does not support the more creative features used
to improve performance in today’s architec-
tures.

We believe that ultimately a combination of the
two paradigms is required to overcome the issues
in both. Specifically, we propose to use measure-
ments to obtain realistic, accurate results and static
analysis to back the findings of the measurement
phase by establishing that major contributors to the
variability of the execution time have been ade-
quately covered. Besides variations in program
path, which are usually covered in the computation
phase of WCET analysis approaches, caches con-
tribute most substantially to variations in the exe-
cution times of software. Establishing whether all
cache misses predicted by static analysis have been
observed in the measurements is of substantial help
in ensuring confidence in results obtained by mea-
surements. Focussing on caches allows for easy
verification whether the model used is actually cor-
rect and provides a high degree of portability of the
analysis.

Furthermore the results of the static analysis
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of caching behaviour can be used to reduce the
overestimation produced by analysing the measure-
ments of small untis independently and conserva-
tively covering any possible dependency between
the units.

2 Related Work

Cache analysis for WCET analysis was pioneered
by Mueller [1] and Lim et al. [2]. The latter rep-
resented a holistic WCET/schedulability analysis
that was subject to considerable complexity and
was eventually abandoned as a line of research.
Mueller’s work has been refined over the years [3].
The main drawback of the approach is the loss
of information inherent to the abstraction process,
specifically the loss of information incurred when
abstract cache states are merged at points where
two paths of a program merge using the predefined
join function. Further, abstract analysis, the tool of
choice for static program analysers, has proven no-
toriously resilient to all non-trivial attempts of ap-
plying the analysis to programs that manipulate dy-
namic data structures such as linked lists or those in
which pointers to functions cannot be resolved stat-
ically. While it can be argued that both features are
rarely found in real-time programs, they are never-
theless common in certain critical parts of the sys-
tem such as dynamic schedulers and page tables.

Ferdinand and Wilhelm [4] have extended
Mueller’s work by introducing the must and may
analysis, effectively reducing the amount of infor-
mation lost by the join function and prove that the
resulting abstract domain is optimal. Nevertheless,
even these improvements, the analysis still loses
some information at junctions of control-flow paths
introduced by any chosen program representation.
Further, the must and may analysis suffers from
the same limitations as earlier approaches when
applied to code manipulating dynamic data struc-
tures.

Attacking the WCET problem from a different
angle, Kirner et al. [5] deployed static analysis to
identify a set of input data, which would enforce
any possible path combination to be executed, ef-
fectively doing a full path enumeration. These sets
are then fed into the program and measured on real
hardware. In order to manage complexity, the pro-
gram under test is divided into program segments
which are tested and measured independently. The
approach did not support caches and thus is not ap-

plicable to our work.
Yamamoto et al. [6] approached the problem of

ensuring measurement coverage of cache states, by
measuring each basic block in isolation in a best
case scenario; in other words, all referenced mem-
ory locations are preloaded into the caches. A sep-
arate cache analysis provides a worst-case cache-
miss scenario for the given basic block and en-
ables the addition of the cost of these cache misses
in the computation stage of the analysis process.
The exact cache simulator used is not described in
their paper, however, the analysed programs in their
evaluation are sufficiently small to allow a brute
force computation of the cache states.

3 Potoroo

A brief introduction into the overall framework is
necessary to set the proposed approach into con-
text. The Potoroo project aims to analyse the ker-
nel primitives of the L4 microkernel API [7] for
their WCET to enable real-time systems to be built
on top. So far, we have developed a toolset which
allows the measurement-based analysis of the ker-
nel. In terms of the general approach it follows the
paradigm used in [8].

The executable code is analysed to extract the
control-flow graph (CFG). By using the executable
code, all compiler optimisations and preprocessor
modifications are considered. The analysis tries to
be minimal by mainly focussing on control-flow
changing instructions. However, that implies that
in particular register-indirect branches are hard to
resolve. Instead of a full analysis of the code, we
have so far chosen to use a source code parser de-
veloped in the Goanna project at NICTA [9] and
use debugging information to find corresponding
part in the source code.

Traces may be generated either by software in-
strumentation, HW support, or with cycle-accurate
simulators. Software instrumentation is subject
to overhead and may quickly become too much
of a burden in a running system. Cycle-accurate
simulators, however, raise the question of accu-
racy of the model in the simulator—mostly right
is not good enough. HW-supported tracing usu-
ally makes use of debugging ports implemented
on the processor die, like the ETM macrocell in
some ARM processors. While basic blocks exhibit
their WCET easily compared to entire programs,
there are no guarantees that a given block has been
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Figure 1: Sample ETP
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Figure 2: Toolset Overview

The traces are translated into ETPs, a sam-
ple of which is depicted in Figure 1, using the
control-flow graph previously established. Be-
sides actually producing the traces, this is the most
computationally-expensive part of the approach.

The CFG is also translated into a tree. The tree
directs the combination of ETPs to form ETPs de-
scribing larger code constructs. Using the tree en-
sures that any possible path combinations is con-
sidered.

For this paper the combination of sequential
code constructs is of particular relevance. The
toolset employs the supremal convolution [10].
The supremal convolution combines two distri-
butions in such a way that any possible depen-
dency between the two distributions is conserva-
tively covered in the result, thus ensuring a safe
combination of the two ETPs. However, a mayor
drawback of supremal convolutions is that they are
very conservative and tend towards a yes/no deci-
sion instead of a profile when many ETPs are com-
bined [11].

4 Basic Idea

In the previous section we have identified two fun-
damental challenges to the approach we are taking
in analysing the kernel.
1. Ensuring sufficient test coverage on basic block

level.
2. Avoiding the overly-conservative nature of

the supremal convolution without jeopardising
safety.

Looking at the variability of the execution time
in Figure 1 we can see that the ETP is clustered.
These clusters can be attributed to cache misses,
which are dominating the execution time of a given
piece of code. Guaranteeing that the code has ac-
tually experienced its worst case of cache misses
during the execution would go a long way to guar-
anteeing sufficient measurement coverage.

Cycles
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Cache misses

Measurements
expected

Measurement results

Static Analysis Prediction

Figure 3: Coverage

In order to tackle this, we aim to establish for
each ETP the different cache-miss scenarios ex-
pected and compare that to the measured ETP as
depicted in Figure 3. While the creation of a com-
plete and accurate model of a system including pro-
cessor core, caches and peripherial devices is non-
trivial and raises the issue of portability, caches
themselves are only subject to a few parameters
which can be easily established and verified for a
given system [12]. In order to be able to make
the connection between cache misses predicted and
the measured ETP, it is necessary to reason about
the cache-miss penalty actually imposed on a given
cache miss.

While caches are used to mitigate the effect of
long memory access latencies, modern processors
try in various ways to mitigate the effect of cache-
miss penalties. Critical-word-first loads by caches
avoids the overhead of loading data which is not
immediatly required, if the request does not hit
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the first word in a cache line. Out-of-order execu-
tion enables the program to progress on instructions
which are not dependent on the memory location
being loaded. A side effect of out-of-order execu-
tion is that instructions independent of the cache
miss are executed. Thus a cache miss at a given
point in the program reduces the entropy of states
the CPU may be in during the execution of subse-
quent instructions after the data has been fetched
from memory.

Load/store architectures tend to tag registers
waiting for outstanding memory requests, to en-
able continued execution until the register is actu-
ally used. This enables a smart compiler to make
use of instruction scheduling to preload registers as
early as possible to avoid as much of the maximum
cache miss penalty as possible. Contrary to out-of-
order execution, the pipeline is usually drained of
instructions preceding the cache-miss causing in-
struction. Some architectures allow for only a sin-
gle outstanding memory transaction as, for exam-
ple, the ARM9EJ-S processor core. However, other
processors allow for several outstanding requests,
by implementing fill buffers and pend buffers like,
for example, the XScale processor family.

Applying the above discussion to the envi-
ronment we are performing our analysis in, we
make the following observations:

1. The ARM9EJ-S is only subject to a single out-
standing memory transaction, forcing a stall on
subsequent loads.

2. The ARM-gcc compiler apparently makes little
or no use of the reduced penalty of a delayed
load, by usually using loaded registers within
three instructions.

Any approach performing coverage analysis
should inherently have information about depen-
dencies between the cache misses of subsequent
basic blocks and possibly beyond that. Exploiting
these dependencies as depicted in Figure 4 allows,
on the one hand, more realistic bounding of ETPs,
and on the other hand, reduce the overall WCET.

5 Static Analysis Approach

Static analysis is well-established as a powerful
tool for computing the WCET of a program. In
particular, abstract interpretation, the tool of choice
for static program analysers, is an attractive tech-
nique for WCET analysis, as it provides a method
for a formally-provable derivation of concrete pro-
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Figure 4: Dependency Analysis

gram properties such as cache misses or even actual
bounds on the execution time. Unfortunately, in the
past, all applications of static analysis in the area
have been hampered by the limitations, described
in section 2, inherent to the abstract interpretation
technique.

5.1 Motivation

In our work, we observe that the problem of de-
riving the WCET of a given program using static
analysis can be viewed as a search for a proof of
the desired program property. In particular, abstract
interpretation can be viewed as a way of deriving a
constructive proof of the desired property by com-
puting that property directly from the structure of
the program. However, if we knew the property
in the first place (for example, through empirical
measurement of program’s behaviour) we could, in
principle, construct an indirect proof of the same
result. In particular, we can attempt to prove the re-
sult by showing that no possible execution scenario
can result in an answer different from the assumed
one. Conversely, we can disprove our hypothesis
by searching for a suitable counter-example during
program analysis. In the remainder of this section,
we argue that the indirect approach is particularly
well suited to the problem of computing the num-
ber of cache misses experienced during execution
of a program.

5.2 The Basic Approach

We take the set of cache miss counts observed dur-
ing measurement of the program as a hypothesis,
which we subsequently attempt to prove or dis-
prove through static analysis of the program. The
problem is simpler than attempting to compute the
cache behaviour “from scratch” since the measured
answer provides finite bounds on the amount of
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computation performed during analysis, indepen-
dent of the bounds imposed by the particular ab-
stract domain and the associated join function. This
gives us more leeway in the design of the abstract
domain, and in fact permits us to perform the static
analysis of the program with virtually no loss of
information at all. In particular, observe that:
1. Since the measured set of cache miss counts is

finite, it can always be obtained after a finite
number of steps during abstract analysis, pro-
vided that we take some simple precautions in
the design of our algorithm to avoid divergent
chains of computation.

2. If due care is taken during design of the anal-
ysis algorithm, the above observation is suffi-
cient to guarantee that the analysis is performed
in a “reasonable” amount of time. However,
this does not prevent us from taking additional
measures to avoid the exponential complexity
of complete control path enumeration by com-
bining analysis for sections of the program that
are common to two or more potential execution
paths. In our approach, we will avoid exponen-
tial complexity by binding execution time of our
analysis to the number of cache miss counts ob-
served during measurement.

In other words, we can safely “run” the analyser
until it has either constrained the set of cache miss
counts to a subset of the measured one, or else until
it has detected a counter-example to our hypothesis.
In the later case, the state of the analyser at the time
when the counter-example has been detected pro-
vides invaluable clues permitting the user to extend
the measurement suite to cover the omitted execu-
tion scenarios.

Note that this approach is strictly limited to
analysing those programs for which a “perfect”
measurement suite can actually be constructed
from a finite number of test cases. This excludes,
among others, non-terminating programs. Fortu-
nately, this is precisely the class of programs suit-
able for use in real-time applications and accord-
ingly, covers all programs that we are concerned
with.

The remaining subsection outline our implemen-
tation of this technique.

5.3 Source Program Preparation

First, we translate the input binary program into
a purely-functional representation using the tech-
nique pioneered by Chakravarty, et al. [13]. We

choose a normal form of the continuation-passing
style of lambda calculus as our program repre-
sentation for its similarity to the low-level treat-
ment of control flow on typical processor archi-
tectures. In the purely-functional form, all ba-
sic blocks are translated into functions with loops
represented by recursion. Further, all global vari-
ables are replaced by additional function arguments
“threaded” throughout the control-flow path of the
program. This step is necessary for pragmatic rea-
sons, since the subsequent program transforma-
tions would become prohibitively-expensive with-
out the detailed data-flow information explicit in
purely-functional programs.

Note that, in this paper, we use the term “func-
tion” in the declarative programming sense of the
word, rather than to refer to the procedures of the
input program. Every function in our analysis cor-
responds loosely to a basic block of the input pro-
gram.

5.4 Cache Analysis

Next, we transform the input program into a new
analyser program that dynamically computes the
cache miss counts of the original program. This
step is very similar to a conventional abstract anal-
ysis, and uses the same form of an abstract domain
to represent the cache miss counts. However, since
the solution we seek is computed dynamically dur-
ing execution of the analyser program rather than
statically in the course of analysis, we never have
to join abstract values in the analyser program as
described in section 2. During any given actual
execution of the analyser, only one of all possi-
ble control flow paths can be followed. In other
words, the analyser program provides a compact,
finite representation of the large (and potentially in-
finite) number of all possible control flow paths that
would have to be followed to obtain precise cache
miss counts for every possible execution scenario,
just like the original program provided a compact
finite representation of all control flow paths of the
original program. Note that the resulting program
encodes the precise cache miss count for every pos-
sible control flow path without any loss of informa-
tion. Also note that such translation of an input pro-
gram into an analyser program is performed implic-
itly by every abstract analysis algorithm, although
the resulting program is rarely “materialised” into
an actual data structure, and typically remains en-
coded implicitly in the state of the static analyser.
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Further, during conventional abstract analysis, the
control structure of the translated program is sim-
plified at the expense of precision to ensure termi-
nation of the analyser.

Further, we perform a number of standard opti-
mising transformations of the generated programs,
including constant folding, copy propagation and
dead code elimination. Since the typical calcu-
lations involved in computing cache miss counts
are relatively straight-forward in comparison to the
work done by the original input program, we expect
these simple transformations to result in a dramatic
reduction to the size of the analyser program. In
particular, large chunks of code that do not affect
cache behaviour should disappear from the pro-
gram, thus substantially reducing the cost of the
subsequent stages of the whole process. We also
perform an induction variable analysis to reduce
many common loop patterns such as those used to
obtain a sum of an arithmetic series into a simple
scalar expression.

5.5 Coverage Analysis

Finally, we analyse the transformed program to ver-
ify that it can only return values from the set of
cache miss counts observed during measurement.
In other words, we seek to find the maximal set of
input arguments for which the analyser program re-
turns an answer within the range specified by the
measured set. Our solution first constructs an in-
verse of each function f in the program (in other
words, a function f−1 such that f−1(x) = Y iff,
for all y in the set Y, f(y) = x.) It is a remark-
able fact that such inversion can be performed rel-
atively easily for all functions that may be encoun-
tered in an analyser program. This is because we
are seeking total inversion only, rather than par-
tial inversion (where some of the input arguments
to the original functions remain fixed) which is a
harder problem. While the ranges of the inverted
functions grow quickly with the number of origi-
nal function parameters, as will be shown shortly,
this is not a problem in our application because the
size of those ranges is used to bind the depth of
our analysis and facilitate early termination of our
algorithm; the true exponential growth is therefore
never reached and the overall complexity of the al-
gorithm is a logistic function of the size of the mea-
sured set and the number of basic blocks in the in-
put program. The term logistic function relates to
an intial exponential growth of the function which

subsequently slows and finally stops.
The analysis maintains a work list of inverted

functions annotated with a set of their input argu-
ments. Initially, the work list contains only those
functions that correspond to the leaves of the call
graph of the original program, each annotated with
the set of cache miss counts obtained through mea-
surement. The algorithm proceeds by extracting
each item from the work list in turn, and terminates
when the work list becomes empty.

A single work list entry is analysed by applying
the given input value set to the corresponding in-
verted function, thus obtaining the maximal set of
corresponding program inputs. We recognise two
scenarios:
1. If the resulting set of values is unconstrained

(as will often happen by the nature of function
inversion), we have determined that the mea-
surements have been exhaustive along the corre-
sponding control-flow path in the original pro-
gram. Accordingly, the function is removed
from the work list.

2. Otherwise, we determine the set of callers of
the function under consideration in the origi-
nal (non-inverted) program, and add the corre-
sponding inverted functions to the work list. If
no such functions exist, we have just examined
the entry block of the original program, and ac-
cordingly report the resulting set of constraints
to the user.

All constraints reported to the user as a result of the
second point above represent constraints on the in-
put of the original program that must be satisfied in
order for the program’s cache behaviour to remain
within the measured set of cache miss counts. Ac-
cordingly, all input values outside of the constraint
set represent counter-examples to our hypothesis.

5.6 Algorithmic Complexity

In the worst case, the algorithm may analyse all in-
dividual control-flow paths through the program.
However, in practice the worst case is incredibly
difficult to achieve, as the execution of our algo-
rithm is bounded by the size of the constraint set,
which itself grows exponentially during the func-
tion inversion process. This means that the actual
complexity of the program is a logistic, rather than
an exponential function. In fact, we believe that the
amortised complexity of our algorithm for all ter-
minating input programs is polynomial (quadratic)
in the number of functions (basic blocks) in the pro-
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gram. More research is needed to substantiate this
result.

6 Conclusions

In this paper we have outlined our approach to sup-
porting probabilistic measurement-based WCET
analysis with static analysis. The static analysis
is based on a functional representation of the code
investigated and an abstract interpretation of rep-
resentation. The goal is to establish sufficient mea-
surement coverage, and to reduce overestimation of
conservative combination ETPs by conservatively
covering any possible dependencies between them.
Future work will largely center finishing the im-
plementation of the plan presented and subsequent
evaluation.
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