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ABSTRACT
System virtualization, which enjoys immense popularity in the en-
terprise and personal computing spaces, is recently gaining signifi-
cant interest in the embedded domain. Starting from a comparison
of key characteristics of enterprise systems and embedded systems,
we will examine the difference in motivation for the use of sys-
tem virtual machines, and the resulting differences in the require-
ments for the technology. We find that these differences are quite
substantial, and that virtualization is unable to meet the special re-
quirements of embedded systems. Instead, more general operating-
systems technologies are required, which support virtualization as a
special case. We argue that high-performance microkernels, specif-
ically L4, are a technology that provides a good match for the re-
quirements of next-generation embedded systems.

1. INTRODUCTION
System virtualization has become a mainstream tool in the com-

puting industry, as indicated by billion-dollar IPOs and sales of
startup companies for hundreds of millions. The decoupling of vir-
tual and physical computing platforms via system virtual machines
(VMs) supports a variety of uses, of which the most popular ones
are:

• consolidating services that were using individual computers
into individual virtual machines on the same computer. This
utilises the strong resource isolation provided by virtual ma-
chines in order to achieve quality-of-service (QoS) isolation
between servers;

• load-balancing across clusters, by creating new virtual ma-
chines on demand on a lightly-used host, or even migrating
live VMs. This utilises the platform abstraction provided by
virtualization;

• power management in clusters, by moving VMs off lightly-
loaded machines, which can then be shut down (this is effec-
tively load-balancing in reverse);
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• firewalling services which have a high risk of being compro-
mised in order to protect the rest of the system. This also
utilises resource isolation;

• running different operating systems (OSes) on the same
physical machine (e.g. Windows, Linux and MacOS), typ-
ically in order to run applications, which are specific to a
particular OS. This use is mostly relevant for personal ma-
chines (desktops or laptops) and is also enabled by resource
isolation.

A main characteristic of such usage cases is that typically all
VMs run the same OS (or, in the last scenario listed above, “sim-
ilar” OSes in the sense that they provide roughly the same kinds
of capabilities and similar abstraction levels). Also characteris-
tic of those scenarios is that VMs communicate just like physical
machines—via (virtual) network interfaces (including network file
systems). This is consistent with the VM view, which is, by defini-
tion, like that of a physical machine.

Clearly, most of the above use cases have no equivalent in
present-day embedded systems (although some will become rele-
vant with the advent of manycore chips). In order to understand
why system virtual machines are recently receiving a lot of inter-
est from embedded-systems developers, we need to have a look at
the characteristics of modern embedded systems, and identify com-
monalities as well as differences to enterprise computing systems.

2. EMBEDDED SYSTEMS PROPERTIES
Embedded systems used to be relatively simple, single-purpose

devices. They were dominated by hardware constraints (memory,
processing power, battery charge). Their functionality was also
mostly determined by hardware, with software consisting largely
of device drivers, scheduler and a bit of control logic. As a result,
they exhibited low to moderate software complexity. They were
subject to real-time constraints, which poses demands on operating
systems that are unusual in the general-purpose computing arena.

Traditional embedded systems are also closed: the complete
software stack is provided by the device vendor, loaded pre-sale,
and does not change (except for rare firmware upgrades).

Modern embedded systems, however, are increasingly taking on
characteristics of general-purpose systems. Their functionality is
growing, and so is the amount and complexity of their software.
The software stack running on contemporary smartphones is al-
ready 5–7Mloc, and growing. Top-of-the-line cars contain literally
gigabytes of software (and rumour has it that it takes longer to load
the software than to build the physical vehicle). Increasingly, em-
bedded systems run applications originally developed for the PC
world (such as the Safari web browser running on the iPhone) and
new applications (e.g. games) are increasingly written by program-
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Figure 1: The primary use case for virtualization in embedded
systems is the co-existence of two completely different OS en-
vironments, real-time OS and high-level application OS, on the
same processor.

mers without embedded-systems expertise. This creates a demand
for high-level application-oriented operating systems with com-
modity APIs (Linux, Windows, Mac OS).

Furthermore, there is a strong trend towards openness [4, 17].
Device owners want to load their own applications on the systems
and run them there. This requires open APIs (and introduces all the
security challenges known from the PC world, including viruses
and worms).

Yet some of the old differences to general-purpose systems re-
main. Embedded devices are still real-time systems (or at least
part of the software is real-time). They are also frequently still
resource constrained: battery capacity increases only slowly over
time, hence mobile devices have tight energy budgets. Also, as
many embedded systems are sold for just a few dollars, memory is
frequently still a cost factor (besides being a consumer of energy).

At the same time, embedded systems, already ubiquitous, are be-
coming more and more part of everyday life, to the degree that it is
becoming hard to imagine living without them. They are increas-
ingly used in mission- and life-critical scenarios. Correspondingly,
there are high and increasing requirements on safety, reliability and
security.

3. VIRTUALIZATION USE CASES
The relevance of virtualization in embedded systems stems from

the ability to address some of the new challenges posed by them.
One is support for heterogeneous operating-system environ-

ments, as a way to address the conflicting requirements of high-
level APIs for application programming, real-time performance
and legacy support. Mainstream application OSes lack the support
for true real-time responsiveness (efforts to address this notwith-
standing) and they are unsuitable for supporting the large amount
of legacy firmware running on present devices (e.g. mobile-phone
baseband stacks alone can measure several Mloc).

Virtualization can help here, by enabling the concurrent execu-
tion of an application OS (Linux, Windows, Symbian, ...) and a
real-time OS (RTOS) on the same processor (see Figure 1). Pro-
vided that the underlying hypervisor is able to deliver interrupts
reliably fast to the RTOS, the latter can then continue to run the
(legacy) stack providing the device’s real-time functionality. The
application OS can provide the required commodity API and high-
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Figure 2: Standard security use case: A (user- or network-
facing) OS is compromised, but encapsulated in a VM, which
protects the rest of the system from the exploit.

level functionality suitable for application programming.
Note that the same can be achieved by using multiple processor

cores, each running their own OS, provided there is some hard-
ware support for securely partitioning memory. Multicore chips
are proliferating and the incremental cost of a core is dropping dra-
matically. Furthermore, two lower-performance cores (which can
be put to sleep individually) are likely to have lower average power
consumption than a single higher-performance one, owing to strong
non-linearities in power management [22, 23]. Hence, on its own,
this usage scenario is likely only of relevance for a few years. We
note, however, that virtualization supports architectural abstrac-
tion, as the same software architecture can be migrated essentially
unchanged between a multicore and a (virtualized) single core.

Forthcoming manycore chips provide a different, more longer-
term motivation for using virtualization. With a large number of
processors, it is likely that embedded systems will be facing issues
not unlike the reasons behind today’s use of virtualization in the
enterprise space. A scalable hypervisor could form the basis for
deploying poorly-scaling legacy operating systems on a large num-
ber of cores, by partitioning the chip into several smaller multi-
processor domains. A hypervisor can dynamically add cores to an
application domain which requires extra processor power, or can
manage power consumption by removing processors from domains
and shutting down idle cores. (Note that this requires that the ap-
plication OS can deal with a changing number of CPUs.) The hy-
pervisor can also be used for setting up redundant domains for fault
tolerance in a hot-failover configuration.

Probably the strongest motivation for virtualization is security.
With the trend towards open systems, the likelihood that an appli-
cation OS is compromised increases dramatically. The resulting
damage can be minimised by running such an OS in a virtual ma-
chine which limits access to the rest of the system, as shown in
Figure 2. Specifically, downloaded code may be restricted to run
in a VM environment, or services, which are accessible remotely,
could be encapsulated in a VM. This security use case is only valid
if:

• the underlying hypervisor is significantly more secure than
the guest OS (which means first off that the hypervisor must



be much smaller), and

• critical functionality can be segregated into VMs different
from the exposed user- or network-facing ones.

If those prerequisites are not met, the hypervisor will simply in-
crease the size of the trusted computing base (TCB), which is
counter-productive for security.

Finally, wide (and standardised) support for virtualization en-
ables a new model for distribution of application software—
shipping the program together with its own OS image. This pro-
vides the application developer with a well-defined OS environ-
ment, and thus reduces the likelihood of failure of the deployed
software due to configuration mismatch. While such a scheme has
significant resource implications (especially on memory use), this
can be reduced by automatic elimination of replicated page con-
tents [15, 26].

4. LIMITS OF VIRTUALIZATION
The above use cases show that virtualization can provide some

attractive benefits to embedded systems. However, there are signif-
icant limitations on the use of system VMs in embedded systems—
in fact, these limitations are a direct consequence of what makes
virtualization popular.

Virtualization is all about isolation—by definition, a virtual ma-
chine runs on its virtual hardware as if it had exclusive use of phys-
ical hardware. (Note that in an attempt to derive marketing value
from a popular buzzword, some vendors are not above advertising
(highly insecure) OS co-location as virtualization. But this kind of
pseudo-virtualization solves nothing but the simplest cases of the
heterogeneous-OS use case, and will not be considered any fur-
ther.)

In contrast to the server space, the model of strongly-isolated vir-
tual machines does not fit the requirements of embedded systems.
By their very nature, embedded systems are highly integrated, all
their subsystems need to cooperate in order to contribute to the
overall function of the system. Isolating them from each other in-
terferes with the functional requirements of the system.

Cooperation between the various subsystems of an embedded
system requires efficient sharing. This is needed for bulk data
transfer—a mobile phone may receive a video file via the cellular
network (i.e. via the baseband OS), which is then displayed on the
screen (by a media player running on the application OS). Trans-
ferring this data “virtual-machine style” via a virtual network inter-
face between the real-time and the application VM implies at least
one extra copy operation, a significant waste of processor cycles
(and hence battery charge). Clearly, a shared buffer together with
low-latency synchronisation/messaging primitives is the way to go.
However, such operations do not fit the virtual-machine model.

Another mismatch between embedded-systems requirements
and the virtual-machine model is evident in scheduling. Vir-
tual machines, by their nature, are scheduled by the hypervisor as
black boxes, with the guest OS responsible for scheduling activities
within the VM. However, this is not suitable for embedded systems;
their integrated nature requires an integrated (global) approach to
scheduling, as shown in Figure 3. While real-time activities (run-
ning in an RTOS) generally must have the highest scheduling pri-
ority, the RTOS domain will also have low-priority background ac-
tivities. These should not be able to preempt the user interface run-
ning under the application OS. Similarly, the application OS may
be running some (soft) real-time activities, e.g. the media player,
that may take precedence over some other real-time activates in the
RTOS environment. The characteristics of embedded systems ob-
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Figure 3: The integrated nature of embedded systems requires
that scheduling priorities of different subsystems must be inter-
leaved. This is at odds with the concept of virtual machines.

viously cannot be addressed with the de-centralised, hierarchical
scheduling model that is inherent in virtualization.

Energy management is similar to real-time scheduling, in that
it is a whole-of-system issue that cannot be done locally. En-
ergy management in embedded systems frequently involves trading
off performance (i.e. time) against energy, under the constraint of
meeting deadlines. However, energy is a global physical resource
that cannot be traded off against virtual time. This is in contrast to
the server world, where the goal is to minimise power consumption
(or temperature) rather than energy, and a hierarchical approach can
work [24].

Furthermore, virtualization does little to address the possibly
biggest issue facing embedded systems: the mushrooming soft-
ware complexity, which threatens to undermine device robustness
and safety. The accepted software-engineering approach for ad-
dressing complexity challenges is to use encapsulated components
[25] for fault containment. While virtualization provides encapsu-
lation, its granularity is too coarse to make a big difference. After
all, a virtual machine emulates hardware and is designed to run an
operating system supporting its software. This means that virtual
machines are fairly heavyweight, and embedded systems cannot
reasonably run more than a few of them (remember, memory costs
energy and increases the bill of materials).

Addressing the software-complexity challenge requires a com-
ponent framework that is lightweight in terms of memory overhead
as well as with respect to inter-component communication cost, and
does not add to the overall complexity of the system.

Last but not least, the issue of information-flow control is be-
coming increasingly important. Surprising as it may sound at first,
embedded systems are no-longer single-user devices. A mobile
phone handset, for example, has at least three classes of stake hold-
ers, which are essentially “users” in that they have different access
rights:

1. The owner, i.e. the human who has, in some way or other,
bought the device.

2. The wireless service provider, who grants access to a wire-
less network. In the future we might see several concur-
rent service providers for the same physical device, along



the lines of the DoCoMo/Intel OSTI proposal [17], which ar-
gues for a separation of enterprise and private service when
the same physical device is used for private as well as busi-
ness use.

3. Third-party service providers who use the wireless connec-
tivity to provide services independent of the wireless service
provider. This includes providers of multimedia content for
entertainment or information. Increasingly it includes finan-
cial transactions such as payments for arbitrary goods and
services.

These users are, in general, mutually distrusting, and each has
assets on the device they wish to protect. The owner has address
books, emails and documents in which the other users have no le-
gitimate interest, and which the owner wishes to keep private, and
thus out of reach of the other users. In the OSTI scenario, these
would be further separated into private and enterprise data, leading
to multiple logical owner-type users (or “roles”).

The service provider needs to ensure the integrity of the network,
and needs to ensure that all network access is properly authenti-
cated (to ensure correct billing as well as for complying with legal
requirements) and does not interfere with others’ legitimate use. It
therefore needs confidence that the device will adhere to protocols.

The content providers need assurance that their data is only used
according to the owner’s license (e.g. only displayed for a limited
number of times and not copied to other devices). The owner as
well as the providers need assurance that financial transactions with
other third-party service providers are secure, including strong pro-
tection of access tokens.

We therefore have an access-control problem not dissimilar
from what is found in traditional (time-shared) multi-user systems.
There are several agents with legitimate rights to access certain
data, but no rights to other data. Information must flow between
the agents, but a security monitor must be able to enforce access
policies. Importantly, many of the subsystems will handle sensible
data belonging to any of the users. If these subsystems are inside
a virtual machine, then the guest OS must be trusted to enforce the
information-flow policies.

From the security point of view, this would obviously be worse
than just trusting a single operating system, it would be a (poten-
tially massive) increase in the size of the system’s trusted comput-
ing base. It would negate many of the potential security benefits
that motivate the use of virtualization as discussed above. For se-
curity reasons, the TCB should be minimised, and not depend on
large application OSes (that have a high risk of compromise).

5. SUITABLE TECHNOLOGY
Having looked at the challenges posed by modern embedded sys-

tems, we can now attempt to translate those into requirements for a
suitable OS technology:

• The ideal technology will provide strongly encapsulated
components, suitable for fault containment and security iso-
lation. Yet it needs to support more traditional system virtu-
alization, specifically the ability to run isolated guest OS in-
stances and their (unmodified) application stacks. This must
be done while maintaining real-time responsiveness for time-
critical subsystems.

• At the same time, controlled low-latency, high-bandwidth
communication must be available between components, in-
cluding shared memory, subject to a system-wide security
policy, enforced by a small and trustworthy TCB. Compo-
nents must be lightweight enough to make them suitable for
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Figure 4: Microkernels run device drivers at user level, ideally
each confined to its own address space. They can be accessed
from virtual machines using stub drivers, which simply convert
I/O requests into IPC messages to the real driver. The same ap-
proach can be used for legacy drivers hosted inside their native
OS, which eases migration to the microkernel.

encapsulating individual threads, in order to impose a global
scheduling policy.

This shopping list exceeds the capabilities of a hypervisor, and
requires more general-purpose OS mechanisms. High-performance
microkernels seem to provide the right capabilities: They have a
proven track record as the basis for hypervisors [6, 14] as well as
real-time OSes [5, 7, 18]. Specifically the various members of the
L4 microkernel family [16] feature extremely low-overhead mes-
sage passing, light-weight address spaces that form the basis of
encapsulation, mechanisms for setting up shared-memory regions,
and high-performance user-level device drivers [12, 13].

The efficient message-passing (IPC) mechanism is the key en-
abler for any microkernel-based system, and this includes virtual
machines. Virtualization traps are caught by the kernel and con-
verted into exception messages sent to a user-level virtual-machine
monitor. It is also, together with lightweight address spaces, a key
enabler of encapsulated lightweight components [11]. Finally it
makes user-level device drivers feasible, as interrupts are also con-
verted to IPC messages sent to the driver.

Shared-memory regions are the basis of efficient sharing of
buffers (for zero-copy operations). This is also important for shar-
ing devices between virtual machines and other components. Fig-
ure 4 shows that driver sharing can also be applied for drivers left
inside their original host OS (now running in a virtual machine).
This is important for legacy support: A driver can (initially) be left
inside its original OS, yet be made available to other components
in the system. This, of course, means that the guest OS hosting the
driver must be trusted to operate the particular device correctly. As
an interim measure this may be acceptable—it constitutes the first
step in a migration to a more structured system, where drivers are
encapsulated in their own address spaces. Of course, for DMA-
capable devices this encapsulation is only complete if the hardware
provides an IOMMU [13], such as provided by recent Intel and
AMD processors.

Legacy support and a soft upgrade path is also provided by the
combination of virtualization with lightweight components. A soft-
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ware stack can easily be ported to a microkernel by encapsulating
the complete stack inside a VM. Critical components, such as en-
cryption and key management, can be moved into separate com-
ponents running directly on top of the microkernel with a minimal
TCB [9, 21], as shown in Figure 5. Such components can be ac-
tive (i.e. contain their own schedulable thread of execution) or pas-
sive (invoked similar to a function-call and executing in the caller’s
scheduling context). The ability to assign an individual scheduling
priority to an active component overcomes the limitations of VM
scheduling indicated in Figure 3.

Over time, more parts can be extracted out of a VM into separate
components, leading to a highly structured system (see Figure 6)
with increased robustness. The system designer is able to decide
on the most appropriate tradeoff between security, robustness and
engineering cost.

This approach is already being actively applied in the embedded-
systems industry. The OKL4 microkernel platform from Open Ker-
nel Labs is presently deployed on an estimated 100 million mobile
wireless devices. In most cases, the initial deployment looks very
much like the one shown in Figure 5, and a number of users are
now componentising their software stacks further, moving towards
the hybrid model of Figure 6.

Work is ongoing on creating a TCB that is not only small (less
than 20kloc, of which only about 10kloc are kernel code), but truly
trustworthy. NICTA’s new high-security version of L4, called seL4,
has been proved to satisfy strict isolation and information-flow con-
trol requirements [2] without sacrificing the high performance L4
has long been known for [1]. The API of the OKL4 microkernel
is presently being evolved into an equivalent of seL4. At the same
time, work at NICTA aims at a formal proof that seL4 fully satis-
fies the isolation requirements of the Common Criteria Separation
Kernel Protection Profile [10].

However, the most exciting aspect of the small TCB enabled
by microkernel technology is the potential to establish its trust-
worthiness beyond any doubt. A well-designed microkernel is
small enough to be completely formally verified—by constructing
a mathematical proof that the implementation adheres to the speci-
fication (and thus is in a sense guaranteed to be “bug-free”).

Such a complete correctness proof of the seL4 microkernel [3] is
only a few months away [8], and constitutes the first (and hardest)
step towards verifying the complete TCB of some security-critical
components.
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Figure 6: A hybrid system structure supports a monolithic
legacy system side-by-side with a highly structured, fault-
resilient system based on encapsulated components.

This represents a quantum leap from established OS technology.
A formally-verified kernel can be treated very much like hardware:
it only changes every few years (and never post-deployment). But
it allows the software on top to be upgraded. It also supports new
models of secure introspection in systems.

Take a virus scanner, for example. It normally runs inside the
operating system, which it is examining for infection. This obvi-
ously creates the risk that the virus scanner itself is being infected,
or the OS mechanisms it uses for the inspection are compromised
in a way that defies detection by the scanner using them. Installing
the virus scanner inside a virtual-machine monitor means changing
the hypervisor and thus risks infecting the hypervisor itself.

With the hardware-like trusted microkernel, a virus scanner can
run on top of the microkernel, subject to its protection mechanisms,
but outside any VM. It can be enabled to scan the VM by mapping
all of the VM’s memory to the virus scanner read-only, so the scan-
ner can itself not damage anything (in observance of the principle
of least privilege [20]). It can also be encapsulated so it cannot leak
any of the data it sees inside the VM, while at the same time be-
ing protected from any user- or network-facing system components
(which are at high risk of being compromised).

This use case is an indication of the potential on-going relevance
of virtual machines in embedded systems. But it is also a further
indication that virtual machines alone are not sufficient.

6. CONCLUSIONS
Virtualization has many aspects attractive to the embedded

world, but on its own is a poor match for modern embedded sys-
tems. More general OS technology is required, that supports fine-
grained encapsulation, integrated scheduling and information-flow
control. High-performance microkernels are able to provide all the
required features, and enable a migration from monolithic to com-
ponentised (fault-resilient) software stacks. The prospect of formal
verification of the microkernel’s implementation provides an excit-
ing avenue towards systems of unprecedented reliability.

There seems to be a trend in hypervisors to become more
microkernel-like [19], including adding microkernel-like primi-
tives to overcome some of the shortcomings of virtualization. Mi-
crokernels, however, have the inherent advantage of enabling a
smaller TCB [9]. Moreover, the benefits of formal verification can,
for the foreseeable future, only be achieved with a real microkernel,
due to the poor scalability of formal verification techniques.

We conclude that there are good reasons for deploying some



forms of virtualization in future embedded systems. However, the
role of system VMs will remain limited and their benefits will only
be fully achieved in the context of an overall change of operating-
system technology to one based on high-performance microker-
nels.
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