
Operating System Directed Power
Management

A thesis submitted to the School of Computer Science and

Engineering at The University of New South Wales in

fulfilment of the requirements for the degree of Doctor of

Philosophy.

David Snowdon

March 4, 2010

I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, or substantial proportions of material which have been accepted for the
award of any other degree or diploma at UNSW or any other educational institu-
tion, except where due acknowledgement is made in the thesis. Any contribution
made to the research by others, with whom I have worked at UNSW or elsewhere,
is explicitly acknowledged in the thesis. I also declare that the intellectual content
of this thesis is the product of my own work, except to the extent that assistance
from others in the project’s design and conception or in style, presentation and
linguistic expression is acknowledged.

Signed:

Date:

To my sister Carolyn

ABSTRACT

Energy is a critical resource in all types of computing systems from servers, where
energy costs dominate data centre expenses and carbon footprints, to embedded
systems, where the system’s battery life limits the device’s functionality. In their
efforts to reduce the energy use of these system’s hardware manufacturers have
implemented features which allow a reduced energy consumption under software
control.

This thesis shows that managing these settings is a more complex problem
than previously considered. Where much (but not all) of the previous academic
research investigates unrealistic scenarios, this thesis presents a solution to man-
aging the power on varying hardware.

Instead of making unrealistic assumptions, we extract a model from empiri-
cal data and characterise that model. Our models estimate the effect of different
power management settings on the behaviour of the hardware platform, taking
into account the workload, platform and environmental characteristics, but with-
out any kind of a-priori knowledge of the specific workloads being run. These
models encapsulate a system’s knowledge of the platform.

We also developed a generalised energy-delay policy which allows us to
quickly express the instantaneous importance of both performance and energy
to the system. It allows us to select a power management strategy from a number
of options.

This thesis shows, by evaluation on a number of platforms, that our implemen-
tation, Koala, can accurately meet energy and performance goals. In some cases,
our system saves 26% of the system-level energy required for a task, while losing
only 1% performance. This is nearly 46% of the dynamic energy.

Taking advantage of all energy-saving opportunities requires detailed plat-
form, workload and environmental information. Given this knowledge, we reach
the exciting conclusion that near optimal power management is possible on real
operating systems, with real platforms and real workloads.

i

ii

ACKNOWLEDGEMENTS

As with most theses, this could not have been produced without the effort of many.
The most directly involved have been my supervisors, particularly Gernot Heiser
and Stefan Petters, from whom I have learned an enormous amount. Gernot is a
man who demands the best from his students. I have watched him build a bril-
liant and invigorating research lab at NICTA during my tenure as a PhD student.
Stefan always provided as much time as I need or wanted, displaying his vigorous
approach and infectious enthusiasm. Sergio Ruocco provided me with guidance
during the earlier phases of this thesis.

While they were never official supervisors, there are two other people who
provided an enormous support during my thesis. In one afternoon, Mothy Roscoe,
while visiting NICTA, was able to help re-focus and further enthuse me about this
research. He asked the question ”What makes what you are doing really hard?”,
and wouldn’t accept my initially fluffy responses. Thinking about these issues,
and the processes which he suggested, eventually brought me to focus my PhD
on model-based power management. David Johnson, who was a member of the
technical staff at CSE, taught me more than any other about electronics and how
to build real electronic systems. He designed much of PLEB 2, and it was his
influence that allowed me to design the I-Box and Echidna among many other
electronic projects. He’s not a member of the teaching staff, but he taught me an
enormous amount.

I’ve been fortunate enough to have a wonderful group of people who I’ve
worked with over the last few years. Etienne Le Sueur was first a summer intern,
then a research assistant, and now a master’s student continuing this work. He has
worked hard to help prove that my system works, has run many of the experiments
which I discuss herein, and has been a vital bouncing board for various ideas.
Many thanks go to him. In addition to that direct involvement, it has been a
privilege to work with the incredible team at ERTOS and OK Labs: AB, Chuck,
Benno, Luke, Adam, Leonid, Godfrey, Dan, Carl, and all the rest of you.

iii

My family is an inspiration to me and others. They are always welcoming,
always positive, and always there for me. It was my Dad who pointed me toward
a PhD, and it is his constant enthusiasm and positivity that I try to emulate. Mum
is always the calming and sensible influence, always there for a hug, or there to
hear my complaints when the models just wouldn’t fit the data. My sister, who was
struck with a serious illness during the course of this thesis, is a true inspiration —
she remains happy and positive, despite her hardships. My brother has also been
there each Monday for ”family night in” to hear the academic war stories.

Many friends have helped me through the inevitable low periods, drunk coffee
in the high periods, and provided a wonderful counter to the academic life. Too
many to mention individually, but Lisa and Beth were coffee and movie fiends;
Fiona loved the occasional slurpee; Serin and Haydn lapped up the beers, sun and
snow; Mitch provides intellect and grace via a whole lot of craziness; Em provides
fierce competition on the tennis court; and Natalie has been a caring and reliable
friend, sharing the PhD highs and blues. Rani has been wonderful to have in my
life for the last little while, showing amazing interest and enthusiasm about the
intricate details of computers’ operation for an English teacher.

Lastly, the solar car project at UNSW has to be granted thanks for many dis-
tractions, learning experiences, thrills and heartbreaks.

iv

PUBLICATIONS

Koala: A platform for OS-level power management David C. Snowdon, Eti-
enne Le Sueur, Stefan M. Petters and Gernot Heiser Proceedings of the 4th Eu-

roSys Conference, Nuremberg, Germany, April, 2009

Integrating real time and power management in a real system Martin P.
Lawitzky, David C. Snowdon and Stefan M. Petters Proceedings of the 4th

Workshop on Operating System Platforms for Embedded Real-Time Applications,

Prague, Czech Republic, July, 2008

Accurate on-line prediction of processor and memory energy usage under
voltage scaling David C. Snowdon, Stefan M. Petters and Gernot Heiser Pro-

ceedings of the 7th International Conference on Embedded Software, Salzburg,

Austria, October, 2007

Accurate run-time prediction of performance degradation under frequency
scaling David C. Snowdon, Godfrey van der Linden, Stefan M. Petters and Ger-
not Heiser Proceedings of the 3rd Workshop on Operating System Platforms for

Embedded Real-Time Applications, Pisa, Italy, July, 2007

Power management and dynamic voltage scaling: Myths and facts David C.
Snowdon, Sergio Ruocco and Gernot Heiser Proceedings of the 2005 Workshop

on Power Aware Real-time Computing, New Jersey, USA, September, 2005

Power measurement as the basis for power management David C. Snowdon,
Stefan M. Petters and Gernot Heiser Proceedings of the 1st Workshop on Oper-

ating System Platforms for Embedded Real-Time Applications, Palma, Mallorca,

Spain, July, 2005

v

vi

CONTENTS

Abstract i

Acknowledgements iii

Publications v

Contents vii

List of Figures xi

List of Tables xvii

Source Code Listings xix

1 Introduction 1

2 Background and Related Work 7
2.1 How computers use power . 7

2.2 Evaluating computer power . 13

2.3 Evaluation Metrics . 18

2.4 Dynamic voltage and frequency scaling 19

2.5 Idle mode management . 25

2.6 OS power management . 26

2.7 Workload prediction . 27

2.8 Application support . 28

3 Motivation 31
3.1 The commonly assumed model 31

3.2 Power management challenges 32

vii

4 Modelling 53
4.1 Terminology . 53

4.2 Assumptions . 53

4.3 Execution time model . 54

4.4 Basic Energy model . 58

4.5 Idle energy model . 60

4.6 Temperature and fan effects . 64

4.7 Switching overheads . 64

4.8 Real-time dependencies . 65

4.9 Measurement-based estimation 67

4.10 Parameter selection and Characterisation 68

5 Policy 75
5.1 Low-level policy . 75

5.2 High-level policies . 86

6 Implementation 89
6.1 Overview . 89

6.2 Workload Prediction . 91

6.3 Modelling . 93

6.4 Policy . 94

6.5 Other Details . 96

6.6 Infrastructure . 96

6.7 Discussion . 99

7 Evaluation 101
7.1 Methodology . 101

7.2 Platforms . 107

7.3 Characterisation . 112

7.4 Adaptation to workload . 122

7.5 Model accuracy . 125

7.6 Policy . 125

7.7 System Evaluation . 132

viii

8 Conclusions 137
8.1 Contributions . 138
8.2 Future Work . 140
8.3 Final words . 141

Bibliography 143

A Platforms 161
A.1 PLEB 2 (PXA255) — PLEB 2 162
A.2 Gumstix Connex (PXA255) — Gumstix 168
A.3 I-Box (PXA270) — I-Box . 173
A.4 phyCORE-iMX31 Rapid Development Kit (iMX31) — Phycore . 179
A.5 Dell Latitude D600 (Pentium-M) — Latitude 185
A.6 IBM Thinkpad T43 (Pentium-M) — T43 195
A.7 Asus EEEPC 901 (Atom) — EEEPC 197
A.8 Compucon K1-1000D (AMD Opteron 246) — Opteron 201
A.9 Intel Menlow Software Developer’s Platform (Silverthorne) —

Menlow . 206
A.10 Dell Server (Intel Xeon) — Xeon 206

B Echidna 207

ix

x

LIST OF FIGURES

2.1 CMOS logic gate configuration 9

3.1 Normalised performance (top) and energy use of two benchmarks
under DVFS on a Latitude laptop. 34

3.2 Execution time of a highly memory-bound application (mcf) un-
der frequency scaling on an AMD-Opteron based server. Lines
connect settings with the same memory frequency but different
core frequencies. 36

3.3 Performance of a CPU-bound (twolf) and memory-bound appli-
cation (gzip) under frequency scaling on a PXA270-based plat-
form. Lines connect settings with the same memory but different
core frequencies. 37

3.4 Normalised CPU energy for various workloads on a PXA255-
based platform (PLEB2) . 39

3.5 Total energy for the CPU-bound gzip and memory-bound swim
applications on the Latitude, using different idle states. 40

3.6 Dynamic energy for the CPU-bound twolf and memory-bound
mcf workloads on the Phycore iMX31-based system. 42

3.7 System power vs. temperature for gzip at 600MHz on a Dell Lat-
itude D600 . 44

3.8 Actual vs. predicted input power for the Dell Latitude D600 lap-
top running from the AC adapter. 47

3.9 Cycles vs. Frequency for various benchmarks on a Latitude D600
laptop. Solid black lines show a linear fit to the 600MHz and
800MHz datapoints. 48

3.10 Comparison of cycles and energy use on an AMD64 Server with
and without dual channel memory for swim. 49

xi

3.11 Actual voltage setting and relative energy for the frequency set-
points for equake ref on a Dell Latitude D600 laptop 52

4.1 Using padding to calculate the energy used by a workload for a
greater-than-zero-power idle mode. 62

4.2 Using idle power subtraction to identify the extra energy required
to run a workload. 63

4.3 Comparing real-time events and CPU-time events 65

5.1 Power, Energy and Execution Time, all normalised to the max-
imum frequency, for CPU-bound (top) and semi memory-bound
(bottom) workloads on the Latitude laptop 76

5.2 Power, Energy and Execution Time, all normalised to the
maximum frequency, for semi memory-bound (top), and fully
memory-bound (bottom) workloads on the Latitude laptop 77

5.3 Behaviour of the bounded performance degradation policy for a
CPU-bound (top) and lightly memory-bound (bottom) workloads
on the Latitude Laptop . 81

5.4 Behaviour of the bounded performance degradation policy for
medium memory-bound (top) and heavily memory-bound (bot-
tom) workloads on the Latitude Laptop 82

5.5 Behaviour of the generalised energy-delay policy for a CPU-
bound (top) and lightly memory-bound (bottom) workloads on the
Latitude Laptop . 84

5.6 Behaviour of the generalised energy-delay policy for medium
memory-bound (top) and heavily memory-bound (bottom) work-
loads on the Latitude Laptop . 85

6.1 Koala high-level block diagram 90
6.2 A modified version of top which displays statistics generated by

Koala . 98
6.3 A modified version of gnome system monitor showing

statistics recorded by Koala’s trace module 99

7.1 The custom-designed Echidna energy measurement device 102

xii

7.2 Normalised execution time for a memory-bound (swim) and a
CPU-bound (twolf) on the Latitude. 110

7.3 Normalised execution time for a memory-bound (mcf) and a
CPU-bound (twolf) on the Phycore. 110

7.4 Dynamic energy for a memory-bound (gzip) and a CPU-bound
(twolf) on PLEB 2. Lines connect points of equal memory fre-
quency. 111

7.5 Dynamic energy for a memory-bound (gzip) and a CPU-bound
(twolf) on Gumstix. Lines connect points of equal memory fre-
quency. 112

7.6 Parameter selection for the PLEB 2 time model. The X-axis la-
bels correspond with the terms in Equation 4.29 for PLEB 2. See
Section 7.1.3 for an explanation of this plot. 114

7.7 Parameter selection for the PLEB 2 energy model. The X-axis
labels correspond with the terms in Equation 4.12 for PLEB 2.
See Section 7.1.3 for an explanation of this plot. 115

7.8 Parameter selection for the Opteron power model. The X-axis
labels correspond with the terms in Equation 4.12 for Opteron.
See Section 7.1.3 for an explanation of this plot. 119

7.9 Original parameter selection for the Latitude time model. The
X-axis labels correspond with the terms in Equation 4.29 for the
Latitude. See Section 7.1.3 for an explanation of this plot. 121

7.10 Koala behaviour for the first 2000 time slices of (clockwise from
top left) gzip, bzip2, wupwise and swim. 123

7.11 Koala behaviour for the first 1000 time slices of swim on the
server with and without latency terms. 124

7.12 Comparison of estimated vs. actual performance (top) and energy
(bottom) for the minimum-energy policy on the server platform. . 126

7.13 Maximum-degradation policy on the Latitude 127

7.14 Maximum-degradation policy on the Opteron 128

7.15 Generalised energy-delay policy on the Latitude. 130

7.16 Generalised energy-delay policy on the server. 131

7.17 Koala multi-tasking on the server 133

xiii

7.18 Using the Latitude’s battery state of charge to drive the power
management policy. 134

A.1 PLEB 2 with Echidna . 162

A.2 Normalised execution time for memory-bound (gzip test) and
CPU-bound (twolf test) benchmarks on PLEB 2. 165

A.3 Measured power for memory-bound (gzip test) and CPU-
bound (twolf test) benchmarks on PLEB 2. 165

A.4 Normalised energy for memory-bound (gzip test) and CPU-
bound (twolf test) benchmarks on PLEB 2. 166

A.5 Normalised energy without idle power for memory-bound
(gzip test) and CPU-bound (twolf test) benchmarks on
PLEB 2. 167

A.6 Voltage setting vs. frequency for PLEB 2. 167

A.7 Gumstix Connex with EtherStix network card 168

A.8 Normalised execution time for memory-bound (gzip test) and
CPU-bound (twolf test) benchmarks on Gumstix. 170

A.9 Measured power for memory-bound (gzip test) and CPU-
bound (twolf test) benchmarks on Gumstix. 170

A.10 Normalised Energy for memory-bound (gzip test) and CPU-
bound (twolf test) benchmarks on Gumstix. 171

A.11 Normalised Energy for memory-bound (gzip test) and CPU-
bound (twolf test) benchmarks on Gumstix, after subtracting
a typical idle power. 172

A.12 I-Box with Echidna . 173

A.13 Voltage vs. Frequency model for the PXA270 175

A.14 Normalised execution time for memory-bound (gzip test) and
CPU-bound (twolf test) benchmarks on I-Box. 176

A.15 Measured power for memory-bound (gzip test) and CPU-
bound (twolf test) benchmarks on I-Box. 176

A.16 Normalised Energy for memory-bound (gzip test) and CPU-
bound (twolf test) benchmarks on I-Box. 177

xiv

A.17 Normalised Energy without idle power for memory-bound
(gzip test) and CPU-bound (twolf test) benchmarks on
I-Box. 178

A.18 Normalised Energy, assuming an 0.7W idle power, for memory-
bound (gzip test) and CPU-bound (twolf test) bench-
marks on I-Box. 178

A.19 phyCORE-iMX31 Rapid Development Kit 179

A.20 Normalised execution time for memory-bound (mcf test) and
CPU-bound (twolf test) benchmarks on Phycore. 182

A.21 Measured power for memory-bound (mcf test) and CPU-
bound (twolf test) benchmarks on Phycore. 182

A.22 Normalised Energy for memory-bound (mcf test) and CPU-
bound (twolf test) benchmarks on Phycore. 183

A.23 Normalised Energy without idle power for memory-bound
(mcf test) and CPU-bound (twolf test) benchmarks on
Phycore. 184

A.24 Providing and measuring the power to the Latitude laptop via the
battery. 185

A.25 Normalised execution time for memory-bound (swim test) and
CPU-bound (twolf test) benchmarks on the Latitude laptop. . 188

A.26 Measured power for memory-bound (swim ref) and CPU-
bound (twolf ref) benchmarks on the Latitude laptop. 189

A.27 Normalised Energy for memory-bound (swim ref) and CPU-
bound (twolf ref) benchmarks on the Latitude laptop. 189

A.28 Normalised Energy for the partially memory-bound
(equake ref) benchmark on the Latitude. 190

A.29 Normalised Energy for memory-bound (swim test) and CPU-
bound (gzip test) benchmarks on the Latitude laptop while
running at the maximum voltage (1.34V) from the power adapter. 191

A.30 Measured power for memory-bound (swim test) benchmarks
on the Latitude laptop, measured at both battery and power adapter. 192

A.31 Measured power for CPU-bound (gzip test) benchmarks on
the Latitude laptop, measured at both battery and power adapter. . 192

xv

A.32 Normalised energy for CPU-bound (twolf ref) and memory-
bound (swim ref) benchmarks on Latitude, with the idle power
component removed. gzip graphic ref is included here to
demonstrate a clear non-linearity. 193

A.33 IBM T43 laptop with Echidna 195
A.34 EEEPC Atom-based computer 197
A.35 Normalised execution time for a range of benchmarks on the

EEEPC 901 Netbook. 199
A.36 Measured power for a range of benchmarks on the EEEPC 901

Netbook. 199
A.37 Normalised Energy for a range of benchmarks on the EEEPC 901

Netbook. 200
A.38 Normalised Energy for a range of benchmarks on the EEEPC 901

Netbook, with the idle power subtracted. 200
A.39 Compucon K1-1000D Opteron-based server with Extech power

analyser . 201
A.40 Normalised execution time for memory-bound (swim test)

and CPU-bound (vortex 1 test) benchmarks on the Opteron-
based server. 203

A.41 Measured power for memory-bound (swim ref) and CPU-
bound (vortex 1 ref) benchmarks on the Opteron-based server. 204

A.42 Normalised Energy for memory-bound (swim ref) and CPU-
bound (vortex 1 ref) benchmarks on the Opteron-based server. 204

A.43 Normalised energy for CPU-bound (vortex 1 ref) and
memory-bound (swim ref) benchmarks on Opteron, with the
idle power component removed. 205

xvi

LIST OF TABLES

3.1 PLEB 2 DVFS settings . 38

7.1 A summary of all the platforms examined 106
7.2 Events available on PLEB 2’s PXA255 processor [73] 116
7.3 Regression and validation data for various models 117

xvii

xviii

SOURCE CODE LISTINGS

1 amd64-server.py — a model generated for the AMD-
Opteron based server. 73

2 latitude.conf — the source file used to define settings for
the Dell Latitude D600 laptop 95

xix

xx

CHAPTER 1

INTRODUCTION

“We choose to go to the moon in this decade and do the other things,

not because they are easy, but because they are hard” – John F
Kennedy, 1962

Energy is a critical consideration in all areas of engineering. None more so
than in the development of computing systems. Global warming has seen a focus
on energy efficiency for environmental reasons but the recent focus on minimising
the energy use in computers has also been driven equally by the rise of mobile
(battery powered) computing and the thermal problems associated with increased
performance.

Energy efficiency is increasingly important for servers and data centres due to
the cost of power for computation and cooling [128]. This is not only a monetary
concern, but an environmental one: in 2006, each server had a yearly carbon
footprint similar to 1.5 cars [162], and those servers used 1.5% of the total U.S.A.
electricity production [88] at a cost of about $4.5 billion [156].

On the other hand, the rise in popularity of mobile, battery-powered devices
has also driven an interest in energy efficiency: reducing power consumption
while maintaining performance [98]. Since the charge stored in a battery is fi-
nite, the utility of mobile devices is limited by the energy used. In this case, an
increased energy efficiency results in a more useful device with the same battery
lifetime (or a smaller battery, for the same utility).

Power management is a critical component of any energy-efficient computer
system design. It is the process of managing a computer’s hardware to achieve
power-related goals. This is intrinsic in hardware design, but must be dealt with
explicitly at a software level. In nearly all medium and high-performance systems,
an operating system manages the hardware, including its power management. At

1

a cluster level, the operating systems running on cluster nodes execute decisions
made higher in the software stack.

Modern hardware provides many features for reducing power and energy that
require software control. A study of these features forms part of Chapter 2. These
can generally be classified as either active power management (where the perfor-
mance of a system can be traded for a reduced power), or idle power management
(where the system is put into a sleep state while idle). This thesis focuses on active
power management, and in particular deals with dynamic frequency and voltage

scaling (DVFS).

Making optimal power-management decisions is a difficult problem, since a
system’s performance must inevitably be traded for energy savings, and it is often
difficult to predict the effect of choosing one setting over another. Worse still, the
interaction between the different hardware controls is not obvious. As an example
consider the question of whether to race-to-halt when frequency scaling: should
the CPU be throttled to its minimum performance, minimising the time spent idle?
Or should the CPU run as quickly as possible, consuming more power, but allow-
ing more time to be spent in a low-power mode? The answer is completely de-
pendent on both the platform and the workload. In fact there is often an optimum
setting which is neither the highest or lowest, and that setting is highly dependent
on workload. Chapter 3 presents an experimental study of these difficulties and
others in active power management.

To deal with this complexity, both operating-system designers and power-
management researchers make assumptions about, and simplifications of, the sys-
tem behaviour. These assumptions lead to the development of heuristics which
can be used to guide power-management decisions. One clear example is in ac-
tive power management, where the assumption is often made that the lowest per-
formance setting will always be the most energy efficient. This thesis shows that
this is false, and counter-intuitively, can lead to an increased energy use. The
ineffectiveness of the heuristics is also discussed in Chapter 3. In an alternate for-
mulation: previously proposed and implemented power-management schemes are
largely unaware of the effect of their actions. The result of this heuristic approach
is that power-management policies can at best expect reasonable, rather than opti-
mal, results, and are highly unpredictable when used with platforms, workloads or

2

combinations of workloads for which the system has not been tuned. Moreover,
the performance effects of power-management decisions can not be predicted or
managed.

Instead, this thesis proposes that systems should be made aware of the ef-
fect of their power-management decisions. Instead of hiding the real hardware
behaviour behind often-erroneous heuristics, we suggest that power-management
schemes need an accurate model of the running system to make their decisions.
This allows the power-management policy to evaluate different strategies for a
predicted workload, trading performance for energy savings, while the details of
the platform’s behaviour are abstracted and encapsulated by the model. This al-
lows high-level policies to deal with interfaces which are platform and workload
independent.

To do this, we first studied ten different platforms’ response to running dif-
ferent workloads. This experimental work conclusively shows that the majority
of the platforms did not behave the way the academic literature would expect.
For example, some platforms had multiple frequency control knobs which make
choosing a combination of settings difficult. Other platforms have DC-DC con-
verters with non-linear efficiency-power curves. In all platforms examined, the
performance of the memory subsystem does not scale linearly with the CPU fre-
quency. There are several more of these irregularities, which we term quirks.

This thesis develops models which represent these effects based on experimen-
tal data gathered off-line. The models are use a locality argument, and estimate
the workload’s future behaviour based on statistics gathered during its recent ex-
ecution, rather than using any kind of workload pre-characterisation. Based on
these inputs, the models predict what the execution time and energy use would
be for the same workload running at a different setpoint. The models are suffi-
ciently light-weight so as to be used at run-time without a significant overhead.
As part of this thesis work we developed models for several platforms on multiple
architectures. These can predict many of the quirks which we discovered.

The models can then be used to accurately trade the benefits of the perfor-
mance hit at a given setpoint against the energy savings by running at that set-
point. In Chapter 5 I discuss the ways in which this can be done, first examining
the effects of running some simple policies, and then developing a new policy, the

3

generalised energy-delay policy. This policy forms a middle layer in the power-
management stack, taking the energy and performance results for a range of can-
didate settings and selecting one based on a single tuning knob. This tunable
forms an abstract interface with higher-level policies, allowing a system to be ex-
plicitly adjusted for maximum performance, minimum energy use or minimum
power (and all of the settings in between). This can adjust the system based on
QoS information such as system utilisation or battery state of charge.

This thesis conducts a thorough evaluation by developing an operating-system
which implements the above concepts. It uses a simple prediction technique to
regularly estimate characteristics of the upcoming workload, allowing our models
to calculate the expected performance and energy use required for each candidate
setting. Our policy can then select the appropriate setting. We conducted a sub-
stantial experimental validation characterising and testing the models and policies,
and validating the operation of the final implementation.

The contributions of this thesis are:

• an experimental study of the effect of using traditional heuristic-based active
power management on various platforms (and a record of the quirks found);

• the most complete models for a system’s energy consumption for a variety
of workloads and power management settings, including:

– the first models of both the system’s performance and its power which
are sufficiently accurate for estimating the energy consumption of a
variety of workloads under varying conditions;

– a discussion of the effect of often-ignored variables such as tempera-
ture and power supply efficiency;

– methods for developing and characterising on-line models of an un-
known platform based on experimental data gathered off-line;

• policies and mechanisms for using these models to accurately trade energy
against performance at run-time;

• an implementation of the ideas in Linux, called Koala, resulting in a dy-
namic, specific and efficient trade-off between the system’s performance

4

and power;

• a thorough evaluation of this implementation.

The rest of this document is organised as follows: Chapter 2 provides back-
ground material and related work pertaining to active power management. Chap-
ter 3 presents a study of a large number of platforms, showing the ways in which
these platforms behave in non-intuitive ways which complicate active power man-
agement (quirks). Models which provide estimates for the performance and en-
ergy use for a workload on a given platform are presented in Chapter 4. I also
discuss ways in which the model parameters can be chosen, and the models char-
acterised, based on empirical data (collected off-line). Chapter 5 looks at how
power-management decisions can be made based on knowledge of the perfor-
mance and energy savings information provided by the models, and presents the
generalised energy-delay policy. Higher-level policies such as those based on bat-
tery state of charge and utilisation are also considered here. The details of Koala,
an implementation of these ideas in Linux is documented in Chapter 6. The accu-
racy of the models and Koala’s effectiveness is evaluated in Chapter 7. Chapter 8
provides conclusions, detailed contributions and suggested future work.

This thesis contains material published in peer-reviewed workshops and con-
ferences. At the time of writing I am the primary author of all but one of these
publications [91, 144–148].

5

6

CHAPTER 2

BACKGROUND AND RELATED WORK

“Opportunity is missed by most people because it is dressed in over-

alls and looks like work” – Thomas Edison,

Energy, having such an enormous impact on the utility of both mobile and
fixed computing systems, has seen significant attention in both the academic lit-
erature and industrial research laboratories. This chapter explains the concepts
necessary for a computer scientist to understand this thesis, and examines the ex-
cellent work done by academics and industry.

The rest of this chapter is structured as follows. Section 2.1 discusses the basic
physics of how computers use power. Section 2.2 discusses ways of evaluating
the power consumption of computer systems, in particular the energy accounting
and modelling techniques which we build on in Chapter 4. Section 2.3 looks
at the difficulties for comparing power management policies and compares the
techniques. Sections 2.4 and 2.5 describe policies for dynamic frequency and
voltage scaling, and dynamic power management, respectively. Here we include
real-world schemes, a description of the hardware support available, and many of
the policies which inspired this work. The last two sections, 2.7 and 2.8, look at
workloads and the ways in which our system can be supported by the applications
themselves.

2.1 How computers use power

Computer systems consist of a group of interconnected electronic, electro-
mechanical, electro-chemical, etc, devices. These systems use energy at a rate
that is called power. Reduced power implies a reduction in the amount of energy
that is used in a given time period, so

7

E = Pt. (2.1)

Power in an electrical system is the product of current and voltage:

P = IV. (2.2)

Capacitors store a charge, and the charge (q) is proportional to the voltage
across the capacitor.

q = CV. (2.3)

Current is the rate at which charge flows. The current into a capacitor is pro-
portional to the rate of change of its voltage as

I = C
dV

dt
. (2.4)

and the stored energy is

E =
1

2
CV 2. (2.5)

2.1.1 Integrated circuits

Integrated circuits combine a many electrical components in a single package.
One important component is the field effect transistor (FET), which consists of a
capacitive gate which controls a channel between the source and drain. If the ca-
pacitor is charged beyond its threshold voltage (Vth), the channel conducts, if not,
it has a high impedance. There are two different types of FET – n-channel FETs
will switch on when the voltage at its gate is positively charged (relative to the
source/substrate) and p-channel FETs will switch on when the gate is negatively
charged.

Many circuits within computing systems are based on complementary metal-

oxide-silicon (CMOS) fabrication. The circuits implemented use two complemen-

8

Figure 2.1: CMOS logic gate configuration

tary devices to implement various functions. Figure 2.1 shows two common logic
gates as implemented in CMOS.

These transistors are connected in networks and form integrated integrated
circuits. Power is dissipated by these devices due to:

• Gate capacitance: when the gate capacitor is charged and discharged, that
charge is lost (see Equation 2.5).

• Short circuit power: as the gate capacitor charges, a FET will be partially
on. Since both FETs in a CMOS pair switch concurrently, there will be a
short period of time where current will flow through both.

• Leakage current: the devices are not ideal, and constantly conduct a small
current between all of the terminals.

Ignoring leakage and the effect of non-CMOS components, a processor’s
power consumption is dependent on the number of transistors and gate capaci-
tance of the transistors switched. For a CMOS circuit which is switched at a fre-
quency (f), with a constant number of transistors switching, the switching losses
are proportional to the energy stored in the gate capacitance and the rate at which
the transistors switch

9

P = fn
1

2
CV 2. (2.6)

Reducing the voltage on a switching circuit reduces the switching energy re-
quired for a given operation. However, the voltage can not be reduced to zero,
since a reduced voltage results in a slower transistor switching speed, which lim-
its the frequency at which clocked circuits can operated correctly. In order to im-
prove the switching speeds, the transistors can be designed with a lower threshold
voltage but this results in increased leakage.

Another way to reduce energy consumption is to reduce the number of tran-
sistors which switch. The number of gates switched can be reduced via design
changes. In addition, the number of gates switched by a clock can be reduced
by clock gating. This stops a clock signal from connecting to parts of the circuit
which do not require it, reducing wastage in those circuits.

2.1.2 Microprocessors

The number of transistors switched in a microprocessor will be depends on the
software which is executed. The use of functional units, registers, busses, and
other hardware affects the power drawn. For example, the task of loading a regis-
ter with very different data to what it previously contained will use more energy
than loading a register with very similar data.

Clock gating is used extensively in modern microprocessors. Similarly, clock
throttling reduces the system performance and power draw by stopping the pro-
cessor’s clock periodically. The clock is run for some period, and then gated for
some time. Clock throttling is implemented in several processors as a simple way
of implementing thermal control.

A processor’s switching speed, and switching power loss, are governed by
clock frequencies. When clocks are slowed, the transistors can take longer to
settle, and so the voltage used to switch those transistors can be reduced. The
voltage needs to be high enough to allow the processor’s critical path to function
correctly. The critical path is the longest chain of dependent circuits.

10

Dynamic frequency and voltage scaling (DVFS) allows a system to switch its
frequency and voltage at run-time, and is implemented in many modern micro-
processors.

Choosing the best setting is a focus of this thesis. In particular, we consider
the inadequacies of Equation 2.6 for predicting the effect of a frequency change.
While it is a good approximation of the switching costs of a circuit where the
same number of transistors switch on a single clock cycle, it has fails to model a
complex microprocessor because it assumes a single clock. It assumes no leakage
or background power.

When a processor is idle it makes little sense for the circuit to continue to
execute an infinite loop (spinning). For this reason, microprocessor and periph-
eral developers implement sleep modes. These are low-power modes where the
processor retains some state, but is inactive. Because it is inactive, clocks can be
disabled, voltages can be lowered, and sometimes power supplies can be physi-
cally disconnected. This allows for significant power reductions. The power saved
is often related to the time required to enter and exit the sleep mode, since some
state is lost and must be restored. For this reason most systems implement a range
of sleep states so that the entry and exit time can be traded against the power
saved. Managing these sleep states is a significant operating systems challenge.

2.1.3 Memory

In many systems, devices implementing memory consume a significant amount of
energy. Itoh [85] gives a good summary of how power is dissipated in RAM.

There are two popular RAM technologies which almost all computers use at
present; static RAM (SRAM) and dynamic RAM (DRAM) RAM. Static RAM is
implemented using a small number of transistors per bit. Dynamic RAM uses a
smaller number of transistors and a capacitor. DRAM is cheaper and denser than
SRAM, but SRAM operates at a higher speed and is usually used for caches and
memory where a low latency is required.

As with microprocessors, hardware designers have implemented software-
controlled features which can be used to reduce the power drawn. Manufacturers
such as Micron [104] have implemented low-power DRAM with features like par-

11

tial refresh, temperature-compensated self-refresh, and various sleep states. Ram-

bus DRAM (RDRAM) offers four different modes of operation (as discussed and
utilised by Lebeck et al [92]) with a tradeoff between power consumption and la-
tency in recovery. Because of RDRAM’s narrow bus, architecture individual chips
can be mode-controlled independently of one another. These techniques require
OS support to be effective.

2.1.4 System and other peripherals

Peripherals are the largest consumer of energy in many systems. In Lorch’s sur-
vey [94], more than 40% of power was consumed by the hard drive, backlight, dis-
play and modem in a laptop. In Flinn’s analysis of the Itsy pocket computer [45],
he shows that the LCD interface and UART both have a significant power con-
sumption (these devices are considered peripherals but are built into the system-
on-a-chip in the Itsy). The power consumed by these peripherals can be reduced in
hardware via means specific to the device in question, but usually in software via
use of power-down modes. These modes can make a significant difference to the
power used by the system and are discussed by various authors [29, 38, 105, 157].

2.1.5 Power supply

Computers use regulators to convert from an input voltage to that provided to
the processor and other system components. These power supplies are usually
switching regulators which convert relatively, but not perfectly, efficiently. The
losses depend on load, voltage buck/boost ratio, space and cost constraints.

Martin [98] examined the non-ideal properties of batteries in relation to com-
puter systems and their use. In particular, he notes that a battery’s capacity is
reduced when it is discharged at a higher rate. Accordingly, constant loads will
give a greater battery lifetime than an intermittent load with the same average
current.

This is expressed in a simple form by Peukert’s equation

Q =
k

Iα
(2.7)

12

where Q is the available battery charge, k and α are constants specific to the
battery and I is the proposed discharge current. This does not consider the prop-
erties of specific battery chemistries (such as voltage recovery in Lithium Ion (Li-
Ion) cells. Martin uses a low-level Li-Ion specific battery model in his work on
battery-aware DVFS.

2.2 Evaluating computer power

Computers’ complicated use of energy make analysing how and why it is used
difficult. This section discusses some methods which have been developed.

2.2.1 Simulation

Simulation re-creates the behaviour of a computer in software. Many have been
augmented with models for a system’s power consumption. These simulators
vary in accuracy, with accuracy often being traded for performance or ease of
implementation.

Hardware designers often use architecture-level simulations based on the cir-
cuit and physical properties of the system. It is difficult to get access to such
simulators for real systems, and it is computationally expensive to run the simu-
lations. Brooks et al. [22, 23] developed add-on modules for SimpleScalar [12],
adding a set of models for common structures in microprocessors. SimpleScalar
accounts which devices are used, and records the energy used by the workload.
This gave estimates of the power with less than 10% error. This type of simulation
can give detailed information about the energy used by a software. Brooks was
able to examine the effect of techniques like loop unrolling on the system’s power
consumption. A myriad of other work has improved the speed of these simulators
for the purposes of system evaluation [15, 16, 54, 152], however these improve-
ments have not been translated to run-time low-overhead power estimation, nor
can they be applied without the detailed knowledge of a system’s inner workings
available in a simulation environment.

System-level simulators sacrifice some accuracy in order to simulate complete
systems, including peripherals, without substantial information about the internals

13

of a processor. For example, Simunic [139–141] developed a simulator based on
the ARMulator [5] and used it to simulate the SmartBadge (a small embedded
system). She shows how information from this simulator allowed her to reduce
the energy consumption of an MP3 playing application by more than 75%. She
claims that her results are within 5% of the measured power for the same sys-
tem. Jouletrack is another system-level simulator [143]. The power models were
constructed by executing synthetic microbenchmarks on a StrongARM develop-
ment board to characterise specific behaviours. A similar approach was used by
Gurumurthi [60] who constructed a system-level simulator using SimOS. He anal-
ysed the JVM98 benchmark as well as the IRIX operating system. Interestingly,
in the test system, the disk was the major power consumer. Fan [40] modified a
simulator when estimating the power consumed by an XScale-based device with
power-aware SDRAM. Hellestrand [62] described the event-based power mod-
elling techniques used in the VaST commercial virtual system prototyping envi-
ronment.

Simulation is an effective evaluation technique, but does not allow for run-
time power measurements, and is therefore not useful in the context of this thesis.
For evaluation of power management mechanisms, we find a power measurement
of the real system much more convincing, since practical simulators are based on
models which are necessarily inaccurate for tractability. However, the techniques
developed to for these simulators provide inspiration for run-time modelling based
on energy-accounting techniques.

Various simulation work is relevant to our own via modelling techniques.
Zhang et al. [177] discussed the exponential dependence of the leakage current
(and therefore static power) on temperature, and the linear dependence on volt-
age. Bansal et al. [15] give a thorough description of the statistical techniques
used to choose parameters in their power-estimation models.

2.2.2 Energy accounting

Energy accounting is used for estimating the energy used by software at run-time.
Like in the simulators above, data is gathered about the system state and events,
and this is used to model the energy consumed by the system. Events might

14

include spinning up the hard disk, executing a particular instruction, a network
packet transmission, etc. The data can be gathered in a lightweight way, allowing
for low-overhead run-time power estimations.

Some examples of this type of technique include PowerMeasure/StatePro-
filer [94] which characterised a platform using microbenchmarks, and then esti-
mated the real-world energy for a number of identical systems at Apple Computer
Inc. Neugebauer and McAuley [110] proposed extensions to the Nemesis OS’s
in-built resource accounting features to support energy accounting.

Event-counter based techniques, typified by Bellosa and Weissel’s work [17,
166] use the data recorded by CPU performance counters as the input to a model.
The counters are configured to measure events which are significant to the energy
consumption (cache misses, instructions retired, etc). The accuracy of this type of
system is determined by the amount and relevance of the information which can
be collected. These types of hardware event counter are typically only available
in the CPU and chipset, and therefore do not generally apply to peripheral power
estimation. An exception to this is memory power, which can be inferred by
counting cache misses and write back operations in the CPU.

Bellosa [17] demonstrated that it was possible to correlate hardware
performance-monitoring counter (PMC) readings with the energy consumption
of a CPU. His students Waitz [163] and Fruth [51] used this approach to im-
plement energy accounting to processes in Linux on an Intel PXA255 processor.
Fruth effectively worked around that processor’s limitation of only two PMCs by
switching the monitored event every 10 ms.

Isci and Martonosi [83], Bircher et al. [19] and Kumar et al. [90] used the
PMC-based approach on the Pentium 4, which has many counters, and investi-
gated the suitability of different counters. Bircher et al showed that a processor’s
performance counters have a good correlation with the power consumed outside

the processor when estimating the power for a complete system [20]. Research
using the IBM Power processors [37] developed a predictor of program phases in
terms of power consumption, similar to dynamic branch predictors. This was later
ported to the Intel PXA 255 processor [30]. Peddersen and Parameswaran [113]
investigated custom CPU designs which provided PMCs counting events specifi-
cally selected for estimating the power consumption of the CPU.

15

More recently Powell et al. [123] developed CAMP, which measures nine
statistics in order to predict run-time power consumption of many structures
within a CPU to within an average of 8%. The authors suggest that the method-
ology is sufficiently lightweight to be implemented in hardware, like Peddersen’s
work. Such in-built power-estimation hardware would clearly improve the accu-
racy and reduce the calculation overheads of our own models.

An interesting approach to modelling was taken by Singh et al. [142], who
used a piecewise approach: using different models based on the value of certain
parameters. This is similar in some ways to using categorisation and regression

trees (CART) [172].

State-based accounting techniques such as those employed in ECOSystem
[176] and Cignetti et al. [29] instrument operating system software to track the
state of the CPU and its peripherals (e.g. for a disk, whether it is spun up or
down and whether it is active or idle). The duration spent in each state is used
as the input to a model. This is an all-software solution to power estimation, but
fails to capture any variation of the power within a given state. The accuracy of
the technique therefore depends on the number of states (detail of the model).
In ECOSystem the recorded energy-related information is used as feedback for
system policies such as energy budgeting.

These energy accounting techniques have seen applications including resource
partitioning in virtualised servers [150], run-time application adaptation [114],
energy budgeting [176], temperature estimation [18, 28] and evening the thermal
dissipation in multiprocessors [102].

Energy accounting is a lightweight way of estimating the power for a system
at run-time. Our approach builds on these power estimation techniques: because
energy-accounting uses a model, we are able to introduce extra parameters which
allow the estimation of not only the actual system power, but what the system
power would have been under alternate conditions (in our case, alternate power
management settings). To our knowledge, ours is the first system to do so. This is
described in Chapter 4.

16

2.2.3 Run-time measurement

Statistical profiling of power was developed by Jason Flinn [43, 47] to assist his
work on energy-aware software adaptation. PowerScope is an energy profiler,
giving feedback to a developer on the energy consumed by processes, and the en-
ergy consumed by components within that software (functions). A data collection
computer uses a data acquisition system (DAQ) to monitor the power consumed
by a computer under test. Each time the DAQ samples the power, the system un-
der test is interrupted. The interrupt handler records the program counter (PC)
and process ID (PID). This data is later processed to generate an energy profile
(energy samples are attributed to the PC and PID recorded). Flinn discusses some
of the arguments for and against energy accounting compared with statistical pro-
filing. One advantage of the measured data is that it captures all of the behaviour
of a system, in a way that only an infinitely (hence non-existant) complex model
could. It also does away with the need for characterisation of a model. Statistical
sampling can not, however, appropriately attribute the power used by background
tasks, such as I/O activity, to processes. Flinn suggests that a combination be-
tween statistical profiling and energy accounting could provide for more accurate
results.

Chang et al [24] improved this methodology to introduce variable-rate sam-
pling, which reduces the profiling overhead in low-power environments. we made
our own improvements using custom-designed hardware (PLEB 2) and multiple
sense resistors [145]. An on-board microcontroller allowed for power to be at-
tributed to the running process without the need for a second computer for moni-
toring purposes.

Lauterbach have integrated these techniques into their debugging and trace
analysis tools, allowing very fine-grained measurements of a system’s power con-
sumption [149].

Without a model for the system behaviour, it is impossible to predict the
power under conditions other than those being measured, and so statistical sam-
pling alone is not useful for predicting the future power consumption of a system
with changed power management settings. We investigated incorporating run-
time power measurement into our models by using those measurements as one

17

predictor of future power consumption.

2.3 Evaluation Metrics

The effectiveness of a power management scheme may be justifiably evaluated
in different ways depending on the context. The relative importance of energy
and performance will change based on the available computing time. In an under-
utilised system, the performance is of low importance (within limits). In a fully-
utilised system, a reduction in performance is likely to cause a reduction in Quality

of Service (QoS). Given this, no single, simple policy based on a single evaluation
criteria will be the “best” in all circumstances.

One method of balancing energy performance is using the energy-delay prod-

uct (EDP) as an evaluation metric. If Tx is the execution time, andEx is the energy
used, then the EDP is

TxEx. (2.8)

The EDP is small when either the energy is small (a significant energy saving)
or the execution time is small (a boost in performance). If the performance is
reduced (an increased execution time) there must be a corresponding decrease in
the energy consumed to obtain an equivalent EDP.

Saeides et al [127] point out the problems an inaccuracy when using an
energy × delay metric in an interval based system. Evaluating the sum of the
ET for each interval in an application is not the same as evaluating the ET for the
entire application. This is dissimilar to minimising energy (where minimising the
energy for each interval minimises the energy for the total), or the performance
(where minimising the time to run each interval minimises the time to run for the
whole application).

Penzes and Martin [115] introduced the idea of a geometric weighting for the
EDP in the context of VLSI designs. They suggest that ET n be used. Sengupta
and Saleh [131] also discuss a family of evaluation metrics which they use to eval-
uate the performance of CMOS circuits. They consider several metrics, including
power-energy-product (PEP).

18

Other interesting metrics of similar intent include millions of instructions per

Joule (MIPJ) [164].

2.4 Dynamic voltage and frequency scaling

DVFS was first discussed by Weiser et al. [164]. Their work makes clock scal-
ing decisions each time the OS’s scheduler is invoked. The system attempts to
minimise CPU idle time by lowering the CPU frequency. Energy was saved via
voltage scaling. This feedback mechanism is the current state-of-the-art in many
modern operating systems. They used millions of instructions per joule (MIPJ)
as a metric when evaluating their scheme, however they ignored static power and
the other complications discussed in Chapter 3. The evaluation in this system was
conducted via simulation based on real traces.

Govil [56] extended Weiser’s work by developing algorithms which predict fu-
ture CPU utilisation based on recent system events, recognising cycles and other
patterns in the workload behaviour. Pering et al. [118] simulated systems when
running an MPEG decoder which only has soft QoS requirements. When simu-
lated, this technique showed significant energy reductions.

Grunwald et al [58] evaluated these algorithms on real hardware (rather than
using simulation), concluding that they did not save significant amounts of energy.
One clear reason is that the algorithms attempt to minimise idle time, ignoring
the DVFS complications outlined in Chapter 3. Reducing the CPU frequency
increases execution time, leading to a decrease in the amount of time spent idle. If
the energy benefits of running at the lower frequency do not offset the energy spent
due to the reduced time in the idle mode (because of the static power), the total
energy is increased. These effects were discussed by Miyoshi et al [107], who
developed a method for choosing the minimum frequency which saves energy on
a given platform. Unfortunately, Miyoshi et al. make assumptions of their own:
that all workloads scale with frequency in the same way. DVFS policies designed
to minimise performance loss, such as that of Weissel and Bellosa [166], implicitly
avoids these issues.

Poulwese et al. [122] measured the power consumption of a LART device [14],
measuring real-world power consumption of a DVS technique associated with a

19

video CODEC. Pouwelse called for greater OS interaction with applications in or-
der to obtain more information about future resource demands, avoiding heuristic
predictions.

PACE [95] improved the above algorithms by utilising deadline information,
developing a speed schedule where the CPU frequency is increased as the dead-
line approaches. They found that the approach saved about 20% more energy on
average than the base algorithms which they improved.

Martin [98] modified Weiser’s algorithm to account for the non-linear capacity
drain vs. current drain characteristics of batteries.

Several techniques which do not directly attempt to minimise the performance
of the system have been developed. Off-line techniques [2,69,170] use a detailed
static analysis of a workload by the compiler to estimate the workload charac-
teristics. Other approaches include an a priori characterisation of a workload
by running it at two different frequencies, in order to derive a slowdown rela-
tion [161]. These off-line results are then used by a DVFS-aware scheduler to
scale the processor frequency.

Systems where no a-priori characterisation is performed generally aim to get
the best energy efficiency for a given performance impact [100, 107]. Such early
work was typically based on the incorrect assumption that performance was pro-
portional to CPU frequency. The highly variable dependency has since been the
subject of considerable investigation.

Many DVFS policies, ours included, use PMCs as a guide to predicting the
likely performance impact of a frequency change. Process cruise control [166]
used the number of instructions, memory accesses and cycles to index a pre-
computed table of frequency settings which lead to a constant 90% performance
impact for that type of workload. They observed significant observed energy sav-
ings despite the minimal slowdown. Due to hardware constraints, they were only
able to estimate the effect of voltage scaling (as opposed to pure frequency scal-
ing). Other research groups have investigated a more flexible technique using
a regression performed at run-time to calculate the ratio of off-chip (CPU fre-
quency independent) to on-chip cycles [25,68]. The computational overheads and
response time of their technique are only briefly discussed and there is reason to
believe that they are substantial (i.e. the evaluation of a regression requires signif-

20

icant CPU time).

A theoretical model of a classification system between memory-bound and
CPU-bound applications [171] assumes the availability of a large number of
concurrently-usable performance counters. Limitations of this work include a lack
of a detailed justification of performance-counter selection, and an insufficient
evaluation. Kotla et al also looked at this problem [89]. One interesting observa-
tion in their work is the presence of variable latency memory accesses generated
by pre-fetching and other micro-architectural effects (Jack Doweck [36] gives a
good overview of these). Seth et al [132] based their work in real-time DVFS
on that of Martin and Siewiorek [100]. They concluded that taking advantage of
the non-linear relationship between CPU frequency and performance could yield
significant extra energy savings.

Others have attempted to take advantage of some of the same power manage-
ment challenges that we present in Chapter 3. Herbert and Marculescu present a
policy which is aware of the variation between cores [65].

Many other DVFS algorithms exist [41, 56, 59, 95, 98, 118, 120, 122, 135, 159,
164] with varying applicability. Others have investigated DVS in particular appli-
cations such as sensor networks [105, 106].

2.4.1 Quality of Service

Malik et al. [97] investigated the user response to QoS degradation brought about
by a reduced frequency. They used this direct user feedback as a metric for fre-
quency scaling: the user would press a key when they were dissatisfied with the
system performance. Two algorithms were tested which used the feedback to
increase and decrease the frequency. The system was tested with 20 different
users and 3 applications. Two major results are apparent: users had a wide vari-
ation in what performance they found acceptable, and the mean frequency varied
substantially for different applications. While this work assumed that a lower fre-
quency resulted in a lower energy use, the idea of user-feedback as a QoS metric
is complementary to our work, since it can provide information about the required
performance.

21

2.4.2 Real-time DVS

Real-time systems, which are required to deliver results by a deadline, require
knowledge of the system timing, frequently in the form of worst case execution

times (WCET). There is a multitude of work in this area, of which we have exam-
ined a selection [3, 13, 86, 87, 120, 121, 126, 135, 173]. Pering et al. [117] obtains
a-priori information about whether the application is rate-based or deadline-based.
Pillai’s and Shin’s static scheduling techniques [120] attempt to maximise the sys-
tem utilisation in hard real-time systems (where deadlines can not be missed).
Some have used the CPU’s memory stall rate in a feedback loop with the sched-
uler [121, 126].

Shin et al. [135] modified the compiler to insert frequency scaling calls. The
compiler estimates the WCET of each basic block and uses this to continually
re-evaluate the DVFS setting as the task progresses — keeping the system speed
high enough that the remaining WCET does not exceed the time until the deadline.
Kim [87] also looked at hard real-time systems.

Our own work [91] extended the RBED EDF-based scheduler [21] to throttle
processes appropriately based on the available slack time, which is created when
tasks complete in less than their WCET.

Like other traditional DVFS techniques, these real-time algorithms are based
on unrealistic assumptions. However, these algorithms examine ways of calcu-
lating a minimum performance requirement for a task, which complements our
work well by providing a bound on the performance loss than can be tolerated for
a given task.

2.4.3 Hardware support

Most modern CPUs provide support for DVFS. Intel’s mobile Pentium III in-
troduced their SpeedStep technology [33], which allows two frequency/voltage
combinations to be pre-programmed into the processor. It switches between these
two states depending on whether the system is operating from a battery or from an
external power source (i.e. not under software control). AMD’s PowerNow! [35]
technology, Intel’s XScale [32], Transmeta’s Crusoe and Efficeon processors [42]
and many others (details of the specific algorithms we evaluated are given in Ap-

22

pendix A). The Crusoe was interesting in this regard, with the hardware automat-
ically scaling the CPU frequency via an algorithm similar to Weiser’s [164].

During the course of this thesis, several platforms were released with inter-
esting DVFS capabilities. Of particular note is Intel’s Core i7 processor, based
on Intel’s Nehalem microarchitecture. This processor has a dedicated on-die mi-
crocontroller [67], called the power control unit (PCU), used for making power
management decisions. It can read sensors and performance counters, and can
change core frequencies, sleep states, etc. The details and firmware for this is
not available, but it is highly likely that the techniques presented in this thesis
would be applicable in such a system, and using an on-die microcontroller would
allow better sensing, finer granularity and lower overhead. A similar power man-
agement controller, Foxton, is used on Intel’s Montecito processor, described by
McGowan et al. [101]. The Foxton controller adjusts the processor’s power to
some limit, given feedback from on-die analogue-to-digital (ADC) converters.

ARM’s intelligent energy manager (IEM) has a significant hardware compo-
nent, which we discuss in Section 2.4.4.

The advanced configuration and power interface specification (ACPI) [66]
exports a number of useful BIOS-level interfaces for power-aware operating sys-
tems. The specification itself is very detailed, and provides mechanisms for a
wide variety of behaviours. In the context of this thesis the most interesting of
these manage both low-power idle modes (C-states in ACPI terminology) and ac-
tive processor modes (which is analogous to DVFS and named P-states). This is
the standardised interface via which many systems expose their DVFS capability.

2.4.4 Real-world implementation

To our knowledge, all modern operating systems implement DVFS via heuristic
algorithms which maximise CPU utilisation. This may be reasonable on some
systems where the lowest frequency is consistently the most energy-efficient, but
does not apply to all systems. Without a detailed view of these proprietary sys-
tems, it is difficult to analyse their behaviour.

Linux has support for CPU frequency scaling in the form of cpufreq, which
can be configured to use different governors (policies). Intel’s LessWatts.org

23

LessWatts.org

web site recommends the ondemand governor [112], which slowly reduces the
CPU frequency based on the system’s utilisation, but quickly increases it if the
utilisation increases (to avoid an apparent slowdown).

FreeBSD is also has this type of support [116]. Their implementation uses
a user-land interface which directly controls the CPU frequency. The powerd
daemon which governs this explicitly cites Weiser and Govil’s mid-1990s work as
inspiration [168].

Despite releasing the source code for parts of their OS [4], Apple has kept the
CPU power management components closed (but loadable in Darwin as a kernel
extension). Anecdotal evidence from an early-2008 model Apple Powerbook run-
ning Mac OS X 10.5.8 indicates the system uses the minimum CPU frequency
when the CPU utilisation allows. There are a number of alternate speed-setting
extensions available for Darwin and Mac OS X [124, 158] which all attempt to
achieve a given CPU utilisation minimise the CPU frequency to achieve some
target CPU utilisation.

Little information could be found regarding the policies used in Microsoft
Windows based systems, but the trend would indicate utilisation-based heuristics.

ARM’s Intelligent Energy Manager (IEM) [6–10, 160] is a comprehensive
solution to DVFS. It is a combined hardware and software solution, targeted at
battery-powered devices, which incorporates detailed feedback from a processor
to make frequency scaling decisions. It integrates a hardware component, the in-

telligent energy controller (IEC) which handles performance requests, translating
these to the commands required to change the power management settings. The
IEC also has three event counters, two of which can be triggered on configurable
events (which are presumably similar to those which we examine in Chapter 7).

The IEM integrates a policy stack, allowing the combination of multiple poli-
cies. Similar to our method, the IEM is triggered on OS events such as context
switches and interrupt handlers. The details of the policies are not discussed, but
the mechanisms are in place for policies to store a history of task data which can
be used to make predictions about the future behaviour of tasks. This technique
would compliment this thesis as a workload prediction mechanism.

The IEM software is the work most closely related to our own. It abstracts
from the details of the hardware by using performance setting indexes in a similar

24

way to Koala’s setting numbers, uses event counters for feedback, and performs
task-by-task scaling. IEM is clearly a more mature product, with areas such as
workload prediction, policy interfaces and hardware integration clearly having
been addressed. However, IEM does not deal with real energy and performance
models in the same way as Koala: it is still unaware of the real implications of its
power management decisions, whereas Koala manages these explicitly.

Freescale’s eXtreme Energy Conservation (XEC) [27, 49] defines a software
framework for power management (both DPM and DVFS) across all of their plat-
forms. The framework involves all levels of the software stack, with a view to
portability between platforms. Interestingly they consider power-aware applica-
tions, although it is unclear what this entails.

2.5 Idle mode management

All the processors we examined provided support for sleep states, where the pro-
cessor halts execution for a period of time with a substantially reduced power.
In fact, sleeping at some duty cycle allowed high-power processors to execute
their tasks quickly, and then sleep until once again required. Decreased power is
usually traded for increased wake-up time. The process of managing these sleep
states is known as dynamic power management (DPM).

Our solution deliberately leaves idle mode management to the underlying op-
erating system, since the appropriate idle mode is dependent on the expected time
spent idle. The existing research into using processor idle modes, therefore fo-
cuses either on methods of consolidating both active and idle time, or methods of
predicting the time which will be spent idle. These techniques are clearly com-
plementary to our active power-management policies. Integrating DPM and and
DVFS can bring about even more energy savings. Simunic [137], among others,
shows good results for her particular application as measured for an MP3 player
on a real embedded system.

Device power management also falls into this category, and future work will
benefit from integrating idle-state management with our DVFS policies. An ex-
ample is RAM power management. Fan et al. [40] considered DVFS in their
power-aware DRAM policies, since the optimal race-to-halt policy conflicts with

25

Weiser-style DVFS. Delaluz et al. [34] examined a compiler-centric approach to
analysing the memory access patterns in software.

Idle-power policies attempt to predict the future behaviour of devices based on
past behaviour. This is also true of our work, where we attempt to predict future
workloads. We looked at a selection of work [55, 57, 93, 136, 138, 169] looking at
these types of policies. Simple timeout based policies work surprisingly well.

2.6 OS power management

Ellis [38] among others argued that power management should be “raised to first-

class status among the performance goals of OS design”, and to some degree this
has become the case, with operating systems occasionally being compared based
on their power management features. Likewise, the power management features
of mainstream operating systems are closely guarded secrets. For example, the
open-source version of Mac OS X — Darwin [4] — does not include power man-
agement code.

There is much to be said for power management at the OS-level. Grun-
wald [59] argued that the operating system is the only entity with a global view of
resource usage and demand — resource management and provisioning being one
of any operating system’s main tasks. Lu et al. [96] argue similarly: that the OS
has detailed information about tasks and their requirements.

The ECOSystem project [175, 176] attempts to raise energy awareness in
Linux. It performs per-task energy accounting using a simple state-based model.
They introduce a fictitious unit for energy — currentcy — which is periodically
distributed to processes. Currentcy is subtracted when a process uses energy, and
when a process has no currentcy, it is not scheduled. The goal for this system is to
motivate application developers to be energy-aware through feedback. ECOSys-
tem is similar to Koala in that it uses energy accounting and modelling to attribute
energy use to processes. ECOSystem’s significant contribution is the provision of
a unified approach to energy allocation and management.

Quanto [48] is an extension to the TinyOS operating system for wireless sen-
sor networks. It builds linear models for these small systems using recorded data
based on a low-overhead energy measurement mechanism. Quanto instruments

26

the OS to provide tracking of the state of each energy sink in the system, and the
activity which causes that energy sink. By recording both system’s total energy
use and the time spent in each state, the authors build a linear model for the en-
ergy used by each energy sink in each of its states. This thesis takes the same
approach. Using this instrumentation allows a user to understand where energy
was used in the system and which activities caused that energy to use. By tagging
network packets with an activity ID, energy use can be tracked globally in a sensor
network.

2.7 Workload prediction

Estimating the behaviour of an upcoming workload has applications in many areas
of an operating system, including power management, because as we show in
Chapter 3, the effect of a given power management decision is highly workload
dependent.

Sherwood et al. [133] showed that most programs demonstrate cyclic be-
haviour. They used an off-line technique to analyse the basic-block behaviour of
software [134]. Using these methods they are able to identify, off-line, repetitive
behaviour which could be used for workload prediction.

Canturk Isci has contributed significantly to this area. He shows that reac-
tive predictors such as ours work well for many workloads, but not for work-
loads with highly variable behaviour [82]. He has developed several methods
of identifying phases in workload behaviour for use with similar power manage-
ment frameworks to our own. Phases are consistently behaving portions of an
application. One of these uses a branch-predictor-like scheme with a global page

history table (GHPT) to base future predictions on several previous phases [82].
Another compares a basic-block analysis technique with a performance-counter
based technique for identifying and classifying phases [84]. Some of this work
includes predicting the duration of a phase, as well as the type of phase [81]. This
work is evaluated on real systems with real benchmarks.

Real-time systems, with their small, repetitive tasks and rigid schedules,
clearly have information about future workloads. In these circumstances, reac-
tive predictions should work well.

27

Nagpurkar looked at implementing phase detection in the Java run-time envi-
ronment [108].

While the above is by no means an exhaustive literature review of workload
prediction techniques, we expect these and other workload prediction schemes
to augment our own power management framework by allowing a more accurate
estimation of future highly-variable workload behaviour.

2.8 Application support

2.8.1 Adaptation

Jason Flinn used the term fidelity to describe application quality in his work re-
garding energy-aware adaptation [43,44,46]. By involving the applications he was
able to scale the work done by the applications in order to achieve some goal (a
particular battery lifetime). He notes that techniques like DVFS are complemen-
tary to adaptation and that many of the energy savings achieved via adaptation are
only possible when used in conjunction with other dynamic power-management
techniques. This work provides an adaptation API which allows applications to
communicate their resource expectations and query the requested fidelity level.

Peddersen [114] developed a methodology for modifying an application to
adapt its fidelity at run-time based on low-overhead, event-based energy measure-
ments [113].

Other similar work includes Ellis’s discussion of content specialisation for
saving bandwidth and energy [38], Min’s discussion of energy-scalable algorithms
for sensor networks [105], and Narayanan’s learning techniques for predicting the
energy consumption of a workload at different fidelities [109].

2.8.2 Application hints

Much of this work has pointed to the need for accurate future predictions of energy
and resource consumption. Policies requiring good workload prediction range
from those managing disk spin-up to wireless network usage to processor usage.
Most of the policies developed attempt to achieve transparency at the application

28

level. However applications may have knowledge of their future actions. Feeding
this information into energy-management algorithms may improve the manage-
ment of otherwise unpredictable workloads.

Flautner et al. [41] characterise application behaviour into episodes which are
either interactive or periodic. This characterisation is based on analysing events
associated with the operating system (e.g. system calls, inter-process communi-
cation). Knowledge of the nature of standard system components, such as the X
server, is used to characterise the events. For example, communication with the X
server is likely to be associated with an interactive episode. They further suggest
that episodes could be accurately identified using an OS API. This option is attrac-
tive since it is not prescriptive: applications are not required to use these facilities,
but may benefit if they do.

In a similar vein, Weissel [167] suggests that applications provide hints about
the importance or nature of file operations. This information can be used to sched-
ule of disk spin-up and spin-down. Applications which provide these hints are
shown to use significantly less energy than the unmodified applications.

Papers regarding real-time scheduling have investigated the use of the most
stringent application specifications, for example, specifying WCETs for particular
operations or pieces of software. This is similar to the a-priori analysis required
for hard real-time scheduling [120, 135].

Application hints are clearly relevant to our workload prediction scheme, and
would help characterise erratic applications.

29

30

CHAPTER 3

MOTIVATION

“The most incomprehensible thing about the world is that it is com-

prehensible.” – Albert Einstein, 1936

DVFS has been the subject of a significant volume of academic research (as
described in Chapter 2). Much of the work in this field, with several noteworthy
exceptions, makes several assumptions about the way a system behaves when a
single CPU frequency is changed (see Section 3.1). Following an extensive study
of the behaviour of a number of platforms of different types (described in detail in
Appendix A), we concluded that there were many situations where the platform’s
measured behaviour deviated significantly from the commonly assumed model.
Consequently, many of the techniques for choosing DVFS settings that have been
developed in both academic and industrial settings are less effective than would
otherwise be expected. In the worst cases these schemes result in an increased

energy use and cause a substantial loss in performance.
Instead, this thesis proposes that comprehensive models of a system are re-

quired to make effective power management decisions. A discussion of how real
platforms deviate from the commonly assumed models forms the motivation for
this work, and the bulk of this chapter. While we focus here on frequency and
voltage scaling, this concept holds for active power management specifically, and
power management in general.

3.1 The commonly assumed model

The commonly used model assumes that, for a given voltage, there is a constant
constant charge consumed per clock tick. This is a reasonable model for a circuit
in which exactly the same activity occurs on each cycle, under constant conditions.

31

When scaling voltage (in addition to scaling frequency), the charge consumed is
assumed to be proportional to the voltage. Multiplying the charge per second
(current) by the voltage to give power, we get

P ∝ fV 2. (3.1)

Previous research often assumes a constant number of cycles for a given com-
putation. With this assumption, the performance is given by:

Tmax

T
=

fcpu

fmax
cpu

(3.2)

leading to the energy being represented as

E ∝ V 2. (3.3)

This implies that the most power-efficient (lowest power-per-work) and the
most energy-efficient frequency (the least energy per work) are always the lowest
— that slower is always more energy efficient.

The addition of a constant static power term improves this model. The static
power is that which the system would use even if the clock stopped (0MHz).
This power is consumed by peripherals, chipsets, and other circuits within the
system which are unaffected by the CPU frequency. The system’s power is then
represented as

P = β0fV
2 + Pstatic. (3.4)

Even an increased run-time can lead to a higher total energy, given a constant
number of cycles and depending on the balance between static and active power.

3.2 Power management challenges

While the commonly assumed model can predict the power for a simple switching
CMOS circuit, it can not accurately predict the power for microprocessors and,
more generally, computer systems. The following sections outline the problems.

32

3.2.1 Workload dependence

The traditional model of a system when frequency depends only on the CPU fre-
quency and voltage. In fact a system’s response to frequency scaling is highly
dependent on the running workload’s characteristics. Clearly the power used by
the system can change: a complicated instruction like fdiv will use more energy
than a simple one like nop. Clock gating, a technique whereby sections of the
processor are shut down when not in use, exacerbates this effect by saving large
amounts of power in unused sections of a CPU.

Memory instructions present a compelling example: a memory subsystem’s
performance is often independent of the CPU frequency. Figure 3.1 shows the ef-
fect of memory latency when frequency scaling. Here we compare the responses
of the CPU-bound gzip and the memory-bound swim benchmark on a Dell Lat-
itude D600 laptop. The execution time of the CPU-bound program is proportional
to the clock period (inverse of frequency), while the memory-bound program is
almost independent of the CPU frequency. The result is clear: the total energy use
for the CPU-bound benchmark is minimised by running at the highest frequency
— the race-to-halt strategy — because this minimises the static energy used by
the CPU [147]. In contrast, the memory-bound process uses the minimum energy
a low (but not the lowest!) frequency. Clearly, a power management approach
that does not take workload characteristics into account will not be able to deliver
a reasonable result for both programs.

3.2.2 Multiple frequency and voltage domains

Several platforms which we evaluated allow the scaling of multiple frequencies.
Among the systems evaluated there were variable CPU, memory and bus frequen-
cies, as well as variable peripheral frequencies. This is most common in SoC
systems such as Intel PXA processors [74,75] and iMX-based platforms [50], but
was also seen in more general purpose systems (the AMD Opteron-based server
had a variable memory frequency). While no multi-core processors were trialled
or modelled, these often allow independent control over the frequency of each
core, and future processors are expected to provide independent voltage planes.

Different combinations of frequencies and voltages (which this thesis refers to

33

 100

 150

 200

 250

 300

 350

 600 800 1000 1200 1400 1600 1800

N
or

m
al

is
ed

 E
xe

cu
tio

n
T

im
e

(%
)

CPU Frequency (MHz)

swim_ref
twolf_ref

 80

 100

 120

 140

 160

 180

 200

 600 800 1000 1200 1400 1600 1800

N
or

m
al

is
ed

 E
ne

rg
y

(%
)

CPU Frequency (MHz)

swim_ref
twolf_ref

Figure 3.1: Normalised performance (top) and energy use of two benchmarks
under DVFS on a Latitude laptop.

34

interchangeably as either settings or setpoints) lead to different results, as shown
in Figure 3.3.

Often there are constraints on the allowed combinations of settings; on the
PXA, for example, the system bus frequency must be half of the so-called run-
mode frequency (the lowest frequency usable for turbo-mode switching), while
the memory frequency is divided from the CPU core frequency with a small set of
supported dividers [74].

On one platform — an AMD Opteron based server — the highest fmem did
not occur at the highest fcpu . This can happen on platforms where the CPU fre-
quency is locked at a multiple of the memory frequency, but the CPU’s maximum
frequency can not be exceeded. On this platform memory-bound applications
actually ran fastest at a less-than-maximum fcpu! (Coincidentally, our policies
transparently handle this situation, switching between the optimal frequencies for
maximum performance for each workload). This is shown in Figure 3.2, where
the execution time is minimised at the third-highest frequency. For this system
the highest memory frequency of 333MHz was achieved at a CPU frequency of
2.0GHz, whereas setting the highest possible CPU frequency of 2.4GHz resulted
in a memory frequency of only 299MHz.This variation in memory frequency was
not specified by the manufacturer, but determined through hardware measurement
using an oscilloscope.

Figure 3.3 shows the execution time for twolf and gzip on a PXA270-
based machine for different frequency settings. Note that gzip is memory-bound
on this platform — the opposite of the same program running on a Pentium-M
based Dell Latitude D600 and other machines with comparatively large caches,
showing that the best power management policy is not only highly dependent on
the workload, but on the platform as well!

The graph shows the impact of changing the memory and bus frequencies
— lines connect points of equal memory and bus frequency. While the memory
frequency has a clear impact on gzip, the CPU-bound application is unaffected
by the memory frequency.

Scaling the memory frequency can result in energy savings. Figure 3.4 shows
the energy required to run a range of workloads at the manufacturer-recommended
frequencies for the PXA255-based PLEB 2 machine. These settings are docu-

35

 90

 100

 110

 120

 130

 140

 150

 160

 170

 180

 1000 1200 1400 1600 1800 2000 2200 2400

N
or

m
al

is
ed

 E
xe

cu
tio

n
T

im
e

(%
)

CPU Frequency (MHz)

mcf_ref

Figure 3.2: Execution time of a highly memory-bound application (mcf) under
frequency scaling on an AMD-Opteron based server. Lines connect settings with
the same memory frequency but different core frequencies.

36

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 100 200 300 400 500 600 700

T
im

e
(s

)

Frequency (MHz)

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600 700

T
im

e
(s

)

Frequency (MHz)

Figure 3.3: Performance of a CPU-bound (twolf) and memory-bound applica-
tion (gzip) under frequency scaling on a PXA270-based platform. Lines connect
settings with the same memory but different core frequencies.

37

Vcore (V) fcpu (MHz) fpxbus (MHz) fmem (MHz)
1.0 99.5 50.0 99.5
1.0 199.1 99.5 99.5
1.1 298.6 99.5 99.5
1.3 398.1 99.5 99.5
1.3 398.1 199.5 99.5

Table 3.1: PLEB 2 DVFS settings

mented in Table 3.1. Lines connect samples of the same workload. At the highest
CPU frequency, there are two potential bus frequencies. It can be seen that, at
the highest CPU frequency, CPU-bound workloads use more energy at the higher
bus frequency — presumably because the memory controller and other idle, bus-
connector peripherals are using energy according to this clock — and memory-
bound processes use more energy at the lower frequency — because of the effect
the lower frequency has on performance. Voltage and frequency scaling schemes
based on traditional heuristics ignore these opportunities and hazards.

Other hardware mechanisms for active power management reduce both perfor-
mance and power in a similar way to DVFS. Examples include clock modulation
and dynamically re-configurable caches. We can expect hardware designers to
add new active management schemes in the future (particularly if the supporting
software techniques presented by this thesis are available).

The availability of this multitude of throttling knobs means that active power
management is not a simple single dimensional problem but a complex multi-
dimensional optimisation.

3.2.3 Sleep modes

Reducing the frequency (and thus performance) of a system increases a work-
load’s execution time and reduces idle time. Modern CPUs have low-power modes
which the OS can invoke when the system is idle. Idle modes still consume power
in most cases, and take time to enter and exit. Generally, the deeper, i.e. lower-
power, the idle mode is, the more time it takes to enter and exit. This is usually
because the system must save and resume state. Idle modes are common in pe-

38

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 50 100 150 200 250 300 350 400 450

C
P

U
 E

ne
rg

y

CPU Frequency (MHz)

Model predicted energy
basicmath

bitcnts
celp
gzip
mpg
qsort

susan.corners
susan.edges

susan.smoothing
visionworst

fft
invfft

patricia
typeset

Figure 3.4: Normalised CPU energy for various workloads on a PXA255-based
platform (PLEB2)

ripherals and I/O devices (e.g. disk spin-down), although the focus in this thesis
has been on the CPU and memory idle power, with I/O power management left to
future work.

Miyoshi and others have shown that the power consumed while idle must be
taken into account to evaluate the energy-saving effects of a frequency scaling de-
cision [107]. An analysis confirming this and is shown in Figure 3.5. It presents
the total energy consumption when accounting for the idle energy used in various
low-power modes on a laptop. For each benchmark, the energy consumed while
actively executing is added to the energy which is used while the system is idle
afterwards. The idle time is calculated as the difference between the run-time for
the benchmark and the run-time for the same benchmark at the slowest setting
(i.e. the setting which results in the least idle time). Besides the actual low-power
modes supported in this system (“C states” in ACPI terminology), the figure also
shows hypothetical 5W and 0W states (the active power is 22–30W). Again there
is an obvious difference between memory-intensive and CPU-intensive processes,

39

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 600 800 1000 1200 1400 1600 1800

E
ne

rg
y

(J
)

Frequency (MHz)

Padded energy for gzip graphic ref

C2 (13.4W)
C4 (11.5W)

5W
None

 8500

 9000

 9500

 10000

 10500

 11000

 11500

 12000

 12500

 600 800 1000 1200 1400 1600 1800

E
ne

rg
y

(J
)

Frequency (MHz)

Padded energy for swim ref

C2 (13.4W)
C4 (11.5W)

5W
None

Figure 3.5: Total energy for the CPU-bound gzip and memory-bound swim
applications on the Latitude, using different idle states.

40

although for the hardware-supported idle modes other than full shut-down, run-
ning at the lowest frequency always results in the lowest total energy use on this
platform.

As the hypothetical states demonstrate, idle states of really low power con-
sumption bias the frequency scaling decision (under a minimum-energy policy)
toward the higher frequencies for a CPU-bound application, but make little dif-
ference for a memory-bound application. Note that with a zero-power idle mode,
race-to-halt is sub-optimal for all but the most CPU-bound applications.

The idle modes available, and the ratio between the idle and active power, are
highly platform specific. It depends on the CPU, system and peripherals, drivers,
and how they interact. Embedded systems are designed for much lower power idle
power than high performance computers and as a result are biased toward race-to-
halt DVFS decisions. The Phycore iMX31-based system we investigated demon-
strated this, with the minimum dynamic energy always occurring at some inter-
mediate frequency for all workloads when idle modes are considered (Figure 3.6).
On the AMD64 server the lowest frequency was always the most energy-efficient.
Details of these platforms are available in Appendix A.

Estimating which idle mode the system will enter, if any, is a challenging task.
In some circumstances, such as when the system is fully utilised, the system is
never idle. In these cases, the extra CPU time mad available by running at a high
frequency can be used usefully to do work, and so there is no penalty for running
at a high-performance setting. This is not unreasonable in applications such as
data centres, where consolidation can be used to maintain a high CPU utilisation,
or high-performance computing, where, if there is no work to execute, the system
will be shut down entirely.

3.2.4 Frequency-switching overhead

The time during which the CPU is unavailable during frequency switches varies
considerably between platforms. Of the ones we tested it ranged from 10µs (a
Pentium-M based Latitude, not including the voltage change which happens asyn-
chronously) through 140µs worst-case for an Opteron to 500µ for PXA based
platforms. This is pure overhead, since the machine consumes energy without

41

 80

 85

 90

 95

 100

 105

 110

 115

 120

 100 150 200 250 300 350 400 450 500 550

N
or

m
al

is
ed

 E
ne

rg
y

(%
)

CPU Frequency (MHz)

Phycore Energy Without Idle Power

mcf_test
twolf_test

Figure 3.6: Dynamic energy for the CPU-bound twolf and memory-bound mcf
workloads on the Phycore iMX31-based system.

doing any useful processing. Some other platforms examined exhibited interest-
ing features: the PXAs take 500µs for a full frequency switch, compared with
∼20 cycles for a so-called “turbo mode” switch (the turbo-mode switch changes a
divider on the CPU frequency, whereas a full switch requires a full PLL re-lock).

The overhead is due to two operations — the voltage and the frequency
change. The overhead involved in these operations is highly hardware-specific.

On the Opteron, software controls the voltage ramps, and so the CPU is un-
available for the duration of the voltage switch. The Pentium-M is fully hardware-
sequenced, and therefore the only CPU downtime is during the frequency change.
Both of these platforms have a high-speed interface with the voltage regulator.
The PXAs use an I2C bus to interface with the voltage regulator chip, and that
bus is clocked at either 40kHz or 400kHz, depending on the particular implemen-
tation. The duration of communication with the regulator for a voltage change
depends on the particular regulator chosen, since there is no standard command
set. On PLEB 2 this communication takes about 100µs.

42

The frequency switch procedure also varies widely between platforms further
varying the overhead. On the Opteron the voltage must be scaled to the maximum
before the frequency switch can be performed and the voltage can be re-set to its
final target. The period of CPU unavailability is then dependent on both the previ-
ous and next frequencies. For experimental purposes, the Opteron’s DVFS driver
was tuned to run faster than the specification, allowing the better-than-specified
worst-case performance of 140µs. The worst case when run within the specifica-
tion was ∼2ms.

To summarise, the overhead to switch between settings is highly platform de-
pendent, and in many platforms it varies depending on the present setting and the
target setting.

3.2.5 Temperature and cooling

Temperature affects the power used by electronic circuits. Resistors, capacitors,
inductors and other components all change their physical characteristics with
changing temperature. In computers, where integrated circuits (IC) are signifi-
cant power users, the effect was noticeable in two ways: leakage current is related
to the temperature of the silicon [177], and the power required for active cool-
ing (a fan) is related to the speed at which the fan rotates (usually automatically
controlled to prevent a device from overheating).

For a microprocessor, this implies that consistently running at higher perfor-
mance setpoints (which cause the system to run at a higher temperature) will use
more energy than predicted by the commonly assumed model. The relative power
at different setpoints changes depending on the system’s temperature.

This is shown in Figure 3.7, which plots the average power during many iter-
ations of gzip running on a Dell Latitude D600 laptop. The system started from
idle (i.e. at a low temperature). As the system increased in temperature due to the
CPU activity associated with running gzip, the average power for each iteration
also increased. Above a CPU temperature of 65 degrees the system automatically
increased the speed of the cooling fan from its lowest speed to its medium speed.
After further iterations of the workload (further increasing the CPU temperature),
the system increased the speed of the fan to its maximum (again increasing the

43

 27.6

 27.8

 28

 28.2

 28.4

 28.6

 50 52 54 56 58 60 62 64 66 68

In
pu

t P
ow

er
 (

W
)

Temperature (degrees C)

High Fan
Medium Fan

Low Fan

Figure 3.7: System power vs. temperature for gzip at 600MHz on a Dell Latitude
D600

average power), which gradually reduced the temperature (reducing the average
power). While the effect is minor (∼3.5%), the system’s power is clearly effected
by both the system’s temperature and the fan speed, and it is conceivable that on
other platforms or for the same platform in a harsher environment, such as an
industrial system with wide ambient temperature variations, the effect could be
more substantial.

This variation affects frequency scaling decisions, since it changes the ratio of
active to static power, as well as the power consumed during idle modes.

3.2.6 Power supply efficiency

Battery efficiency

Batteries are ubiquitous in mobile and off-grid devices. They also present an
interesting case of an inefficient power source. For nearly all battery types
(chemistries), the available energy in the battery decreases as the rate of discharge

44

increases [98]. In simple cases this is because the batteries have an internal resis-
tance which dissipates energy proportional to the square of the current drawn. In
other cases, more complicated models must be used to estimate the losses, taking
into account effects like battery recovery, where, if the battery is discharged in
bursts, the effective capacity is greater than a single continuous discharge. In his
PhD thesis and papers [98, 99], Thomas Martin examined battery models in de-
tail, and subsequently discussed the effect of battery losses on optimal frequency
selection. He showed that reducing the peak power for a system improves battery
longevity more than an equivalent decrease in idle power. To achieve an optimum
lifetime, the CPU frequency setting algorithms must take this into account. It sug-
gests that running at a lower frequency improves battery lifetime more than the
reduction in average power would imply.

Converter efficiency

Electronic circuits require well-defined and stable power supplies, but are sup-
plied by unstable sources such as batteries (where the voltage varies with the state
of charge), photovoltaics (where the maximum power available is highly depen-
dent on the voltage at which it is drawn), or un-rectified AC transformers (which
provide an alternating voltage). Switching DC-DC converters are often used to
efficiently convert and regulate the power supplies. These converters switch an
input supply through an inductor. The switching frequency and duty cycle are
varied in order to control the output voltage to a stable value.

These regulators tend to have a high efficiency (>90%), being based on single
or multi-phase buck converters. The losses for a given regulator are related to the
voltages at the input and the output, as well as the current through the device. For
a well-designed converter, the efficiency should be high throughout the expected
power range. Therefore, in nearly all cases the power into the converter is very
close to linearly proportional to the output power fed to the system and can there-
fore be accurately represented with a linear model such as the commonly assumed
one.

However, on a Dell Latitude D600 laptop with a high CPU temperature, run-
ning a compression algorithm, reducing the CPU frequency would increase the

45

power drawn by the system. We traced this to the laptop’s CPU core voltage regu-
lator, which exhibited a step increase in efficiency as the we artificially increased
the load power. Our experiment is shown in Figure 3.8: we added resistors in
parallel with the CPU to draw a measurably load while keeping the rest of the
system constant. The current to supply the entire system, and the current through
the extra load resistors, were both measured. After adjusting for the usual losses
in the converter, a clear step function in the efficiency is observed.

Examining the electronics, we discovered that the Latitude core supply uses
an SC1476 IC [130], which is a dual phase buck converter controller. We could
not obtain the datasheet, but similar ICs from the same manufacturer implement
an energy saving scheme when moving from continuous to discontinuous mode,
changing their switching pattern and explaining the observed step in efficiency. It
is likely that the converter is designed to be efficient when running at the battery
pack voltage (∼11.1 V) rather than the AC adapter’s (∼19 V). When running from
the battery the converter exhibits nearly constant, high, efficiency. For subsequent
experiments we worked around this issue by supplying and measuring the current
drawn from the battery rather than the AC adapter1.

While well-designed systems will not exhibit wide variation in DC-DC con-
verter efficiency, this type of effect must be considered in order to make accurate
DVFS decisions in systems where this efficiency does change.

3.2.7 Variable memory-system performance

Microarchitectural effects

There are a large number of microarchitectural and compiler techniques which can
lead to improvements in the memory subsystem’s performance. Besides caching,
these include out-of-order execution and pre-fetching. Compilers may use instruc-
tion scheduling to maximise the effectiveness of these features. Kotla et al. also
noticed this effect [89].

The effect is to hide the latency of cache misses, since the memory accesses
and subsequent cache miss are over-lapped with other instructions which do not

1This was complicated by the protection systems built into the battery.

46

 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

 38

 18 20 22 24 26 28 30 32 34 36 38

In
pu

t P
ow

er
 (

W
)

Predicted Input Power (W)

Expected
1.3V
1.2V
1.1V
1.0V

Figure 3.8: Actual vs. predicted input power for the Dell Latitude D600 laptop
running from the AC adapter.

depend on the result of the access. In the case of instruction and data pre-fetching,
this process happens transparently. Given these mechanisms, the execution time
for a completely memory-bound workload should change minimally with CPU
frequency. Any instructions which do not depend on an outstanding memory ac-
cess will be executed before the end of the memory access — increasing the CPU
frequency leads to a longer CPU stall while the memory operation to finishes.

However, in the case where two memory accesses are separated by many CPU
instructions, it is possible that increasing the clock frequency will reduce the time
between the memory accesses enough that the memory latency can no longer be
hidden. In this case, these instructions will be CPU bound until the CPU frequency
is high enough that the memory latency can not be hidden. When this occurs, the
workload will become memory bound — further increases in the CPU frequency
will not reduce the execution time. This implies that the memory latency for the
workload changes with CPU speed. The same effect applies to pre-fetched data —
at high CPU frequencies, the pre-fetching mechanism may not be able to pre-fetch

47

 1

 1.2

 1.4

 1.6

 1.8

 2

 600 800 1000 1200 1400 1600 1800

N
or

m
al

is
ed

 C
yc

le
s

CPU Frequency (MHz)

swim
equake

mgrid
gzip

Figure 3.9: Cycles vs. Frequency for various benchmarks on a Latitude D600
laptop. Solid black lines show a linear fit to the 600MHz and 800MHz datapoints.

in time to prevent a stall.

The effect is clear in Figure 3.9. In a close-to-CPU-bound workload the num-
ber of cycles stays nearly constant, since the execution time only depends on the
CPU clock rate (gzip in Figure 3.9, which uses a small number of memory in-
structions). For the close-to-memory-bound application (swim in Figure 3.9),
the number of cycles grows linearly, since the execution time is only slightly de-
pendent on the CPU clock frequency. However some benchmarks (equake and
mgrid), grow non-linearly – they become more memory bound at higher frequen-
cies, since the CPU can less effectively hide the memory latency by parallelising
with CPU instruction execution.

This effect is clearly not considered by the commonly assumed models, and
contributes substantially to the error in the models described in Chapter 4, since
we could not find performance counters which could estimate the effect of fre-
quency scaling on this parallelism. Accurate models for this effect are left to
future work.

48

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 800 1000 1200 1400 1600 1800 2000
 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

N
or

m
al

is
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

N
or

m
al

is
ed

 C
yc

le
s

Frequency (MHz)

Normalised Energy Single
Normalised Energy Dual

Normalised Cycles Single
Normalised Cycles Dual

Figure 3.10: Comparison of cycles and energy use on an AMD64 Server with and
without dual channel memory for swim.

RAM configuration

The memory performance of many machines depends on its configuration. Ex-
periments with an AMD-Opteron based server, which uses dual channel DDR
SDRAM, confirm this. Using a single DIMM in the machine gave single-channel
memory operation, whereas adding a second DIMM enabled dual-channel oper-
ation. Figure 3.10 shows the effect on swim, a memory-bound workload. Run-
ning with the second DIMM reduces the number of cycles and decreases the en-
ergy used at the higher frequencies relative to the lower frequencies. Improving
the memory performance by using dual-channel memory effectively reduces the
memory-boundedness of this application. From a frequency selection standpoint,
the decision is then biased toward the higher frequencies.

The irregular behaviour of the system at 800MHz is due to a reduced memory
frequency at that setting (166MHz vs. 200MHz) – the memory-frequency to CPU-
frequency ratio stays constant, and so the relative number of cycles also remains
constant.

49

DMA and Multicore

Both Direct-memory access (DMA) and multicore have the potential to reduce
the apparent memory performance via bus contention. Heavy bus contention due
to either of these will result in longer memory latencies (on average), leading to
more memory-bound workloads. In periods of heavy bus contention, the CPU
frequency selection is then biased towards lower frequencies.

To limit the scope of this thesis, the effect of bus contention (and methods for
predicting the bus contention based on predicted DMA and other off-core activity)
are minimised and therefore ignored. This is considered future work.

3.2.8 Real-time dependencies

Some events in the system occur at a rate that is not related to the system’s clock
frequencies. Examples include the scheduler’s clock ticks, I/O events such as USB
polling, and other periodic tasks such as timeouts related to GUIs (e.g. a blinking
cursor). In these cases the number of instructions is proportional to the time for
which the system is active — if the system were to finish its task early and sleep,
there would be less instructions to execute.

Scheduler clock ticks cause this behaviour: in a system with dynamic ticks,
scheduler invocations do not occur while in idle modes. Therefore, running at
a higher performance setting reduces both the number of scheduler invocations
incurred, and the proportion of the system’s active time spent processing those
invocations. The number of clock ticks themselves contribute to the overall run-
ning time and energy, since each adds interrupt overhead as well as scheduler
processing.

The relationship between the actual execution time (Ttot) and the interrupt-
free execution time (Twork) is therefore related to the timer tick frequency ftick ,
the CPU clock frequency (fcpu) and the number of cycles taken to execute each
timer tick (Ctick) as

Ttot

Twork

=
1

1− Ctickftick/fcpu

. (3.5)

50

A derivation of this relationship is given in Section 4.8.

3.2.9 Discrete frequency and voltage points

The hardware implementation details of DVFS mean that only discrete frequency
points can be chosen. On all of the platforms examined in the context of this thesis,
the various frequencies in the system were generated via one or more PLLs whose
output was divided. In the case of a Dell Latitude D600, the CPU frequency could
be set to 12 multiples of the memory frequency of 100MHz. On a Xeon server,
only three frequencies: 2GHz, 2.33GHz and 2.66GHz were available.

The voltage settings are also limited to a discrete set. For example, the Intel
Pentium-M based platforms examined define a power supply standard which al-
lows the voltage to be scaled in 16mV steps. In most of the systems examined,
the desired minimum CPU core voltage is linearly related to the frequency. In this
context the discrete voltage steps lead to aliasing, since the voltage can not be set
below the minimum for reliable operation. See Figure 3.11, which shows the CPU
core voltage setting vs. CPU frequency for a Dell Latitude D600 laptop. Discon-
tinuities can be seen between 1100MHz and 1200MHz, and between 1700MHz
and 1800MHz. The effect can be seen in the corresponding irregularities in the
relative energy of equake ref between these frequencies. The same is true of
our custom-designed PLEB 2 platform, where the voltage can be scaled in steps
of 100mV (see Table 3.1).

3.2.10 Process variation

Manufacturing variation can cause the power to vary between otherwise identical
designs. This is particularly true of microprocessors, where the small feature sizes
have led to more variability. Unsal et al [155] outline a number of sources of vari-
ability in the microprocessor manufacturing process, as well as the impact which
this has on the devices. Changes in the amount of energy used for computation, as
well as the balance between the static, idle and active power in a microprocessor
have the potential to effect frequency scaling decisions.

With only a single computer of each type, we were not able to observe this ef-
fect. A thorough study of manufacturing variation is well outside the scope of this

51

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 600 800 1000 1200 1400 1600 1800
 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

C
P

U
 V

ol
ta

ge
 (

V
)

N
or

m
al

is
ed

 e
ne

rg
y

CPU Frequency (MHz)

Voltage setting
equake_ref energy

Figure 3.11: Actual voltage setting and relative energy for the frequency setpoints
for equake ref on a Dell Latitude D600 laptop

thesis, but the idea that a power management scheme must be customised, not just
to the type of computer, but to the individual system, fits very well within it. For
the remainder of this document, we consider power management schemes which
are customised for individual computers, implicitly taking into account manufac-
turing variation. A future study might examine the difference in frequency scaling
decisions between large numbers of computers of the same type to see what effect
manufacturing variation has, and whether generalisations about optimal power
management can be made.

52

CHAPTER 4

MODELLING

“It’s not what you’d call a figure, is it?” – Twiggy, 1960s

As proven in Chapter 3, computer platforms do not behave according to com-
monly assumed models when frequency scaling. This chapter develops much
more accurate models of a system’s behaviour. These models predict the expected
energy and execution time for a workload if it had been run at an alternate setting,
taking into account the platform, workload, and environmental conditions.

The models are built using an off-line characterisation, and then used for on-
line predictions.

While these models were developed in the context of, and for this thesis, they
are largely a substantial improvement on previously-available techniques.

4.1 Terminology

Setting, Setpoint — a combination of throttling settings. For example, some par-
ticular combination of CPU voltage, CPU frequency and memory frequency on a
system that supports these three hardware controls.

4.2 Assumptions

This thesis makes a number of assumptions for the sake of tractability. These
assumptions limit the types of systems to which these techniques apply, and re-
laxing them will be core of our future work. The assumptions and limitations
apply to these models — the policies described in Chapter 5 operate at a higher
level, abstracted from the details of the hardware.

53

Firstly, I/O power is assumed to be constant, so it is just part of the static power.
This assumes that I/O power is unaffected by power management, excepting the
effect of idle modes (since in this case the static power is assumed to be different).
This assumption is accurate for systems that perform very little physical I/O, but
not for systems with power-managed I/O. In this situation, the time spent by I/O
devices in their low-power modes will be effected by the speed of the system in
servicing those devices. As a result, the power used by I/O systems should be
taken into account. Detailed modelling and understanding of this interaction is
beyond the scope of this thesis, having been addressed to some degree by prior
work (for example, in ECOSystem [174]).

Secondly, the performance of the memory subsystem is assumed to be consis-
tent. This limits us to systems where there is a constant level of bus contention.
This is a major limitation, since bus contention is a very real possibility in sys-
tems with variable levels of DMA, or of those with multiple processors or cores
connected to a shared bus.

We consider the efficiency of any DC-DC converters in the system to be con-
stant for all currents. This is approximately true for a well-designed system. We
also assume that there are very few interrupts, since these change our locality
argument for workload prediction purposes.

4.3 Execution time model

The time taken to execute a workload is the result of waiting for several different
components. These include the CPU instructions, the caches, the memory, I/O de-
vices, and others. Ignoring the effect of some advanced architectural techniques
(see Section 3.2.7, and Chapter 7 shows that this is often a reasonable simplifica-
tion), these components can be considered not to overlap — i.e. in most cases the
system completes an outstanding memory operation before moving on to more
CPU instructions. In the case of IO, the CPU usually executes a different instruc-
tion stream while waiting for the I/O device to return.

Each of these different uses of the system’s execution time (here we use CPU
instructions, cache accesses, memory accesses and I/O accesses as examples) de-
pends on different clocks. In most systems the CPU instruction execution and

54

some cache accesses are scaled directly with the system’s CPU clock. In some
(such as the IMX31 SoC), the lower levels of the cache hierarchy are connected
by busses which can be scaled independently of the CPU frequency — the delay
for an L2 cache access then depends on both frequencies. The delay due to mem-
ory accesses is related to the memory frequency — if the memory and memory
controller both run twice as fast, the delay is halved. These components of the
over-all execution time do behave according to the commonly assumed models,
even though the complete system does not.

We can observe from the above that the execution time for a given set of in-
structions depends on the performance of the subsystems which those instructions
use. Workloads with small cache footprints will be dependent on the CPU fre-
quency alone, while those which suffer significant numbers of cache misses will
depend on the performance of the memory subsystem. Those without I/O will not
depend on the delays incurred waiting for I/O.

For systems with multiple frequencies, the interrupt-free execution time can
be modelled as:

T =
Ccpu

fcpu

+
Cbus

fbus

+
Cmem

fmem

+
Cio

fio

+ . . . (4.1)

The coefficients Ccpu , Cbus , Cmem , Cio . . . depend on the instruction stream of
the actual workload as well as the platform. Modelling the execution-time comes
down to obtaining good estimates for those parameters at run-time, without a

priori analysis of the particular workload. Since we are considering I/O effects to
be future work this thesis will focus solely on the CPU and memory subsystems.
For many systems, frequencies such as fmem are held fixed, and can therefore be
amalgamated into some static execution time which depends on the delay incurred
in those components. For generality, we consider the case where there are multiple
clock frequencies.

4.3.1 Application characterisation

The coefficients Cx depend on the workload, representing the total number of
cycles used for particular actions (e.g. CPU-only instructions or memory reads);

55

each is the product of the number of such actions and the cycle cost of such an
action. The former is generally a characteristic of the workload, the latter of the
system architecture1.

To estimate the workload’s characteristics, we use run-time measurements
taken by performance monitoring counters (PMCs). Although PMCs are the most
convenient source of information about a workload’s characteristics, there is no
reason that information from other sources could not be incorporated into these
models if relevant. Each coefficient in Equation 4.1 can be represented by some
linear combination of PMC readings:

Cbus = α1PMC1 + α2PMC2 + . . . (4.2)

Cmem = β1PMC1 + β2PMC2 + . . . (4.3)

The accuracy of the model will depend on the architecture and the suitabil-
ity of the PMCs (or other measurable statistics).With specific hardware support,
an exact model would be possible, and larger numbers of simultaneously moni-
tored events may improve the system’s accuracy by better measuring the workload
characteristics.

The architecture-specific coefficients αx, βx, . . . are properties of the hardware
platform and can be determined once, by evaluating a suitable set of benchmarks
representing the range of different workloads. Selecting the appropriate param-
eters is important, as the hardware typically supports the concurrent use of only
a small number of PMCs, and the correct choice is not obvious. The process of
parameter selection and characterisation is discussed in Section 4.10.

All of the hardware examined was able to directly measure the total number of
CPU cycles, Ctot . It is the product of total execution time, T , and core frequency,
fcpu . We can then rewrite Equation 4.1 as

Ccpu = Ctot −
fcpu

fbus

Cbus −
fcpu

fmem

Cmem (4.4)

Consequently, we only need to determine Cbus and Cmem from PMCs... Not Ccpu .
1One exception is in the case of a dynamically sized cache — the number of external memory

accesses is then dependent not just on the workload, but the cache size setting.

56

Some PMCs measure time in terms of the CPU frequency. Even if the time
measured is constant across frequencies, the measured value will not be. For these
events, the time can be calculated as

PMCx
fcpu

. (4.5)

4.3.2 Performance prediction

Since we are able to estimate a workload’s Cx values from the PMC readings at a
particular setpoint (characterised by a particular combination of clock frequencies,
fx) it is possible to predict the performance of the same workload at a different
setpoint with frequencies f ′x:

C ′tot = Ctot (4.6)

−fcpu

fbus

Cbus −
fcpu

fmem

Cmem

+
f ′cpu
f ′bus

Cbus +
f ′cpu
f ′mem

Cmem

We define the performance, s, as the execution time at a particular setpoint
normalised to execution time at maximum frequency setpoint, fmax

x :

s =
tmax

t′
=

f ′cpu
fmax
cpu

× Cmax
tot

C ′tot
(4.7)

For the measured setpoint, f ′cpu = fcpu and C ′tot = Ctot , the latter being read
directly from the CPU’s cycle counter. Hence, the performance at the current
setting is a linear equation of performance counter and frequency cross terms.
This allows a single regression to be applied across all workloads to calculate αx
and βx, given a pre-calculated s avoiding the intermediate step of Cx.

scur =
fcpu

fmax
cpu

× Cmax
tot

Ctot

(4.8)

Similarly, we can calculate performance of another setting relative to the cur-

57

rent setpoint using C ′tot and f ′cpu in place of Cmax
tot and fmax

cpu . Both of these are
linear equations, since both frequencies and Ctot are known or measured.

4.3.3 Summary

This model addresses the challenges presented in Section 3.2.1 (workload de-
pendence) and Section 3.2.2 (multiple frequency domains). However, with the
performance counters available on the hardware evaluated in Chapter 7, we were
not able to measure the effect of microarchitectural techniques (Section 3.2.7)
on the execution time. The RAM configuration (Section 3.2.7) is considered to
be held constant — i.e. if the RAM configuration changes, the system must be
re-characterised. For systems with multiple RAM configurations, this could be
taking into account by modelling how the architecture specific components (αx,
βx, . . .) change with different setups. Herein, the system is considered constant.
As stated, we do not consider systems where bus contention can change the per-
formance of the memory subsystem (Section 3.2.7). Again, this effectively varies
the architecture-specific constants, and would require a prediction of the future
bus contention. This is left to future work. Real-time dependencies were not
observed, or have a linear relationship and are modelled by the above. Process
variation does not have an effect on the system’s performance.

4.4 Basic Energy model

The same reasoning can be used to predict the energy used during the execution
of a program under different power management settings: individual components
of a system behave according to the commonly assumed model, but the over-all
system does not.

Under the assumptions in Section 4.2, Equation 2.6 holds for the active power
in a given component of the computer executing a given workload. The active
power being the frequency and voltage dependent component of the power. The
active energy consumed during a time interval ∆t is then

Eactive ∝ fV 2∆t. (4.9)

58

If the time interval is expressed in CPU cycles, cyc = f∆t, this becomes

Eactive ∝ cyc × V 2. (4.10)

This energy corresponds to the energy E = 1
2
CV 2 of a capacitor C, it represents

the energy used to charge and discharge the circuit’s capacitances (such as the gate
capacitance on a transistor) during each clock cycle.

We cannot assume that the active energy is workload independent in this way.
In the case of a CPU, the number of transistors switched on each clock cycle
depends on the instructions being executed. The level of activity external to the
CPU, such as memory accesses and some I/O, is also dependent on the workload.

Instead, a system’s activity can be divided into a number of events. The active
energy associated with each of these events can be estimated using simple models
similar to the commonly assumed model. Events might include different types
of instructions, cache references, TLB misses, etc. These are the behaviours that
make up the system’s operation. There are potentially hundreds or thousands of
different types of events which are impractical to account, so we must accept some
inaccuracy in our model by only accounting for events which make a significant
difference to the energy consumed.

In order to obtain detailed information about which events occur, we again
use PMCs. Modern processors have performance counters which can be used to
count a number of different types of events, some of which are correlated with
power [17, 165].

The energy consumed during a time interval ∆t can be modelled as a linear
combination of the measurable events in the system. Each system clock generates
events at some frequency (which may or may not be variable), and the number
of cycles is fx∆t. For a typical system with m available event counts (all being
measured as PMCs) and a single CPU voltage domain (Vcpu):

E = V 2
cpu(γ1fcpu + γ2fbus + γ3fmem)∆t+ (4.11)

V 2
cpu(α0PMC 0 + . . .+ αmPMCm) +

γ4fmem∆t+ β0PMC 0 + . . .+ βmPMCm +

Pstatic∆t,

59

where PMC i is the event count of performance monitor i during the interval ∆t,
and αi, βi and γi are the coefficients of the model which are determined via off-
line characterisation. Note that fmem occurs twice, once with a V 2

cpu factor and
once without. The reason is that this frequency represents the memory bus, which
interfaces with an on-chip memory controller. In this model, the bus and con-
troller are supplied by Vcpu , but the memory chips are supplied by Vmem , which is
constant.

The rate ri of the event measured by counter i is ri = PMC i

∆t
, so the system

power can be expressed as

P = V 2
cpu(γ1fcpu + γ2fbus + γ3fmem)+ (4.12)

V 2
cpu(α0r0 + . . .+ αmrm) +

γ4fmem + β0r0 + . . .+ βmrm + Pstatic

This equation can be used to predict the power at one frequency setting from
measurements obtained at a different setting, similar to Equation 4.6. Note, how-
ever, that the execution-time model is also required for either the power or energy
prediction, since we must predict the changes in the performance-counter rates.
Substituting one equation into the other is straightforward but the resulting for-
mulas are unwieldy, which is why they are not presented here explicitly.

Provided that enough of the relevant events can be measured, Equation 4.12
can predict the system power for a given workload at an alternate setpoint. Com-
bined with the model of execution time of Section 4.3, we can then predict the
system’s energy usage with alternate settings. Importantly, the coefficients αi, βi
and γi should be independent of workload characteristics and only depend on the
hardware. They can therefore be determined once for each platform.

A methodology for selecting the appropriate events to measure is discussed in
Section 4.10.

4.5 Idle energy model

When the system is idle, it uses energy. In order to reduce the power drawn while
idle, most hardware supports the use of idle modes. These shut down sections of

60

the system which are not useful in idle and can range from 0W when the system
is shut down to nearly the full system power for a tight nop idle loop. Choosing
appropriate idle modes when the system is idle is orthogonal to this thesis. How-
ever, the effect of idle time on the over-all system energy can be estimated and
its effect on frequency scaling decisions taken into account. Note that, while ex-
tremely important for choosing which idle mode to use, the time and energy used
for entering and exiting a mode does not affect frequency switching decisions –
the time and energy used during these transitions is considered constant.

The model presented in Section 4.4 estimates the energy used to execute a
given set of events, but does not take into account the static power used when
the system is idle. In some circumstances (e.g. in I/O bound systems), increas-
ing the system’s performance increases the amount of time spent idle. In other
circumstances (e.g. in well-consolidated data centres or high-performance com-
puting where the system is virtually guaranteed to be fully utilised resulting in
very little idle time) the system is never idle, so there is no idle power/energy 2.

Two models were considered. The first estimates the total system energy in-
cluding the idle energy consumed by running at a higher-than-minimal perfor-
mance setting. It models the energy used during any extra idle time and adds it to
the over-all energy estimate. This can be represented as

Etotal = Eactive + (Tmax − T)Pidle . (4.13)

where Etotal is the total energy, including the idle time, and Eactive is the en-
ergy spent while in an active state, rather than an idle state. In the case where
the system becomes fully-utilised at some non-minimum performance setting, the
execution time at that performance setting should be used in place of that at the
minimum performance setting (Tmax) above. Etotal is represented by the shaded
area in Figure 4.1.

Alternately, we can calculate the dynamic energy. Instead of calculating the
total energy required to run a workload, we calculate the extra energy required to
run it, assuming that otherwise the system would be idle. Since the idle power

2In fact in these circumstances nodes in the systems are completely powered down when idle,
which amounts to the same thing.

61

Time
W
or
klo

ad
Idle

T Tidle

Tmaximum

Po
we

r

Figure 4.1: Using padding to calculate the energy used by a workload for a greater-
than-zero-power idle mode.

is not changed via DVFS (idling at a particular frequency is in effect a new idle
mode) that power should be subtracted from the average power for the benchmark.
This can be represented as

Edyn = Eactive − PidleT (4.14)

where Edyn is the extra energy required to run the benchmark. The dynamic
energy is represented by the shaded area in Figure 4.2.

For the purposes of optimisation the two are equivalent, since

Edyn = Etotal − TmaxPidle , (4.15)

and we consider Tmax and Pidle to be constant for a given workload and plat-
form. Since the second technique does not rely on knowledge of Tmax , it is used
for on-line use and evaluation in Chapter 7. Note that, in systems where idle time
is present, the delay used for energy-delay product calculations can be considered
constant, allowing the use of the dynamic energy model with this policy.

The above equations assume a knowledge of the idle power. On many systems
the power and transition latency for idle modes are stored by the manufacturer in

62

Time

Workload

Idle

T
Po
we

r

Figure 4.2: Using idle power subtraction to identify the extra energy required to
run a workload.

ROM (usually accessible via ACPI [66]). When this information is not available,
or the system is in a different state from that measured by the manufacturer (e.g.
using a different screen brightness setting), or the manufacturer-provided infor-
mation is not trustworthy, the idle powers can be easily characterised. We run
benchmarks that put a system with no foreground activities to sleep for varying
periods of time. The OS uses some policy for choosing idle modes as a function
of sleep time. We use the OS’s accounting of time spent in various sleep states,
and used linear regression on the average idle power

Pave =
∑
i

TCi

Ttotal

PCi
, (4.16)

where TCi
is the time spent in idle state Ci, Ttotal =

∑
i TCi

, and PCi
the power

drawn in state Ci.

Predicting how much time will be spent in each idle state when estimating the
expected idle power is left to future work. This thesis considers only a constant
idle power.

63

4.6 Temperature and fan effects

Some platforms, such as the Dell Latitude D600 (details of which are in Chap-
ter 7), have a thermal sensor which can be read by the operating system. As
shown in Section 3.2.5, this effects the power drawn by the system.

There are two main effects. The first is the leakage power, which is super-
linear with respect to temperature [177] and linear with voltage [27]. This compo-
nent can be approximated by a polynomial in the region of interest and modelled
as

Etemp = βτnV∆T + . . . (4.17)

where β is a constant coefficient determined via calibration, τ is the temper-
ature as read by sensor n, and ∆T is the time over which the energy is being
calculated.

The system’s CPU fan consumes power when running, and consumes more
power when running at a higher speed. A detailed examination of the power used
by these fans is out-of-scope here, and the power was simply presumed to be
modelable as a linear function of the fan speed.

Efan = βFn∆T + . . . (4.18)

Where Fn is the rotational speed of fan n and β is a calibrated constant.

4.7 Switching overheads

As discussed in Section 3.2.4, the overhead when changing settings limits the
frequency at which the settings can be changed. This overhead is highly platform
specific, but there are usually overheads due to both the voltage and frequency
switch. Some hardware allows the processor to run while performing the switch.
For all of the platforms we examined, the processor stayed in a high-power state
for the duration of the switch, so there is an associated energy.

On a Dell Latitude D600 laptop, the overhead model is trivial — a constant
10µs overhead per switch, with a corresponding quantum of energy used. This

64

Cycles

Sc
he
du
le
r

Workload Workload Sc
he
du
le
r

Sc
he
du
le
r

fcpu

ftick

Ctick

Figure 4.3: Comparing real-time events and CPU-time events

is because both the voltage and frequency change are sequenced by hardware,
allowing the system to keep running during much of the the process. On the
Opteron-based server we examined, a more complex model is required because
more of the voltage and frequency sequencing must be done in software. In par-
ticular, the voltage must be ramped to the maximum voltage before the frequency
switch occurs and the voltage is gradually ramped back down, with a generous
delay while the PLL re-locks. We model this delay as

Tswitch =
2Vmax − Vcur − Vnext

Vstep

Tstep + Tlock , (4.19)

where Vstep is the size of the step in the ramp, Tstep is the latency incurred at each
step and Tlock is the PLL locking delay. Again, we make the approximation that
the power remains constant during the switch, and therefore that the energy used
is proportional to Tswitch .

4.8 Real-time dependencies

As discussed in Section 3.2.8, the time to execute a workload can depend on events
which occur according to the wall-clock time (which proceeds at a constant rate)
rather than CPU time (which is affected by the clock scaling).

An example of this effect is an operating system’s regular timer tick. In this

65

situation the clock ticks themselves contribute to the overall running time, and
the number of ticks executed depends on the real time, rather than the CPU time.
This is shown in Figure 4.3, where ftick is the timer tick frequency, fcpu is the
CPU clock frequency and Ctick is the number of cycles for the processing the tick
(running the scheduler). The time between timer ticks is then

Ttick =
1

ftick

(4.20)

and the number of CPU cycles is

Ttick × fcpu =
fcpu

ftick

. (4.21)

The number of CPU cycles available to run the workload is

fcpu

ftick

− Ctick (4.22)

and, on a system with a single adjustable CPU frequency, the interrupt-free
execution time (Twork) will be extended to a total execution time including timer
tick overhead (Ttot) according to

Ttot

Twork

=
fcpu/ftick

fcpu/ftick − Ctick

=
1

1− Ctickftick/fcpu

. (4.23)

Note that in this equation, Twork is also dependent on the CPU clock frequency
and therefore affected by DVFS.

Lastly, consider the extra work done by the CPU and the energy used as a re-
sult of a longer execution run. The total number of CPU cycles for a CPU bound
workload is constant, which means that as the CPU frequency is increased, the
execution time decreases, and a smaller number of timer interrupts occur for that
workload. The ratio between useful work and work for the scheduler is increased,
and the number of cycles spent in the scheduler for that workload is decreased be-
cause the workload is executed in fewer timeslices. In a memory-bound process,
the ratio of useful work also increases, but the number of cycles spent executing

66

the scheduler decreases. Expressed algebraically, the total number of extra cycles
spent executing the scheduler (Ctick ,tot) can be calculated as

Ctick ,tot = CtickftickTtot . (4.24)

For the operating system and platforms evaluated in this thesis, fcpu �
Ctickftick and so the effect was negligible and ignored.

4.9 Measurement-based estimation

While the majority of these models use performance counters to estimate the sys-
tem workload and power use, there is no reason that other sources of information
about the system’s operation can not be used. Some systems (particularly our
custom-designed PLEB 2) have sensors which enable the measurement of the
system’s own power consumption. In the case of PLEB 2, this provides an on-line
measurement of the CPU, memory and IO subsystems’ power.

Real power measurements present the ability to provide a more accurate model
for frequency scaling. While the measured power, by its nature, encompasses
thermal variation and other difficult-to-model features of a system’s behaviour,
the measured power alone is insufficient to estimate the power consumed at a
different setting. To perform that estimation, we propose a hybrid model where
real measurements are used to estimate components of the system power which
are difficult to model.

To demonstrate this, the following models consider a system with a single
power measurement, and a single CPU frequency/voltage. In this system, the
energy can be split into two domains: the energy consumed in the core (which
scales with the CPU voltage), and the energy consumed in other circuits. This can
be expressed as

Etot = Ecore + Eother . (4.25)

If we define the energy used in the core as that which scales with the square of

67

the core voltage, then we can estimate what the energy is at an alternate voltage
setting via

E ′tot =
V ′2

V 2
(Etot − Eother) + E ′other . (4.26)

From this equation, if we can estimate Eother and E ′other with accuracy, it is
possible to estimate E ′tot . Eother can be estimated using similar techniques to
those discussed above. Alternately, if an accurate estimation of the active energy
Eactive can be made, and Pother can is assumed to change slowly, then the reverse
is possible — Pother can be measured, and the dynamic energy Eactive can be
estimated using performance counters. The system energy can then be estimated
as

E ′tot = E ′active +
T ′

T
(Ptot − Pactive). (4.27)

Clearly finer-grained power measurement will allow for more accurate mod-
els. For example, in the above models, the energy used in the core voltage domain
alone could be measured.

We tested this model during the evaluation of this thesis, and anecdotally it
improved the accuracy of the models substantially. The only platform with ap-
propriate current measurement hardware was PLEB 2, and this was barred from a
thorough investigation due to its frequency switching overhead. The implementa-
tion of this technique therefore remains future work.

4.10 Parameter selection and Characterisation

We have presented a general algebraic form for the models. This section presents a
method is required for choosing and characterising models for a specific platform.
The steps are:

• gather possible data, from a representative set of workloads running at ev-
ery power management setting;

• formulate models including all potentially relevant terms based on this col-
lected data;

68

• select a subset of the terms which provides the best predictive ability using
an exhaustive search technique;

• characterise the model using further data collected using the selected pa-
rameters.

The following sections outline these steps.

4.10.1 Gather

This method assumes that the models are linear equations which can be fit us-
ing least-squares regression. If the models become non-linear (for example, if a
variable power supply efficiency is significant), then alternate methods must be
employed. Our evaluation in Chapter 7 shows that for the platforms we tested
linear models work well.

All measurable information about a platform are considered as possible pa-
rameters for the models. All platforms investigated in the context of this thesis
had performance counters which were capable of measuring a large number of
different events, but only capable of measuring a small number of events simul-
taneously. For example, each of the PXA270’s four PMCs can be configured to
measure one of a set of 14 different events [76]. The Pentium M used in the Dell
and IBM laptops could select from hundreds of different events, but only had two
counters [71]. Some platforms, like the Phycore iMX31-based platform had more
than one performance monitoring unit [50] — one internal to the core (the perfor-
mance metrics unit), and one for the level 2 cache (the ARM11 Event Monitor)
— each with a small number of counters able to measure a selection from a larger
group of events. All of the performance counters examined could be accessed
within a small number of cycles.

In addition to hardware performance counting units, other statistics were avail-
able on some platforms. For example, on our custom-designed PLEB 2, we im-
plemented power measurement for the CPU, memory and IO power supplies. The
Dell latitude laptop had a temperature sensor reading available via a BIOS call.

In order for the models to estimate accurately for a large variety of workloads,
it is necessary to build them using a comprehensive set of benchmark workloads.

69

These benchmarks should represent the behaviours of real software. During eval-
uation, these exhibited a number of unexpected behaviours which were then ex-
amined using synthetic benchmarks (in particular, the effect of some microarchi-
tectural optimisations as discussed in Section 3.2.7).

Given a set of benchmarks, the parameters to be considered for use in the
model are measured at each of the different power management settings to be
considered. Since it is not not possible to measure all of the parameters simul-
taneously, a benchmark must be executed multiple times with the same setting
under identical conditions in order to build a complete set of measurements.

The data set must be sufficiently varied so as not to introduce co-linearities
into the model. For example, if the ambient temperature is constant, the CPU
temperature becomes a reasonable predictor for the CPU power.

4.10.2 Formulate

Given a data set including all of the potentially relevant parameters we can formu-
late a model which contains all of these parameters. We develop two equations —
one for the relative performance and one for power (Equation 4.12).

It is important that each of these is normalised, so the weighting for each
sample in a regression is naturally similar (i.e. a benchmark with a long execution
time does not have more influence than a benchmark with a short execution time).
Also note that each of these equations is linear in terms of parameters which are
calculable from the data set.

Equation 4.7 can be combined with the total cycles model (Equation 4.6) and
the external cycles models (Equation 4.2 and Equation 4.3), while ignoring the
minor effect of Section 4.8 to give

T ′

T
= α1PMC1

fcpu

f ′cpu
(
f ′cpu
f ′bus

− fcpu

fbus

) + . . .+

β1PMC1
fcpu

f ′cpu
(
f ′cpu
f ′mem

− fcpu

fmem

) + . . . (4.28)

or, more simply, building the model in terms of CPU cycles

70

C ′cpu
Ccpu

= α1PMC1(
f ′cpu
f ′bus

− fcpu

fbus

) + . . .+

β1PMC1(
f ′cpu
f ′mem

− fcpu

fmem

) + . . . (4.29)

and, in the simple case where there is only one adjustable frequency

C ′

C
= α1PMC1(f ′cpu − fcpu) + . . . (4.30)

In this last instance, as in the previous equations, the available data can be
used to calculate both the left hand side and each of the coefficient multiplicands
for a given source and target setting.

The model should be capable of predicting the performance at any setting
given a sample taken when running in any other setting, so the regression matrix
for this model is set up with an entry for each unique combination of source and
target settings.

The effect described in Section 4.7 is only observed when dynamically switch-
ing, and therefore is not examined as part of this model.

The power model is easier to formulate, since Equation 4.12 is already a linear
equation in terms of the measured data.

Importantly, unlike previous work [25, 68], neither model implicitly requires
a particular parameter other than the dedicated CPU cycle count. The selection
described below is therefore free to choose any event.

Lastly, for both the performance and power models, combinations of selected
performance counters may be used to generate candidate terms in the model.

4.10.3 Select

Once a model has been formulated with a complete set of candidate terms we
choose the minimal set of relevant terms to maximise the predictive power of the
model. Comparing R2 is not a good indication of the prediction power when
the number of parameters is changed, since adding a parameter can not reduce

71

R2. For this purpose the bayesian inference criterion (BIC), a statistical criterion
which takes into account the number of parameters in the model, is a much better
indicator.

We perform a parameter selection using an exhaustive search of all n-
parameter models. Each n-parameter model is fit to the calibration data using
least squares regression. The model with the highest BIC (although R2 gives the
same selections) is then chosen as the best model for n. While we were able to
perform this operation in reasonable time for up to 50 parameters, well known
search algorithms exist for narrowing the search space for larger numbers. This
procedure was performed using the regsubsets command in R [125].

The parameters thus selected provide the best model for the calibration work-
loads used and the performance counters and other events available. Provided
there exists a suitable set of events, and the calibration workload is representative
enough, this method will find performance and power models that can be used to
manage energy consumption.

4.10.4 Characterise

In Section 4.10.1 we introduced some inaccuracies in the data by combining the
data from multiple benchmark runs. This was necessary to measure all of the
selectable events, but is the correlation between those event measurements is ef-
fected by variation in each benchmark execution. To reduce the errors we generate
a new dataset using new experiments. In these experiments we record only the se-
lected parameters, and so each benchmark run records all of the appropriate data
in a consistent way. This also allows for the system’s environmental conditions
to be varied where appropriate: for example, adding temperature. A least-square
regression is conducted using this final dataset. An example of a model generated
during the course of our evaluation is shown in Listing 1. It is a python script
which stores the name of each event which is used in the model (the params dic-
tionary). It also stores the equation used to calculate each term, and the coefficient
for that term, in each of the time and power models (the tmodel and pmodel
dictionaries).

72

Listing 1 amd64-server.py — a model generated for the AMD-Opteron
based server.
Model file automatically generated using model_builder.py
from data.tsv
using settings from ../../settings/amd64_original
Written by David Snowdon, 2008
http://www.snowdon.id.au

params = [’event0x0043016d’, ’event0x0043027e’,
’event0x004300d5’, ’event0x004304e0’]

Time model. Rˆ2: 0.986175096027
tmodel = {’I(event0x004300d5 * (fcpu_t - fcpu)/tsc)’: -0.00016080055125034337,

’I(event0x004304e0 * (fcpu_t - fcpu)/tsc)’: 0.037217639686974675,
’(Intercept)’: 1.0012823274516816,
’I(event0x0043027e * (fcpu_t - fcpu)/tsc)’: 0.03266298846952452,
’I(event0x0043016d * (fcpu_t - fcpu)/tsc)’: 0.0022052346778683187,
’(SwitchLatency)’ : 1}

Power model. Rˆ2: 0.988144777044
pmodel = {’I(vcpu_t * vcpu_t * event0x0043016d/T_t)’: -0.0027479480096717608,

’I(fcpu_t)’: -0.0075424311483866377,
’I(vcpu_t * vcpu_t * fcpu_t)’: 0.013076558844243242,
’I(event0x0043027e/T_t)’: 0.35942701259072207,
’I(event0x004304e0/T_t)’: 0.28372354879294365,
’I(vcpu_t * vcpu_t * event0x0043027e/T_t)’: -0.26097675589316371,
’(Intercept)’: 72.912188254936765}

73

74

CHAPTER 5

POLICY

“I always avoid prophesying beforehand, because it is a much better

policy to prophesy after the event has already taken place” – Winston
Churchill, ∼1945

The models discussed in Chapter 4 provide estimates of the energy, power and
performance for a workload at any setting. These results can inform an energy
management decision, but do not define the policy via which that decision is made.
That policy is the subject of this chapter.

Since the platform-specific mechanisms of how to predict the effect of a deci-
sion are encapsulated in the models, the policies are platform agnostic.

5.1 Low-level policy

Given two power management strategies, along with the energy, power and time
associated with those two strategies, which one is the best? If one policy leads
to less energy use, less power and improved performance, the decision would be
trivial. In the case where some energy is saved, but some performance is lost, this
decision is less-so.

5.1.1 Trivial Policies

This thesis considers several potential fixed policies – those where the goal re-
mains absolute and un-changing. The most trivial of these is the maximum

performance policy, which is used to give the user the best quality of ser-
vice possible, ignoring the energy effects of doing so. The system always chooses
the highest performance setting — in the case of a single CPU frequency, this is

75

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 600 800 1000 1200 1400 1600 1800
 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

N
or

m
al

is
ed

 E
ne

rg
y/

P
ow

er

N
or

m
al

is
ed

 E
xe

cu
tio

n
T

im
e

Frequency (MHz)

gzip graphic ref

Energy
Power

Execution Time

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 600 800 1000 1200 1400 1600 1800
 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

N
or

m
al

is
ed

 E
ne

rg
y/

P
ow

er

N
or

m
al

is
ed

 E
xe

cu
tio

n
T

im
e

Frequency (MHz)

bzip2 program ref

Energy
Power

Execution Time

Figure 5.1: Power, Energy and Execution Time, all normalised to the maximum
frequency, for CPU-bound (top) and semi memory-bound (bottom) workloads on
the Latitude laptop

76

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 600 800 1000 1200 1400 1600 1800
 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

N
or

m
al

is
ed

 E
ne

rg
y/

P
ow

er

N
or

m
al

is
ed

 E
xe

cu
tio

n
T

im
e

Frequency (MHz)

equake ref

Energy
Power

Execution Time

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 600 800 1000 1200 1400 1600 1800
 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

N
or

m
al

is
ed

 E
ne

rg
y/

P
ow

er

N
or

m
al

is
ed

 E
xe

cu
tio

n
T

im
e

Frequency (MHz)

swim ref

Energy
Power

Execution Time

Figure 5.2: Power, Energy and Execution Time, all normalised to the maxi-
mum frequency, for semi memory-bound (top), and fully memory-bound (bottom)
workloads on the Latitude laptop

77

always the highest available frequency. In all systems which were tested that had
multiple adjustable frequencies, there was a single setting under which all of the
benchmarks ran with a minimum execution time. On one platform, an Opteron-
based server not surveyed as part of this thesis, we noticed that the highest fmem

occurred at the third-highest fcpu — memory-bound benchmarks run fastest at
a less-than-maximum fcpu — see Section 3.2.2 for further details. In Figures
5.1 and 5.2, the maximum performance is observed at the highest frequency of
1800MHz.

Similarly trivial on all platforms tested was the minimum power policy, which
chooses the setting which minimises the power. Again, on all systems tested there
was a single configuration which gave the lowest power for all benchmarks. The
intent of this policy is to reduce the thermal dissipation in the processor. In Figures
5.1 and 5.2, this is the lowest frequency of 600MHz.

The lowest power setting is almost never the lowest energy setting, thanks to
the changed execution time of the workload. In energy-cost constrained systems
such as data centres, and battery-lifetime constrained systems, minimising the
energy used is important, leading to the minimum energy policy. In Figures 5.1
and 5.2, the minimum energy setting varies due to the workload. For the most
CPU-bound application (gzip) the minimum energy is achieved at the highest
frequency. For the most memory-bound benchmark (swim), it is at the second-
lowest.

Figures 5.1 and 5.2 illustrate a serious issue with the minimum energy policy.
For some workloads (such as bzip2 in Figure 5.1), while there are some very small
energy savings available by scaling to a lower frequency (0.01% @ 1600MHz),
the performance impact of doing so is comparatively high (10%). Not only may
the quality of service of the scaled workload suffer, but in a fully-utilised multi-
tasking system, CPU time will be taken from workloads where scaling may have
a more significant energy saving effect.

The minimum energy-delay policy counters this effect to some degree by min-
imising the product of the workload’s energy and execution time. When com-
paring two settings, if the system suffers an n% performance drop, then to be
selected, the second setting must save more than n% of the energy. While this
policy provides a balance between the performance and the energy, it is inflexi-

78

ble: it is impossible to guarantee the maximum system performance with such a
policy, and impossible to obtain the maximum energy savings when performance
is of no concern. Instead, we would prefer a policy which can be tuned for all
circumstances.

5.1.2 Bounded performance degradation policy

One policy which has seen substantial attention from the literature [25, 26, 165]
is what we term bounded performance degradation. The policy scales the system
settings such that the performance is as close to some limit as possible. That limit
is often empirically chosen as 90%, but could be dynamically adjusted depending
on the performance required of the workload (based on QoS or real-time style
feedback). This policy is designed to take advantage of the memory-boundedness
of workloads whose performance reduces only marginally as a result of frequency
scaling. A bounded performance degradation policy leads to memory-bound pro-
cesses running at lower frequencies, where they save more energy.

Figures 5.3 and 5.4 show the effect of applying this policy when scaling each
of the four workloads shown in Figures 5.1 and 5.2. The figures are generated
off-line based on the measured data for the entire workload. The measurement
methodology and the effect of applying this policy on-line at a fine-grained level
is presented in Chapter 7.

The policy saves some energy, depending on the performance bound selection.
For highly memory-bound workloads like swim, the policy aggressively scales
the workload to achieve significant energy savings of over 25%, for a minor per-
formance penalty (the maximum-energy savings are achieved with a performance
bound of 90%, as in prior work). However, even for the highly memory-bound
swim, the lower performance bounds do not lead to a minimal energy consump-
tion.

For CPU bound workloads such as gzip graphic and bzip2 the optimal
setting is 100% performance for all goals except for power minimisation. Reduc-
ing the performance bound increases the energy used while decreasing the actual
performance of the workload. While the energy increase may only be minor, for
high performance bounds, the decreased performance is guaranteed.

79

Workloads which are somewhat memory-bound, such as equake, require a
different performance bound to minimise the energy use — between 85% and
87%.

This highlights both the advantage and drawbacks associated with the bounded

performance degradation policy: the performance bound is selectable. This lets
the user or a higher level policy adjust the apparent performance of the system de-
pending on their needs (such as meeting real-time deadlines), but the performance
bound must be carefully selected for each workload to achieve an energy-related
goal. The policy is a better energy-saving heuristic, but is unpredictable, and must
be workload-aware for good results.

5.1.3 Generalised energy-delay policy

Instead of relying on heuristics, this thesis developed the generalised energy-delay

policy and applied it in the context of DVFS. Given an estimated power (P) and
execution time (T) for a given workload at various settings, the policy attempts to
minimise the quantity

η = P (1−α)T (1+α), (5.1)

where alpha is a parameter that can be varied between -1 and 1. Since f(x) = x2

is a monotonically increasing function for positive x, special choices of α result
in each of the trivial policies. Specifically:

α = 1 maximises performance (forces highest frequency)

α = 0 minimises energy (E = PT)

α = −1 minimises power consumption

α = 1/3 minimises the energy-delay product [1] (ET = PT 2).

Other values map to other policies used in the literature [115, 120]. Our approach
allows the OS to easily adapt the power-management policy to changed operating
conditions.

This policy decision is entirely dependent on the power and time estimates.
Given accurate estimates of these quantities, the system will choose the best set-

80

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100
 20

 40

 60

 80

 100

 120

 140

 160

 180

C
P

U
 F

re
qu

en
cy

 (
M

H
z)

E
ne

rg
y/

P
ow

er
/P

er
fo

rm
an

ce
 (

%
)

Performance Bound (%)

gzip graphic ref

fcpu
Actual Performance

Norm Energy
Norm Power

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100
 20

 40

 60

 80

 100

 120

 140

 160

C
P

U
 F

re
qu

en
cy

 (
M

H
z)

E
ne

rg
y/

P
ow

er
/P

er
fo

rm
an

ce
 (

%
)

Performance Bound (%)

bzip2 program ref

fcpu
Actual Performance

Norm Energy
Norm Power

Figure 5.3: Behaviour of the bounded performance degradation policy for a CPU-
bound (top) and lightly memory-bound (bottom) workloads on the Latitude Lap-
top

81

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100
 60

 65

 70

 75

 80

 85

 90

 95

 100

C
P

U
 F

re
qu

en
cy

 (
M

H
z)

E
ne

rg
y/

P
ow

er
/P

er
fo

rm
an

ce
 (

%
)

Performance Bound (%)

equake ref

fcpu
Actual Performance

Norm Energy
Norm Power

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100
 65

 70

 75

 80

 85

 90

 95

 100

C
P

U
 F

re
qu

en
cy

 (
M

H
z)

E
ne

rg
y/

P
ow

er
/P

er
fo

rm
an

ce
 (

%
)

Performance Bound (%)

swim ref

fcpu
Actual Performance

Norm Energy
Norm Power

Figure 5.4: Behaviour of the bounded performance degradation policy for
medium memory-bound (top) and heavily memory-bound (bottom) workloads on
the Latitude Laptop

82

ting for the outcome expressed by α. This is not a heuristic — the value of α
expresses a precise trade-off between performance, energy and power.

Figures 5.5 and 5.6 show the effect of applying the generalised energy-delay

policy to the same workloads and platform shown in Figures 5.1 and 5.2.

For all four benchmarks, the goals above are achieved at their respective set-
tings of α. For gzip graphic, the performance is kept at 100% between α = 0

and α = 1.0, since between those values, no energy savings can be made for
this workload. Below α = 0.0, the policy chooses lower frequencies to reduce
the power, at the expense of both decreased performance and increased energy.
For bzip2, the frequency is only reduced at the minimum energy setting, and
not above, since no substantial energy savings can be made. Contrast this with
both equake and swim, where the frequency is reduced substantially between
α = 1.0 and α = 0.0 in order to take advantage of the energy savings available for
a small performance penalty. For all workloads the maximum performance setting
is chosen at α = 1.0, and the minimum power setting is chosen at α = −1.0, but
in-between the performance, energy and power are traded in a way that is specific
to both the workload and the platform.

Contrast the use of α with the use of the performance bound discussed in
Section 5.1.2. α achieves the desired goal in a workload and platform agnostic
way — α means the same thing, and achieves the same goal, on each workload
and platform. This is in contrast to the bounded performance degradation policy,
which requires an intimate knowledge of the workload’s behaviour on a platform
to achieve these goals.

In summary, this policy provides us with the tools required to trade perfor-
mance, energy and power between two or more potential settings, given a power
and performance estimate for those settings. It does this in a reliable, predictable
way and is abstracted from the behaviour of the benchmark or the platform, pro-
viding a single tunable which governs the balance between performance and en-
ergy.

83

 600

 800

 1000

 1200

 1400

 1600

 1800

-1 -0.5 0 0.5 1
 20

 40

 60

 80

 100

 120

 140

 160

 180

C
P

U
 F

re
qu

en
cy

 (
M

H
z)

E
ne

rg
y/

P
ow

er
/P

er
fo

rm
an

ce
 (

%
)

α

gzip graphic ref

fcpu
Actual Performance

Norm Energy
Norm Power

 600

 800

 1000

 1200

 1400

 1600

 1800

-1 -0.5 0 0.5 1
 20

 40

 60

 80

 100

 120

 140

 160

C
P

U
 F

re
qu

en
cy

 (
M

H
z)

E
ne

rg
y/

P
ow

er
/P

er
fo

rm
an

ce
 (

%
)

α

bzip2 program ref

fcpu
Actual Performance

Norm Energy
Norm Power

Figure 5.5: Behaviour of the generalised energy-delay policy for a CPU-bound
(top) and lightly memory-bound (bottom) workloads on the Latitude Laptop

84

 600

 800

 1000

 1200

 1400

 1600

 1800

-1 -0.5 0 0.5 1
 60

 65

 70

 75

 80

 85

 90

 95

 100

C
P

U
 F

re
qu

en
cy

 (
M

H
z)

E
ne

rg
y/

P
ow

er
/P

er
fo

rm
an

ce
 (

%
)

α

equake ref

fcpu
Actual Performance

Norm Energy
Norm Power

 600

 800

 1000

 1200

 1400

 1600

 1800

-1 -0.5 0 0.5 1
 65

 70

 75

 80

 85

 90

 95

 100

C
P

U
 F

re
qu

en
cy

 (
M

H
z)

E
ne

rg
y/

P
ow

er
/P

er
fo

rm
an

ce
 (

%
)

α

swim ref

fcpu
Actual Performance

Norm Energy
Norm Power

Figure 5.6: Behaviour of the generalised energy-delay policy for medium
memory-bound (top) and heavily memory-bound (bottom) workloads on the Lat-
itude Laptop

85

5.2 High-level policies

The low-level generalised energy-delay policy makes it possible to implement
a number of high-level policies. The task of the high level policy is to choose
the relative merit of performance, energy and power — to choose α. This thesis
has concentrated on providing the necessary low-level mechanisms, but leaves
the detailed development of automatic high-level governors to both existing and
future work, presenting some proof-of-concept ideas.

Much of the previous DVFS work (including systems implementing the
bounded performance degradation policy) aimed to minimise the system’s fre-
quency while achieving QoS targets. The α tunable can be similarly min-
imised (toward 0) in order to reliably save energy. For ondemand governor from
cpufreq [112] in Linux does this by adjusting the frequency downward during pe-
riods of low utilisation, increasing the frequency to the maximum if the utilisation
is found to be more than a given threshold. This is designed to have a minimal
impact on the user’s experience. Similar policies could be re-used, replacing the
CPU frequency with α as the tunable. By minimising α toward 0 energy is always
saved. Minimum performance guaranteed required for QoS or soft real-time rea-
sons (such as those made by the bounded performance degradation policy), could
be implemented alongside the generalised energy delay policy – choosing the min-
imum α within a given performance degradation. Since performance degradation
and energy savings information will have been calculated, these higher-level poli-
cies can be implemented with low overhead.

The response of of a system to changes in α is non-linear and to some ex-
tent unpredictable. While the system will always choose the most appropriate
frequency balancing energy savings against performance, the quantisation effects
due to a system’s discrete frequency setpoints will lead to non-linearities in the
response. For this reason α will require software control to achieve QoS require-
ments. It is also possible to transform alpha to represent a ratio between energy
savings and performance degradation – the generalised energy-delay policy will
never scale the system below that ratio.

Benchmarks where energy savings are not possible are not throttled by the
generalised energy-delay policy. The entire system might contribute to the en-

86

ergy savings by donating more CPU time to running processes which have been
throttled. In this instance, not throttling a workload which can not save energy
because it allows other processes to be throttled more. Since estimates for the
execution time for a workload are available (thanks to Chapter 4), the scheduler
can be compensate for any performance losses due to throttling.

Automatic higher-level policies can be based on entirely different criteria: A
system might vary α downward for thermal throttling reasons based on a temper-
ature sensor or other thermal emergency detection system. If the system is battery
powered, the user might wish to be more conscious of their energy usage as is
becomes apparent that the battery will be discharged, and α would be reduced
towards 0 as the battery state of charge decreases.

87

88

CHAPTER 6

IMPLEMENTATION

“It is almost as if you were frantically constructing another world

while the world that you live in dissolves beneath your feet, and that

your survival depends on completing this construction at least one

second before the old habitation collapses” – Tennessee Williams,
1953

We implemented the ideas outlined in Chapters 3, 4 and 5 in an operating-
system level power management framework. It consists of modifications to the
Linux operating system, and some supporting infrastructure, and is named Koala.
This chapter describes the implementation, outlines some issues which we en-
countered, and our solutions.

6.1 Overview

Linux 2.6.24 was chosen as a basis for the demonstrator system because it was:

• popular and well-known within the systems community;

• readily available as an open-source project;

• the latest version available at the time of implementation;

• portable and scalable: Linux is used on a wide variety of different platforms,
including embedded, laptop, desktop and server systems.

The power management framework described here only considers active
power management, leaving idle-mode management to the underlying OS. In the

89

Workload PredictionWorkload Statistics

Energy/Performance
Models

Selection Policy

Candidate Setpoints

QoS Request

Setpoint

Figure 6.1: Koala high-level block diagram

case of Linux, this means that idle time is still managed by the inbuilt cpuidle
infrastructure [111].

Figure 6.1 gives an overview of the Koala approach:

1. a prediction is made about the properties of the workload to be executed,
and when those properties change;

2. the energy and time models described in Chapter 4 are used to predict the
relative power and performance for the workload at a set of candidate set-
tings;

3. the policies described in Chapter 5 are used to choose a setting for the sec-
tion of workload based on the power/performance estimations, and the sys-
tem’s QoS requirements.

The following sections describe these three components of Koala.

90

6.2 Workload Prediction

We use a very simple workload prediction scheme, which works well for the
benchmarks tested, and at the update rates tested (see Chapter 7). Improving this
prediction scheme to handle highly variable workloads and a finer granularity is
left to future work.

Like much of the prior work, this simple workload prediction scheme is based
on a number of assumptions. Firstly, applications tend to execute an operation re-
peatedly. An MPEG player, for example, will execute a similar set of instructions
for each frame of a movie. A word processor will execute similar instructions
each time a key is pressed. A high-performance computing application tends to
execute a tight loop many times to complete a large task. Workloads tend to be
self-similar at some resolution. Like the previous work, we group these sets of
similar instructions into a group known as a phase. For our purposes, we de-
fine a phase as a group of instructions that which should be run at a particular
power management setting. Note that the granularity of the phase is arbitrary:
a memory-bound phase may consist of many memory instructions interspersed
with a few CPU instructions. At a fine granularity, the groups of CPU instructions
could be considered CPU-bound phases, even though at a higher, macro level, the
phase is memory-bound.

Threads, being an execution context, are naturally related to the workload.
Changing between threads gives a high probability that the workload will be dis-
similar. For this reason, Koala re-evaluates the power management setting when-
ever a context switch occurs. In this way, CPU-bound and a memory-bound
threads can co-exist on the same processor, each being run at an appropriate fre-
quency as chosen by the policy.

The time-slicing mechanism employed by Linux for scheduling presents an
obvious opportunity for frequency scaling even if the same thread will continue to
run. On each time-slice tick, and each context switch, Koala reads performance
counters and any other statistics saves them in the linux task struct for that
thread. The values for last time-slice of the next thread, which were previously
saved in its task struct are then provided to the models for setting selection.

This is termed in the literature as a last-value predictor, and implies some

91

simple, if imperfect, answers to the workload prediction decisions:

Granularity The frequency scaling granularity is fixed at the time-slice size,
which is unlikely to perfectly align with a thread’s phase changes.

Overhead Frequency switching overheads are assumed to be low enough that
switching often (potentially on each context switch) leads to an acceptable over-
head. As discussed in Chapter 7, this meant that several platforms could not run
Koala effectively.

Predictability Consecutive slices of the same thread are expected to be similar.
Each phase change will therefore result in at least one slice running at an incorrect
power management setting.

For the above reasons, academic research has developed more involved phase
prediction algorithms. The simplifications made for demonstration in this thesis
are not fundamental — previously used workload prediction systems could easily
be incorporated into a more robust system.

For example, we considered using a system call to effect a frequency re-
evaluation. Other suitable frequency scaling points could also be used by the
operating system — interrupt handlers form much of the workload on some I/O
bound systems. In this paradigm, Koala-aware applications make system calls
which indicate the beginning or end of a phase. Koala then saves the appropriate
statistics for the just-completed phase for later use via a last-value system. Since
we define a phase as requiring the same power management settings, this is is a
good assumption. The burden of workload prediction optimisation is then moved
to the driver writer, application designer, library designer, or compiler, who must
identify the phases, and determine the granularity and number of phases he wishes
to indicate to the operating system. Note that this scheme is platform independent:
while applications indicate the start and end of the phase, determining the proper-
ties of that phase is left to the models.

In summary, workload prediction splits a workload into small sections which
can be independently managed. The smaller the sections which can be accurately
predicted, the more appropriate the power management decisions will be, how-

92

ever the overheads and un-predictability in managing very small portions of the
workload limits the granularity. For the purposes of demonstration, the operat-
ing system’s in-built time-slicing and timer-tick frequency is used for workload
prediction.

6.3 Modelling

Koala estimates the execution time and energy for a workload, at each of a set of
potential settings. This information which is provided to the policy module.

To do this, whenever called, the system calculates the value of two linear equa-
tions, for each of the candidate settings. These candidate settings are defined in
an input file in the operating system source, which is translated at build-time into
the C code which implements the model. The characteristics of each setting (e.g.
fcpu and Vcpu), along with the information required by the hardware driver to enter
that setting, are stored in arrays. An example settings file is shown in Listing 2.
The index into the list of settings is called the setting number. The ordering of the
settings does not imply anything about the setting, although it is convention that a
higher setting number implies a higher-performance setting. Each row in Listing 2
defines a hardware setting with three frequencies and a voltage (although two of
those frequencies remain constant). The left hand column in the listing gives the
value to be written to the CPU’s clock-scaling control register in order to enter
that row’s state.

The model calculations are the only part of the Koala system that are modified
in order to port to a new platform. They must be highly optimised, since these
calculations are the source of most of the computation overhead.

To generate the models we perform a linear regression (using the R statistics
package [125]) and generate the model parameters as in Chapter 4. The parame-
ters are stored in a file along with the Koala source code. At system-build time,
a script translates this into C source code which performs the model calculations.
The model parameters are embedded into this source code and look-up-tables are
pre-calculated for speed (for example, a Pstatic for each setting).

This implementation makes a trade-off between portability and speed. It
presently requires architecture-specific implementations of the basic models and

93

hardware drivers, but further work should eliminate the former.
The model calculations are carried out in-kernel, and are implemented as a

series of fixed-point calculations (since Linux does not support floating point op-
erations in the kernel, and several of the systems we examined do not have floating
point units).

In addition to the predicted workload statistics, the models can use the pre-
dicted system conditions. At present, this includes the temperature and fan speed
on systems that support it. Future systems might use the expected level of bus con-
tention, IO power, and other system state. These statistics are presently gathered
by the architecture-specific implementation.

An omission in this implementation is an idle power estimation — it is
presently assumed to be constant. This is a simplification to avoid expanding
the scope of this thesis. The real idle power should be the power used during
any extra available CPU time, and depends on the system activity and the types
of workloads which are running. For systems which are 100% utilised, the idle
power is 0W, since any extra CPU time will be used to do useful work. For sys-
tems which will idle once the workload finishes, the idle power is non-zero, and
depends on the idle mode being entered (see Section 3.2.3). Given an estimated
idle power, the effects of idle energy can be removed by scaling based on the
dynamic energy as in Equation 4.14.

As discussed in Sections 3.2.4 and 4.7, the switching overhead is non-trivial
and platform dependent. Koala attributes the switching overhead to the time-slice
which causes the switch, and so the overhead is added to the execution time for
the upcoming time-slice. This is also a simplification, since a frequency switch
may be amortized across many timeslices. It is a limitation of the present imple-
mentation which should be addressed by future work.

6.4 Policy

The policy module chooses the best setting for the predicted workload, given the
time and energy estimates. It implements a function which takes an array of ex-
pected execution times and energy and returns the setting number for the selected
setting. A number of policies have been implemented and the active policy can be

94

Listing 2 latitude.conf — the source file used to define settings for the Dell
Latitude D600 laptop
#setting fcpu fmem vcpu fbus
0x0816 800.0 100.0 1.052 100.0
0x0918 900.0 100.0 1.084 100.0
0x0a1a 1000.0 100.0 1.116 100.0
0x0b1c 1100.0 100.0 1.148 100.0
0x0c1d 1200.0 100.0 1.164 100.0
0x0d1f 1300.0 100.0 1.196 100.0
0x0e21 1400.0 100.0 1.228 100.0
0x0f23 1500.0 100.0 1.260 100.0
0x1025 1600.0 100.0 1.292 100.0
0x1127 1700.0 100.0 1.324 100.0
0x1228 1800.0 100.0 1.340 100.0

changed by the user at run-time. The presently implemented policies are:

manual the user can directly choose the setting

max chooses the maximum setting number

min chooses the minimum setting number

mine chooses the minimum energy setting

mined chooses the setting with the minimum energy-delay product

perf chooses the setting with a performance closest to, but not less than, a perfor-
mance bound (corresponding with Section 5.1.2)

alpha chooses the setting with the minimum η, where η is calculated according
to the generalised energy-delay policy described in Section 5.1.3.

The active policy module can be selected via a /proc interface, and the poli-
cies with tunables (manual, perf and alpha) are controlled by the same means.

The calculations in the policy module must also occur in fixed point. The
only relevant policy in that context is alpha, which must calculate η. In order

95

to minimise run-time costs and avoid floating-point arithmetic, a more suitable
representation of the policy function which avoids exponents is

log2 η = (1− α) log2E + 2α log2 T. (6.1)

This was implemented in fast fixed-point arithmetic using the clz instruction
and a look-up table. Since log is a monotonic function, minimising log2 η also
minimises η.

We implemented higher-level policies at user-level, interfacing to the kernel-
level policies via the /proc interfaces. These monitor the system at a much slower
rate, updating α. Our BSOC policy is implemented as a program which reads
the battery state of charge (BSOC) from the smart battery interface on the Dell
Latitude D600 laptop, and modifies α. Above 70% BSOC, the program sets alpha
to 1.0, enabling the full system performance. Below 70% the value is reduced
linearly to 0.0 (minimum energy) at 30% BSOC. While this policy may not be
entirely practical, it demonstrates how higher level policies can be written.

6.5 Other Details

We constructed drivers for each of the platforms. These manage the access many
different types of performance counters on numerous platforms, different types of
frequency scaling interface, different power management ICs, and other miscel-
laneous hardware (including the Dell i8k BIOS interfaces). In some cases, Linux
drivers for these devices were available for reference, but in most cases the exist-
ing drivers were inadequate.

6.6 Infrastructure

Several pieces of user-level infrastructure required of a power management frame-
work have been implemented for Koala. In particular, this includes a number of
user-level interfaces.

The first of these is the statistics sub-module. It collects information about
Koala’s operation as well as the results from Koala’s models. This information is

96

made available both globally and per-process, and consists of:

switchops the number of switching opportunities;

switches the number of times the setting actually changed;

setting acc the accumulated raw value of the setting (accumulated on each
switching opportunity);

energy the energy that koala estimates was used by the system;

max speed energy the energy koala estimates the system would have used if it
were running at the maximum setting number;

time the execution time as recorded by Koala;

max speed time the execution time that Koala estimates for the same workload
running at the maximum setting number.

In addition to the above, accumulated cycles and performance counter settings
are available.

From the above, it is possible to calculate some interesting information (both
globally and per-process)...

• the percentage of switch opportunities that resulted in a setting change;

• the system’s performance compared to the maximum setting;

• the system’s energy compared with the maximum setting;

• the average setting.

To display this information, we developed two user-land tools. These are both
derived from commonly-used system administration tools. top is shown in Fig-
ure 6.2, and shows the energy saving and relative performance of each process in
the system. A version of gnome-system-monitor performs the same func-
tion. The statistics are a summary generated as a part of Koala’s operation, so the
overhead is minimal.

97

Figure 6.2: A modified version of top which displays statistics generated by
Koala

Another user-level interface is the tracing module. This consists of an in-
kernel circular buffer which stores information recorded during each switching
opportunity including the statistics used by the models. The information can be
used to examine Koala’s behaviour in detail. The decisions be re-created, and the
power savings made at each stage during a workload’s execution can be estimated.
The information is exported to user-land via a character device. Modifications
were made to gnome-system-monitor to display this information in real-
time (shown in Figure 6.3).

These interfaces are very useful. Technically savvy users can manually as-
sess the effect of frequency scaling and decide whether a particular QoS impact
is worth Koala’s estimated energy saving. System designers can make similar as-
sessments. The information can be used by software designers to evaluate how
much energy their programs use, and whether Koala-style power management
helps.

We used both of these interfaces to collect the data presented in Chapter 7.

98

Figure 6.3: A modified version of gnome system monitor showing statis-
tics recorded by Koala’s trace module

6.7 Discussion

The implementation presented here demonstrates model-based power manage-
ment. For this demonstration we have made a number design decisions that are
not prescriptive. The implementation provides an experimental platform which
can be ruggedised, rather than complete solution.

We roughly optimised the system, using fixed-point arithmetic in the kernel,
and other optimisations which reduce the system’s precision (such as the fast loga-
rithm function used to implement the generalised energy-delay policy).
While these optimisations certainly help with the system’s speed, the performance
is not yet optimal, and the optimisations require specific attention for each plat-
form (for example, the fixed-point precision must be checked for each platform,
since the magnitude of the power used is different).

Likewise, the system uses a brute-force approach to finding the optimal set-
ting, so the best frequency will always be found, but requires energy and perfor-
mance estimations for every setting. In systems like the I-Box where there are

99

thousands of potential settings, this was not practical. In that case, a search al-
gorithm should be developed so that only a small subset of the potential settings
needs to be examined.

We presently require the models to be statically compiled at build-time. The
model constants are stored as an automatically generated python script which is
used by the Linux build system to generate header files. As an alternative, the
models could be built as kernel modules without loss in performance. As a long-
term goal, the models should be adaptive, using measured feedback from the run-
ning system. Ideally, accurate models could be provided by the hardware compo-
nent manufacturers and composed into a system model. System specific sources
of model error could be identified via measured feedback. The models could be
stored or even implemented by the hardware itself, allowing for a very small OS
overhead. Since the manufacturers are likely to have the most detailed information
available on the system’s design, they are the ideal party to develop these models.

Another alternative would be a similar approach to that used in Intel’s Core i7
processors [151]: the power management subsystem could be implemented on
a power management processor (called the PCU in the Core i7) with access to
the performance counters, current and temperature sensors, and control over the
processor’s power management settings. Operating-system interfaces would be
used to facilitate workload prediction and the setting of policy parameters such
as α. The approach would clearly lower the performance overhead of running
Koala, allowing for more fine-grained frequency scaling. The sensors built into
the Core i7 would make ideal parameters in Koala’s models.

How Koala would be implemented in main-stream operating systems running
on varying hardware remains an open problem. The issues are varied, but consid-
ered manageable, particularly if hardware vendors were to become involved.

One problem is the effort required in determining the models for a given sys-
tem. This effort would be significantly reduced with hardware-vendor support in
providing appropriate models and inputs. Another issue is the need for dedicated
performance counters, which may be required for other purposes. Again, this is
an issue which hardware manufacturers can easily address.

100

CHAPTER 7

EVALUATION

“You know more than you think you know, just as you know less than

you want to know” – Oscar Wilde, 1890

This chapter details our evaluation of the ideas presented in Chapters 3, 4
and 5, as well as the implementation detailed in Chapter 6, comparing the theory
presented in the prior chapters with measured reality.

7.1 Methodology

7.1.1 Measurement Methodology

We constructed the infrastructure required to conduct experiments on Linux
2.6.24, including scripts for running benchmarks, drivers for collecting data from
the platforms’ inbuilt sensors and counters, and scripts for post-processing the
data. Care was taken to minimise the any effects that would violate the assump-
tions outlined in Section 4.2. In particular, we ran benchmarks from a RAM
filesystem, and discarded any output to minimise system I/O.

Energy

We used two methods to measure the energy drawn by the platforms. For low
voltage (<20 V) measurements I designed a device, dubbed Echidna. For mains
AC measurements, we used an Extech True RMS Power Analyzer 380801 [39]. In
each case, we were able to measure the average current, average voltage, average
power, and total energy.

Echidna (shown in Figure 7.1) is a simple circuit designed to measure the total
energy drawn during the execution of a benchmark. It is accurate to within 5 mW

101

Figure 7.1: The custom-designed Echidna energy measurement device

. It is programmable and can be triggered via a hardware signal. Echidna also
measures temperature. While triggered, the device integrates the power to ob-
tain the energy. The platforms generate a trigger signal using the lowest-overhead
means possible, giving good synchronisation. Further details of Echidna, includ-
ing schematics and the board layout, can be found in Appendix B. The Extech
380801 True RMS Power Analyzer [39] is a device for analysing mains AC power
loads. It has various displays, in addition to a serial interface. It samples at a much
slower rate than the Echidna — 2.5 Hz — with an accuracy of 0.9%. Since there
is no external triggering, some small overhead is required in this situation since
the results must be recorded on the machine under test.

The power varies substantially with temperature, so all measurements were
taken in a constant-temperature environment. In some experiments, we used a re-
frigerator to vary the ambient temperature. We used the system’s internal sensors
to measure the temperature.

Any platform specific methodology is discussed with the detailed platform
descriptions in Appendix A.

102

Performance

Prior to each benchmark run, the system was put in a consistent, quiet, state. This
involved minimising the system’s background activity. In particular, the network-
ing, disk and swapping mechanisms were disabled. In addition, we disable any
background activity (for example, init executes some routines once per sec-
ond). In the case of init this required source code modifications. For some
benchmarks we reduced the system’s timer tick frequency in order to minimise
the overhead of running the scheduler, improving the consistency of the bench-
marks. The powertop [80] utility was used to reduce the wakeups per second
during an idle mode to less than 10Hz. Background activity was detected during
a benchmark run via the interrupt count.

Idle Energy

Of the two models presented in Section 4.5, this thesis uses the dynamic energy to
evaluate the effect of an idle power, since it does not depend on multiple bench-
mark executions so it can be calculated dynamically at run-time. Once the stan-
dard Linux mechanism for managing idle modes (cpuidle) was enabled, we
measured the typical idle power for each platform after at least 10 s of being in
the idle state. For the purposes of this evaluation, the idle power is assumed to be
constant. The task of predicting the actual idle mode power based on the expected
time spent in each idle mode is left to future work.

7.1.2 Benchmarks

While a variety of benchmark suites were used for evaluation, four suites are
presented in this thesis. Three are those developed by the Standard Perfor-

mance Evaluation Corporation (SPEC) and provide ”a comparative measure of

compute-intensive performance across the widest practical range of hardware us-

ing workloads developed from real user applications”. They are an industry stan-
dard, and commonly used for systems performance evaluation. In the context of
this thesis, the SPEC CPU benchmarks provide real-world application workloads.

Three versions of SPEC were used: CINT95, CPU2000 [63] and

103

CPU2006 [64]. Wherever possible the benchmarks were used un-modified, but
in some circumstances they needed to be updated to suit the newer compilers we
used. The SPEC benchmarks were used to evaluate the energy and performance
characteristics of desktop and PC-style systems, as well as some more powerful
embedded systems.

The fourth benchmark suite was MiBench, which is a free, commercially rep-

resentative embedded benchmark suite [61]. It is similar to the EEMBC suite. It
consists of 35 real-world application benchmarks taken from typical embedded
systems circa 2001.

Lastly, the memory boundedness of some systems was tested using specially
written synthetic benchmarks.

All of the benchmarks were compiled using GCC [53]. The version of GCC
and whether a cross-compilation was used varies with the platform.

Benchmarking difficulties

Consistent results are critical when comparing energy management schemes, as
well as when determining the value of all possible performance events using a
small number of counters. We observed some large variation in the execution
time and energy for several of the experiments. The cause of that variation was
severalfold. Firstly, background activity affects the performance and energy re-
quirement of the benchmark under test and must be minimised. Secondly, there
were problems with some of the benchmark suites themselves: one benchmark in
MiBench (pgp) used the gettimeofday function to randomise its behaviour.

More interesting than these, the specific physical pages allocated to a process
have a significant effect on the run time of the workloads on some systems, par-
ticularly the Latitude laptop. Rebooting the system between benchmarking runs
ensures the system is in a consistent state, and the configuration of the disk cache
could be made predictable by loading a large file and flushing the cache.

Despite these efforts, benchmarks like mcf and twolf do not run with con-
sistent results on the Latitude. Koala handles the instantaneous workload exe-
cution, even if subsequent executions can not be compared. This can be seen in
Figure 7.18, where the successive iterations of mcf have an inconsistent run-time.

104

7.1.3 Statistical Methods

A detailed summary of the implementation of the statistical techniques as used
here is beyond the scope of this thesis, and are mostly implemented in the R

statistics package [125]. All models were characterised using an un-weighted
least-squares regression (lm in R).

We performed parameter selections using the regsubsets package. This
compares all N-parameter models, for several values of N. It then selects the one
with the highest coefficient of determination — R2. The bayesian inference cri-

terion (BIC) can be used to compare the merit of using more or less parameters
in the model, helping to avoid co-linearities. The results of these analyses can be
plotted in Figures like 7.6, 7.7, 7.8 and 7.9. In these plots, the plot area is split into
a grid. Each row in the grid represents the best model which could be found for
a given number of parameters. The bottom row has one parameter, the next row
up has two, and so-on. Each column in the plot represents a parameter, and the
X-axis labels these. If a block is coloured, then that column’s parameter is used in
that row’s model. The Y-axis labels show the coefficient of determination (R2) for
each model/row. Each parameter in a row is the same colour, and a darker colour
implies a better fit for that model.

In some cases it took several months to run a sufficient number of benchmarks
to build a model. When multiple iterations were feasible, we calculated averages
prior to any model fitting. Following a parameter selection, further experiments
were conducted using the selected counters in order to generate the characterisa-
tion data.

According to sound statistical practice, validation and characterisation were
performed using two different datasets. SPEC CPU2000 was generally used for
characterisation and SPEC CPU2006 for validation. When evaluating the system
or policy (as opposed to the model’s accuracy), a selection from both the charac-
terisation and validation set are used.

105

Platform
Type

a
Processor

A
rchitecture

Settings b
f

c
V

d
C

ounters e
E

vents f
O

thernotes
PL

E
B

2
E

m
bedded

PX
A

255
A

R
M

v5T
E

22
3

1
3

14
G

um
stix

E
m

bedded
PX

A
255

A
R

M
v5T

E
22

3
0

3
14

16-bitbus
I-B

ox
E

m
bedded

PX
A

270
A

R
M

v5T
E

169
3

1
5

14
Phycore

E
m

bedded
iM

X
31

A
R

M
v6

4
1

1
7

35
L

atitude
L

aptop
Pentium

-M
745

IA
-32

12
1

1
3

>
164

T
hinkpad

L
aptop

Pentium
-M

750
IA

-32
8

1
1

3
>

164
E

E
E

PC
901

N
etbook

A
tom

N
270

IA
-32

7
1

1
3

>
113

O
pteron

Server
O

pteron
246

IA
-32

5
2

1
5

>
177

M
enlow

E
m

bedded
Silverthorne

IA
-32

4
1

1
3

>
113

X
eon

Server
X

eon
IA

-32
3

1
1

3
164

Table
7.1:A

sum
m

ary
ofallthe

platform
s

exam
ined

aE
m

bedded,laptop
orserver

bT
he

num
berofsettings

w
hich

w
e

tested,ratherthan
those

w
hich

are
possible

cT
he

num
berofdynam

ically
variable

frequencies,notincluding
fixed

frequencies
dT

he
num

berofdynam
ically

variable
voltages,notincluding

fixed
voltages

eT
he

totalnum
berofeventcounters,including

those
w

hich
m

easure
a

fixed
event

fT
he

events
w

hich
w

e
m

easured,ratherthan
those

w
hich

can
be

m
easured

106

7.2 Platforms

This thesis incorporates data gathered by examining ten platforms which repre-
sent advanced embedded systems, netbooks, notebooks, and servers. The details
of these platforms is the subject of Appendix A. The benchmarks were run on
each platform at all of the possible power management settings. It was through
understanding these results that the problems described in Chapter 3 were identi-
fied. This thesis examines three of the more interesting platforms in detail, repre-
senting an embedded system, a laptop and a server. We leave the implementation
of Koala on other platforms to future work. Unfortunately, because of the high
frequency-switching overheads, the embedded system platform is omitted from
the on-line evaluation.

The embedded system is a custom-designed PXA255 single board computer
called PLEB 2. It is based on a 400 MHz PXA255, overclocked to 471 MHz. It
has 64 MB of SDRAM with a bus clock rate between 100 MHz and 133 MHz.
The CPU, bus and memory frequencies are all variable, along with the CPU core
voltage which can be varied in 0.1 V steps. The bus and memory frequencies
are generated using dividers from the CPU clock, so all three must be modified
together. We identified 22 combinations of CPU, bus and memory frequency,
along with CPU core voltage, that we call a setting.

The XScale core has two performance counters and a cycle counter. Each of
the performance counters can measure one of 15 events which we used to create
the models. The frequency switch latency is 500µs, during which the CPU is
unavailable. In addition, the voltage must be manually ramped using a slow I2C
connection to the power supply IC.

We measured the power on the battery supply using the Echidna (see Sec-
tion 7.1.1). This reflects the importance of the battery in a mobile embedded
system.

The laptop is a Dell Latitude D600 [31] based on an 1.800 GHz Pentium-M
processor paired with the Intel 855PM chipset. It has 1GB of DDR266 memory
with a 133 MHz clock rate, and a frontside bus frequency of 100 MHz but quad

107

pumped to 400 MHz. The core frequency clock is varied from 0.8 to 1.8 GHz in
100 MHz steps and the core voltage is varied from 0.98 V to 1.34 V. We switch
frequencies by accessing the respective registers directly rather than via ACPI,
as ACPI did not export all possible frequencies voltages. The LCD backlight was
switched off to reduce the system’s static power, and improve savings gained from
the CPU for the experiments.

The Pentium M has a cycle counter and two user-configurable counters which
can each measure one of several hundred different events, of which we used 164
potentially-relevant events to create the models. During a frequency switch, the
CPU is unavailable for 10µs while the frequency-synthesis circuitry (PLL) re-
locks. The voltage is automatically ramped up and down by the hardware prior to
or following the frequency switch, respectively. This means that for a short period
of time following the switch request, the processor may operate at a frequency
different than the requested one.

Power consumption was measured in the battery supply line using Echidna
(see Section 7.1.1). Measuring at the battery reflects the importance of minimising
the battery energy use (rather than wall-socket energy) while disconnected from
an external supply.

In addition to a steady-state measurement of the Latitude laptop, the idle power
for each sleep mode used by the operating system was determined via the method
outlined in Section 4.5. The system has three sleep states, and uses 18.5 W in C2,
13.1 W in C3 and 11.1 W in C4.

The server is based on an AMD Opteron 246 processor clocked at 2 GHz. Us-
ing a custom driver, we were able to put the CPU in five different settings ranging
from 0.8 GHz at 0.9V to 2 GHz at 1.5 V.

The system has 512 MB of DDR400 SDRAM, and while the memory fre-
quency was fixed at 200 MHz, we noted that the memory controller changed
the memory bus frequency down to 160 MHz at the lowest CPU frequency of
800 MHz.

The overhead for a switch on this platform varies depending on the current
and target frequencies, ranging from as low as 15µs when dropping the frequency
from 2 GHz to any value, to 140µs when increasing from the minimum to the

108

maximum frequency. This is due to delays while ramping the core voltage to the
required level, and then the re-locking delay incurred by the PLL of the clock
generator.

The processor has a cycle counter and four user-configurable counters which,
like the Latitude, can each measure one of several hundred events, of which we
examined 177.

Power measurement was performed using with the Extech power meter. This
was inserted between the wall socket and the machine’s power plug and thus mea-
sured the system’s total AC power consumption (a reduction of the total AC power
consumption being the main goal for server power management).

7.2.1 Comparison

We observed a substantial variation between the power management capabilities
of the platforms. Embedded ARM-based platforms like PLEB 2, Gumstix, I-
Box and Phycore are capable of a vast array of settings, including variable mem-
ory and bus frequencies. IA-32 platforms tended to have fewer possible settings,
usually only the CPU frequency being variable (although the Opteron was a no-
table exception). The ARM-based chips also have very low-power processor idle
modes. The Phycore was unique amongst the systems examined, with a variable-
frequency interface to its level 2 cache (the PXA-based platforms do not have a
level-2 cache).

The available memory bandwidth was also varied. For some workloads, plat-
forms such as the Latitude, show near-constant-time behaviour across different
settings for some benchmarks, indicating a highly memory-bound workload. On
other platforms the memory-performance is rarely a bottleneck. Figures 7.2 and
7.3 compare the Latitude and the ARM-based Phycore platform. On the Latitude,
the memory-bound swim increases its execution time by only ∼10% despite a
clock speed divided by three. The commonly assumed model would predict a
threefold increase in execution time, as is seen for the CPU-bound benchmark
(twolf). On the Phycore, even the most memory-bound benchmark that was
run, mcf, increases it execution time by nearly three times for a quarter of the
clock speed.

109

 100

 150

 200

 250

 300

 350

 600 800 1000 1200 1400 1600 1800

N
or

m
al

is
ed

 E
xe

cu
tio

n
T

im
e

(%
)

CPU Frequency (MHz)

swim_ref
twolf_ref

Figure 7.2: Normalised execution time for a memory-bound (swim) and a CPU-
bound (twolf) on the Latitude.

 100

 150

 200

 250

 300

 350

 400

 450

 100 150 200 250 300 350 400 450 500 550

N
or

m
al

is
ed

 E
xe

cu
tio

n
T

im
e

(%
)

CPU Frequency (MHz)

Phycore Execution Time

mcf_test
twolf_test

Figure 7.3: Normalised execution time for a memory-bound (mcf) and a CPU-
bound (twolf) on the Phycore.

110

The frequency switch latency also varies significantly amongst platforms. The
PXA-based platforms have a high latency of ∼500µs. The Pentium-M based
Latitude and Atom-based EEEPC have the lowest overheads of ∼10µs.

The platform design, as well as the processor design, has a noticeable effect
on the frequency-scaling behaviour of the system. This is most obvious when
comparing the Gumstix and PLEB 2 platforms, which both use an Intel PXA255
system-on-chip processor. The memory-bus on the Gumstix is 16-bits wide, rather
than the 32-bit bus on PLEB 2. Furthermore, PLEB 2 can scale its CPU voltage,
whereas the Gumstix has a fixed voltage. These differences result in markedly
dissimilar optimal frequency scaling decisions on these platforms — compare the
minimum-energy setting in Figures 7.4 and 7.5.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 50 100 150 200 250 300 350 400 450 500

N
or

m
al

is
ed

 E
ne

rg
y

(%
)

CPU Frequency (MHz)

PLEB 2 Energy Without Idle Power

gzip_test
twolf_test

Figure 7.4: Dynamic energy for a memory-bound (gzip) and a CPU-bound
(twolf) on PLEB 2. Lines connect points of equal memory frequency.

Platforms with lower power idle modes are usually energy-optimal at higher-
performance settings. Several platforms’ energy-optimal setting changed depend-
ing on the workload. For other platforms, the energy-optimal setting is constant,
independent of the workload.

111

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 50 100 150 200 250 300 350 400 450 500

N
or

m
al

is
ed

 E
ne

rg
y

(%
)

CPU Frequency (MHz)

Gumstix Energy Without Idle Power

gzip_test
twolf_test

Figure 7.5: Dynamic energy for a memory-bound (gzip) and a CPU-bound
(twolf) on Gumstix. Lines connect points of equal memory frequency.

No conceivable heuristic will produce optimal results for all of these plat-
forms.

In the interests of tractability, we focussed on three platforms: PLEB 2 (the
Embedded System), the Opteron (the Server) and the Latitude (the Laptop). Some
of the others were eliminated for the following reasons: the PXA-based sys-
tems have high frequency switching overheads, eliminating the possibility of per-
timeslice frequency changes; the iMX31 processor in the Phycore has many sili-
con bugs and could not be used reliably; the Intel Xeon-based systems have very
few potential settings.

7.3 Characterisation

Here we demonstrate the model-building techniques presented in Chapter 4. The
models will be used later for on-line predictions (Section 7.5).

First, data is gathered about the platform according to Section 4.10.1. For

112

PLEB 2 we use 37 benchmarks from the MiBench suite and SPEC CINT95 for
characterisation, and selected benchmarks from SPEC CPU2000 were used for
validation. The Latitude and Opteron used SPEC CPU2000 benchmarks for char-
acterisation, and SPEC CPU2006 benchmarks for validation.

The models for each platform are formulated as in Equation 4.29. On the
Latitude, where the memory frequency remains constant, the model can be sim-
plified to Equation 4.30. The power models for the platforms are taken from
Equation 4.12, although the platforms without variable bus or memory frequen-
cies lack these parameters.

The parameters are selected using R’s regsubsets command. In theory
it would be possible select parameters based on a combined power/performance
model, however this thesis found that we get good results if we use regression on
the performance model alone to select the events.

For a complete example of a model which was generated, see Listing 1, which
is the human-readable source file used to store the model for an Opteron-based
server.

7.3.1 PLEB 2

The parameter selection for PLEB 2 is shown in Figures 7.6 and 7.7. The event
associated with each number are given in Table 7.2. The figures show R2 values
(indicated by colour and y-axis labels) starting with a single-parameter model in
the lowest row, adding one parameter in each higher row. The parameters are listed
as the x-axis labels, “Bus PMCx” indicating PMC x used for predicting Cbus , etc.
“Intercept” represents the x-axis intercept of the linear model.

These figures allow us to understand how power is used in the platform. In the
performance model the best two-parameters are DTLB misses (PMC4) for both
bus and memory. Similarly, the best four-parameter model uses TLB misses and
data cache misses (PMC11). Each of these is a associated with the time spent
waiting on memory. The best six-parameter model is less clear-cut, either using
instruction cache misses (PMC0), data-dependency stalls (PMC2), ITLB misses
(PMC3) or data-cache-buffer-full stalls (PMC9). In most cases, the same counters
are selected for predicting Cmem and Cbus . This means that with n counters we

113

R2

(Intercept)

Bus PMC0

Bus PMC1

Bus PMC2

Bus PMC3

Bus PMC4

Bus PMC5

Bus PMC6

Bus PMC7

Bus PMC8

Bus PMC9

Bus PMC10

Bus PMC11

Bus PMC12

Bus PMC13

Mem PMC0

Mem PMC1

Mem PMC2

Mem PMC3

Mem PMC4

Mem PMC5

Mem PMC6

Mem PMC7

Mem PMC8

Mem PMC9

Mem PMC10

Mem PMC11

Mem PMC12

Mem PMC13

0.38

0.88

0.92

0.98

0.98

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

Figure
7.6:

Param
eter

selection
for

the
PL

E
B

2
tim

e
m

odel.
T

he
X

-axis
labels

correspond
w

ith
the

term
s

in
E

quation
4.29

forPL
E

B
2.See

Section
7.1.3

foran
explanation

ofthis
plot.

114

R2

(Intercept)

v*v*fcpu

v*fcpu

fcpu

v*v*fbus

fbus

v*v*fmem

fmem

v*v*PMC0/t

v*v*PMC1/t

v*v*PMC2/t

v*v*PMC3/t

v*v*PMC4/t

v*v*PMC5/t

v*v*PMC6/t

v*v*PMC7/t

v*v*PMC8/t

v*v*PMC9/t

v*v*PMC10/t

v*v*PMC11/t

v*v*PMC12/t

v*v*PMC13/t

PMC0/t

PMC1/t

PMC2/t

PMC3/t

PMC4/t

PMC5/t

PMC6/t

PMC7/t

PMC8/t

PMC9/t

PMC10/t

PMC11/t

PMC12/t

PMC13/t

0.
92

0.
96

0.
98

0.
98

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
9911111111

Fi
gu

re
7.

7:
Pa

ra
m

et
er

se
le

ct
io

n
fo

rt
he

PL
E

B
2

en
er

gy
m

od
el

.T
he

X
-a

xi
s

la
be

ls
co

rr
es

po
nd

w
ith

th
e

te
rm

s
in

E
qu

at
io

n
4.

12
fo

rP
L

E
B

2.
Se

e
Se

ct
io

n
7.

1.
3

fo
ra

n
ex

pl
an

at
io

n
of

th
is

pl
ot

.

115

Event# Description
0 Instruction cache miss.
1 Cycles during which the instruction cache can not deliver.
2 Cycles during data dependency stalls.
3 Instruction TLB misses.
4 Data TLB misses.
5 Branch instructions executed.
6 Branches mispredicted.
7 Instructions executed.
8 Cycles during stalls due to full data cache buffers.
9 Number of stalls due to full data cache buffers.

10 Data cache accesses.
11 Data cache misses.
12 Data cache half-line write-backs.
13 Occasions on which software changed the program counter.

Table 7.2: Events available on PLEB 2’s PXA255 processor [73]

obtain a good 2n-parameter model.,

Examining the parameters selected in the power model, it is informative to
observe which parameters are dependent on the system’s core voltage (V 2), and
which are independent. The intercept (Pstatic), and then fV 2 are obvious selec-
tions, and agree with the commonly assumed model. Data cache misses (PMC11),
without the V 2 dependence, are selected next. This, and the data TLB misses event
PMC4, are used to estimate the power used in the memory chips during transac-
tions. The selection of both bus and memory frequency, with a V 2 dependence,
are also easily explained — the bus is on-die, and therefore bus cycles consume
energy according to the core voltage. The latter is because the PXA255 has an
on-chip memory-controller, for which fmemV

2 estimates the power. The number
of instructions executed (PMC7) is a good estimator for the switching activity in
a processor.

Each parameter selected by this technique has a clear explanation. Parameters
toward the top of the graph only show a small increase in both R2 and BIC, and
are therefore not likely to improve the predictive capability of the models.

Varying the number of counters used for power estimation has a clear effect on
the predictive ability. The fitted model was used to predict the power at the sam-

116

pled setpoint (i.e. with a perfect performance model) for the validation dataset.
The results are shown in Table 7.3, which clearly shows that the model can accu-
rately predict the average power, and that increasing the number of counters used
reduces the error in those predictions.

Counters Param. R2 Max Err (%) Avg Err (%)
1 4 0.9836 7.46 2.14
2 5 0.9871 6.94 2.31
3 6 0.9904 4.85 1.26
4 7 0.9922 3.78 1.16
5 8 0.993 3.68 0.92
6 9 0.9938 2.94 0.89
6 11 0.9947 2.75 0.77

Table 7.3: Regression and validation data for various models

For the purposes of illustration, we chose four performance events based on
the parameters selected for each of the execution time and power1, and the models
are then characterised. Predicting the power for each benchmark in the validation
set at the maximum frequency after running at the other settings gives an expected
error. The maximum error when estimating the energy using both models com-
bined is 4.9% and the average is 1.5%. If the measured time is used in the model
(thereby isolating the error of the power model), the maximum error is 3.7% and
the average error is 0.72%.

7.3.2 Opteron

On the server platform, the characterisation procedure for the performance model
selected the following four events, all of which are intuitively related to memory-
boundedness:

• quadword write transfers (0x016D);

• L2 cache misses (datacache fill) (0x027E);

• dispatch stalls due to reorder buffers being full (0x00D5);
1The PXA255 in PLEB 2 only provides two counters, but other variants like the PXA270 in

the I-Box provide four

117

• DRAM accesses due to page conflicts (0x04E0).

Of those shown in Listing 1, three (0x04E0, 0x27E and 16D) have positive
coefficients, and one (0x00D5) has a negative coefficient. The first three are
related to the number of memory accesses, and so an increasing frequency results
in an increased number of cycles, and a positive coefficient for each. The fourth
is related to the number of stall cycles caused by the re-order buffers being full
— an effect reduced by an increased frequency, resulting in a negative coefficient.
A more informed discussion of these coefficients is difficult without a detailed
knowledge of the platform’s internals.

We selected the terms used in the power model after limiting the possible
parameters to those events chosen for the performance model. This is shown
in Figure 7.8. Listing 1 shows that we chose a model with 7 terms including
the intercept. Like other platforms, fcpuV 2 is selected first. The number of L2
cache misses (PMC 027E) is chosen in both the V 2

cpu domain and in the constant-
voltage domain, with a negative coefficient in the former and positive in the lat-
ter. These memory-related events clearly have a negative effect on the CPU core
power (since the core stalls during memory operations) but a positive effect on
the constant-voltage domain (where the memory itself consumes power). DRAM
accesses due to page conflicts (PMC 04E0) is clearly related to increased memory
accesses and the system’s power is therefore related to it. Curiously, the num-
ber of quadword write transfers (PMC 016D) is chosen in the CPU domain, but
the small coefficient means that this term contributes only a minor amount. It is
possible that quad-word transfers combines with the number of L2 cache misses,
and that larger transfers result in longer spent stalled (and so a lower power in
the CPU, hence the negative coefficient). Also curious is the negative coefficient
associated with the CPU frequency, although this is, again, a small coefficient and
may relate to the contribution of off-chip signalling to the CPU power.

We gathered data using for benchmarks using the these events. The perfor-
mance model resulting from this event selection and the cycle counter fits the
characterisation data with a coefficient of determination of R2 = 0.98, indicating
an excellent fit. The power model also resulted in R2 = 0.98.

118

r2

Intercept

v*v*fcpu

v*v

fcpu

v*v*PMC04e0/t

PMC04e0/t

v*v*PMC027e/t

PMC027e/t

v*v*PMC016d/t

PMC016d/t

v*v*PMC00d5/t

PMC00d5/t

0.
96

0.
97

0.
97

0.
98

0.
98

0.
98

0.
98

0.
98

0.
98

0.
98

0.
98

Fi
gu

re
7.

8:
Pa

ra
m

et
er

se
le

ct
io

n
fo

rt
he

O
pt

er
on

po
w

er
m

od
el

.T
he

X
-a

xi
s

la
be

ls
co

rr
es

po
nd

w
ith

th
e

te
rm

s
in

E
qu

at
io

n
4.

12
fo

rO
pt

er
on

.S
ee

Se
ct

io
n

7.
1.

3
fo

ra
n

ex
pl

an
at

io
n

of
th

is
pl

ot
.

119

7.3.3 Latitude

The Latitude is less straightforward when building a model. An initial parameter
selection for the time model, based on the SPEC CPU2000 reference benchmarks
that took three months to execute, is shown in Figure 7.9. Despite the high R2

shown, the characterised models did not have a good predictive ability when val-
idated using SPEC CPU2006. This is because of the complexity of this platform,
and the limited number of performance counters available.

We had great difficulty obtaining consistent data on the Latitude, due to the
benchmarking difficulties discussed in Section 7.1.2. The parameter selection
procedure is particularly sensitive to benchmarks which do not run consistently,
since it relies on multiple executions to measure each event at the same setting.
On the latitude these inconsistencies are observable for mcf, swim and twolf
among others.

Also, building a performance model with only two performance counters leads
to a model whose accuracy is highly sensitive to the particular workload. To
build an accurate performance model, we used a combination of benchmarks from
both CPU2000 and CPU2006 for the selection process. This biases the parameter
selection toward counters which perform an adequate performance estimation of
both CPU2000 and CPU2006.

This highlights a weakness in this parameter selection methodology: the ac-
curacy of the selected model depends on the coverage of the workloads used for
selection. To have complete coverage, the parameter selection workloads must,
exhibit all of the characteristics of the workloads to be executed. In some cases,
the number of counters, and the events they can count, will not be sufficient to
obtain a general model, and some workloads will be badly mispredicted.

We re-ran the benchmarks using our improved benchmarking technique, but
to complete the necessary benchmarking in a reasonable timeframe we chose a
subset of the performance counters with a mixed set of workloads from both
CPU2000 and CPU2006. The following two events are selected, and are indi-
cators of memory activity:

• Number of completed burst transactions (0x006E);

• Number of lines removed from the L2 cache (0x1F26).

120

R2

Intercept 0x00430x0045 0x00460x0047 0x00480x0080 0x00810x0085 0x00860x0087 0x0F280x0F2A 0x00250x0F2E 0x00210x0022 0x00230x0062 0x20620x0060 0x00650x2065 0x00660x2066 0x00670x2067 0x00680x2068 0x00690x2069 0x006A0x206A 0x006B0x206B 0x006C0x206C 0x206D0x006E 0x206E0x0070 0x20700x006F 0x206F0x0064 0x00610x007A 0x007B0x007E 0x00C10x0011 0x00100x0003 0x00140x0004 0x00050x00C0 0x00C20x00D0 0x00C80x00C6 0x00C70x00C4 0x00C50x00C9 0x00CA0x00E0 0x00E40x00E6 0x00A20x00D2 0x00060x0FD4 0x0FD50x0FD6 0x00DA0x0088 0x00890x008A 0x008B0x008C 0x008D0x008E 0x008F0x0090 0x00910x0092 0x00930x0094 0x00D30x00D7 0x00DB0x00F0 0x00F80x0079 0x01240x0224 0x04240x0824 0x0F240x1124 0x12240x1424 0x18240x1F24 0x21240x2224 0x24240x2824 0x2F240x0126 0x02260x0426 0x08260x0F26 0x11260x1226 0x14260x1826 0x1F260x2126 0x22260x2426 0x28260x2F26 0x01270x0227 0x04270x0827 0x0F270x1127 0x12270x1427 0x18270x1F27 0x21270x2227 0x24270x2827 0x2F270x0129 0x02290x0429 0x08290x0F29 0x11290x1229 0x14290x1829 0x1F290x2129 0x22290x2429 0x28290x2F29 0x00630x006D 0x00E20x00B1 0x00B20x00B3 0x00CC0x00CD 0x00580x0059

0.
94

0.
96

0.
97

0.
97

Fi
gu

re
7.

9:
O

ri
gi

na
l

pa
ra

m
et

er
se

le
ct

io
n

fo
r

th
e

L
at

itu
de

tim
e

m
od

el
.

T
he

X
-a

xi
s

la
be

ls
co

rr
es

po
nd

w
ith

th
e

te
rm

s
in

E
qu

at
io

n
4.

29
fo

rt
he

L
at

itu
de

.S
ee

Se
ct

io
n

7.
1.

3
fo

ra
n

ex
pl

an
at

io
n

of
th

is
pl

ot
.

121

Again, the power model was selected using only the events selected by the
performance model. This gives a model based on fcpuV

2 only.

When characterised using the CPU2000 data, this resulted in a performance
model with R2 = 0.98 and a power model with R2 = 0.96, which, given the
limited number of performance counters and complexity of the platform, can also
be considered a good fit.

7.4 Adaptation to workload

At each time slice, the Koala implementation selects a frequency setting based on
the system’s energy-management policy as described in Chapter 6.

Figure 7.10 shows how Koala responds differently to four different workloads
on the Latitude using a minimum-energy policy, from the CPU-bound gzip to
the memory-bound swim. swim is periodic, with varying frequencies, whereas
gzip remains at the highest frequency after a short initialisation period at the
lowest setting on startup.

Figure 7.11 shows how Koala adapts to the memory-and CPU-bound phases
of the swim benchmark using a minimum-energy policy on the Opteron server.
The lower graph shows how the addition of the frequency switch latency terms
greatly reduces the number of frequency switches, by introducing a bias against
switching. This improved accounting saves an additional 1% of the system energy
in this case.

Three time-slice lengths were trialled, the commonly-used 100 Hz and 250 Hz,
as well as 1000 Hz (sometimes used in real-time applications). The system worked
well at both 100 Hz and 250 Hz. At 1000 Hz the accuracy decreased markedly. We
attribute this to two effects: firstly, the frequency switch overhead becomes more
significant compared to the time slice length. Secondly, averaging over a shorter
period makes the result more sensitive to short-term fluctuations in the workload.
We did not investigate this issue further, as the (more standard) longer time slices
worked well.

122

 0

 2

 4

 6

 8

 10

 12

 1
.2

e+
11

 1
.2

2e
+

11

 1
.2

4e
+

11

 1
.2

6e
+

11

 1
.2

8e
+

11

 1
.3

e+
11

 1
.3

2e
+

11

 1
.3

4e
+

11

S
et

tin
g

Time (Cycles)

gzip trace

 0

 2

 4

 6

 8

 10

 12

 7
.2

72
e+

12

 7
.2

74
e+

12

 7
.2

76
e+

12

 7
.2

78
e+

12

 7
.2

8e
+

12

 7
.2

82
e+

12

 7
.2

84
e+

12

 7
.2

86
e+

12

S
et

tin
g

Time (Cycles)

bzip2 trace

 0

 2

 4

 6

 8

 10

 12

 4
.9

2e
+

11

 4
.9

4e
+

11

 4
.9

6e
+

11

 4
.9

8e
+

11

 5
e+

11

 5
.0

2e
+

11

 5
.0

4e
+

11

 5
.0

6e
+

11

S
et

tin
g

Time (Cycles)

wupwise trace

 0

 2

 4

 6

 8

 10

 12

 8
.9

7e
+

11

 8
.9

8e
+

11

 8
.9

9e
+

11

 9
e+

11

 9
.0

1e
+

11

 9
.0

2e
+

11

 9
.0

3e
+

11

 9
.0

4e
+

11

 9
.0

5e
+

11

 9
.0

6e
+

11

S
et

tin
g

Time (Cycles)

swim trace

Figure 7.10: Koala behaviour for the first 2000 time slices of (clockwise from top
left) gzip, bzip2, wupwise and swim.

123

-1

 0

 1

 2

 3

 4

 0 50 100 150 200 250 300 350 400 450

S
et

tin
g

Normalised Time (cycles)

swim

-1

 0

 1

 2

 3

 4

 0 50 100 150 200 250 300 350 400 450

S
et

tin
g

Normalised Time (cycles)

swim with switching latency model

Figure 7.11: Koala behaviour for the first 1000 time slices of swim on the server
with and without latency terms.

124

7.5 Model accuracy

Figure 7.12 shows the performance and energy use of 27 SPEC CPU2006 bench-
marks under the minimum-energy policy (α = 0 in Equation 5.1) on the Opteron-
based server. The benchmarks omitted for clarity are all CPU-bound and thus un-
interesting for this platform (since they are easily predicted). The energy saving is
between 0 and 15% of the total system energy compared with the maximum per-
formance setting. The latitude showed even more significant energy savings (see
Figure 7.15). For some benchmarks (the memory-bound swim) Koala was able
to save 26% of the energy for less than a 1% loss in performance. This amounts
to 46% of the dynamic energy.

For most benchmarks there is good agreement, generally within a few percent,
between the actual performance and energy use and the estimates produced by the
model, which indicates that the approach generally works well. However, there is
a single case where the model fails spectacularly on both platforms, mispredicting
performance of the LBM benchmark by 25% (107 vs. 86) and energy by 20%
(68 vs. 85) on the server. The system still saves energy in this case — while the
models fail to predict accurately, they still provide a good heuristic for frequency
selection. More accurate models would simply allow more reliable, predictable
energy savings. LBM was the only such case we observed where the models failed
in this way. The possible reasons for this inaccuracy are discussed in Section 7.3.

We enabled idle energy in the model (which adjusts the energy for any ex-
tra idle time created thanks to frequency increases), and ran benchmarks over a
fixed time period. In this case, on both platforms, the energy-optimal frequency is
almost always the minimum.

7.6 Policy

Figures 7.13 and 7.14 show how Koala implements the maximum-degradation

policy (see Chapter 5). Curves in the top graph in each figure show the actual
performance of representative benchmarks under varying performance goals. The
thick diagonal line represents the ideal response, under perfect operation all curves
should be on or just above this line.

125

 80

 85

 90

 95

 100

 105

 110

lb
m

 te
st

m
cf

 te
st

eq
ua

ke
 r

ef

sw
im

 r
ef

po
vr

ay
 tr

ai
n

gz
ip

 g
ra

ph
ic

 r
ef

m
ilc

 te
st

lib
qu

an
tu

m
 te

st

de
al

II
te

st

sj
en

g
te

st

gc
c

tr
ai

n

ca
ct

us
A

D
M

 te
st

bz
ip

2
te

st
 2

bz
ip

2
te

st
 1

om
ne

tp
p

tr
ai

n

bw
av

es
 te

st

gr
om

ac
s

te
st

xa
la

nc
bm

k
te

st

w
rf

 te
st

na
m

d
te

st

ca
lc

ul
ix

 tr
ai

n

ze
us

m
p

te
st

as
ta

r
te

st

to
nt

o
te

st

hm
m

er
 te

st

h2
64

 te
st

sp
hi

nx
 tr

ai
n

P
er

fo
rm

an
ce

 (
%

)

Est T
Act T

 65

 70

 75

 80

 85

 90

 95

 100

 105

lb
m

 te
st

m
cf

 te
st

eq
ua

ke
 r

ef

sw
im

 r
ef

po
vr

ay
 tr

ai
n

gz
ip

 g
ra

ph
ic

 r
ef

m
ilc

 te
st

lib
qu

an
tu

m
 te

st

de
al

II
te

st

sj
en

g
te

st

gc
c

tr
ai

n

ca
ct

us
A

D
M

 te
st

bz
ip

2
te

st
 2

bz
ip

2
te

st
 1

om
ne

tp
p

tr
ai

n

bw
av

es
 te

st

gr
om

ac
s

te
st

xa
la

nc
bm

k
te

st

w
rf

 te
st

na
m

d
te

st

ca
lc

ul
ix

 tr
ai

n

ze
us

m
p

te
st

as
ta

r
te

st

to
nt

o
te

st

hm
m

er
 te

st

h2
64

 te
st

sp
hi

nx
 tr

ai
n

E
ne

rg
y

C
on

su
m

pt
io

n
(%

)

Est E
Act E

Figure 7.12: Comparison of estimated vs. actual performance (top) and energy
(bottom) for the minimum-energy policy on the server platform.

126

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 20 30 40 50 60 70 80 90 100

A
ct

ua
l P

er
fo

rm
an

ce
 (

%
)

Performance setting (%)

lbm_test
mcf_test
swim_ref

gzip_graphic_ref
milc_test

povray_test
equake_ref

Requested Performance

 70

 80

 90

 100

 110

 120

 130

 140

 150

 20 30 40 50 60 70 80 90 100

A
ct

ua
l E

ne
rg

y
(%

)

Performance setting (%)

lbm_test
mcf_test
swim_ref

gzip_graphic_ref
milc_test

povray_test
equake_ref

Figure 7.13: Maximum-degradation policy on the Latitude

127

 30

 40

 50

 60

 70

 80

 90

 100

 30 40 50 60 70 80 90 100

A
ct

ua
l P

er
fo

rm
an

ce
 (

%
)

Performance setting (%)

Requested Performance
lbm_test
mcf_test

equake_ref
swim_ref

povray_train
gzip_graphic_ref

milc_test
libquantum_test

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

 30 40 50 60 70 80 90 100

A
ct

ua
l E

ne
rg

y
(%

)

Performance setting (%)

lbm_test
mcf_test

equake_ref
swim_ref

povray_train
gzip_graphic_ref

milc_test
libquantum_test

Figure 7.14: Maximum-degradation policy on the Opteron

128

On the Latitude, it can be seen that actual performance mostly gets close to
the target. Some benchmarks run at slightly less than the target performance, this
results from the discrete setpoints, inaccurate performance estimation, and Koala’s
adjustment lagging behind changes of workload behaviour.

The horizontal lines extending to the left of the graph are a result of the limited
frequency range available — the processor cannot be throttled enough to reach
the lower performance targets. This effect is particularly strong for the memory-
bound benchmarks.

The bottom graph in the two figures shows the corresponding energy use. We
can see that the maximum-degradation policy saves significant energy (up to about
25%) on memory-bound benchmarks, but actually wastes energy on CPU-bound
benchmarks, clearly indicating that this policy is not suitable for a wide range of
workloads.

The reason is that a CPU-bound benchmark executes in a constant number
of cycles, irrespective of the core frequency. Lower frequency leads to a longer
overall execution time, which increases the static energy used. This is the effect
we have shown in Figure 3.1, which indicates that race-to-halt is the best policy
for CPU-bound workloads on this platform.

The Opteron behaves in a similar fashion, although, because of the much
smaller number of settings there is rarely one that satisfies the performance request
accurately. The result is a sloppier adherence to the ideal line in Figure 7.14.

Figure 7.15 shows that the generalised energy-delay policy produces much
better results. As expected, α = 1 yields the highest performance while α = 0

produces the lowest energy consumption (with a slight aberration of the patho-
logical lbm benchmark), and intermediate values produce intermediate results.
The graphs also show that the standard energy-delay policy (α = 0.33) produces,
for most benchmarks, an energy use close to that of the minimum-energy set-
ting, for a moderate performance degradation. Negative values of α are not useful
for energy management, but can be used to throttle power dissipation for thermal
management.

Figure 7.15 also shows that some benchmarks, specifically the notorious lbm,
fail to reach more than about 90% performance at α = 1. This is obviously a
result of incorrect performance estimates leading Koala to choosing an incorrect

129

 40

 50

 60

 70

 80

 90

 100

 110

-1 -0.5 0 0.5 1

A
ct

ua
l P

er
fo

rm
an

ce
 (

%
)

α

lbm_test
mcf_ref

swim_ref
gzip_graphic_ref

milc_test
povray_test
equake_ref

 70

 80

 90

 100

 110

 120

 130

 140

-1 -0.5 0 0.5 1

A
ct

ua
l E

ne
rg

y
(%

)

α

lbm_test
mcf_ref

swim_ref
gzip_graphic_ref

milc_test
povray_test
equake_ref

Figure 7.15: Generalised energy-delay policy on the Latitude.

130

 40

 50

 60

 70

 80

 90

 100

-1 -0.5 0 0.5 1
 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

A
ct

ua
l P

er
fo

rm
an

ce
 (

%
)

A
ct

ua
l E

ne
rg

y
(%

)

Alpha setting

Act Perf POVRAY
Act Energy POVRAY

Act Perf MILC
Act Energy MILC

Figure 7.16: Generalised energy-delay policy on the server.

setting. (This is confirmed by lbm also failing to reach its maximum-frequency
energy use at α = 1).

The strength of the generalised energy-delay policy with its single global pa-
rameter is particularly evident when comparing the CPU-bound povray with the
memory-bound milc (Figure 7.16). povray is not slowed down at all for pos-
itive α, since there is no energy to save. For the same α values, milc is scaled
in order to save energy. The policy only sacrifices performance when there is a
corresponding energy benefit. Below α = 0, povray is scaled aggressively to re-
duce the system power consumption, but with a corresponding increase in energy
used.

Enabling the switch overhead model, we see the number of frequency switches
reduced for most policies and benchmarks (in the case of swim on the server, this
is about 9%) because the model predicts a higher performance for the incumbent
frequency, which it therefore favours slightly. We also see the energy savings
and model accuracy increase when using these models. We use well-behaved
benchmarks here to highlight the effect of the switch overhead model.

131

7.7 System Evaluation

7.7.1 Multi tasking

Figure 7.17 shows the effect of running a multi-tasking workload consisting of
memory-bound swim and CPU-bound gzip. The top part of the figure shows
that the energy and performance predictions of the combined workload under the
minimum-energy policy is about as good as for separate executions, and the en-
ergy saved is about the average of the savings for the two loads when run inde-
pendently, as can be expected. The trace in the bottom graph shows how Koala
adapts the setting for the two processes independently.

7.7.2 Higher-level policies

One advantage of the generalised energy-delay policy is that the single parameter
(α), allows the system to adapt to changing energy-management objectives.

As a demonstration we implemented a daemon which monitored the laptop’s
battery state of charge using ACPI. At capacities greater than 70%, the daemon
sets α to 1, and the system runs at maximum performance. As the battery is
depleted, the daemon lowers α until the battery gets below 30% and then α is
set to 0, i.e. minimum-energy. Figure 7.18 shows how the performance-energy
tradeoff changes as the battery depletes while running mcf

Another high-level policy on top of the generalised energy-delay policy emu-
lates the ondemand governor in Linux: CPU scaling is controlled based on the
available idle time. During periods of low utilisation, α is lowered towards 0 (the
minimum-energy setting), and in times of high load, α is increased toward 1.0
(the maximum performance setting). The frequency at which this happens is a
user variable.

More complex high-level policies could be constructed in order to meet real-
time deadlines and other performance goals. It would, for example, be possible to
combine a bounded-performance policy with the generalised energy-delay policy,
choosing a candidate setpoint that minimises Equation 5.1 while maintaining a
specified performance (as estimated using the same performance-bound model).
How to use these tools is the topic of future DVFS research.

132

 0.6

 0.7

 0.8

 0.9

 1

 1.1

sw
im

gz
ip

co
m

bi
ne

d

N
or

m
al

is
ed

 P
er

fo
rm

an
ce

/E
ne

rg
y

est perf
act perf

est energy
act energy

 0

 1

 2

 3

 4

 5

 0 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08

C
ho

se
n

S
et

tin
g

Timestamp

swim
gzip

Figure 7.17: Koala multi-tasking on the server

133

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12 14 16 18 20

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

α,
 N

or
m

al
is

ed
 B

at
te

ry
 S

ta
te

N
or

m
al

is
ed

 E
ne

rg
y/

T
im

e

Iteration

α
Battery Level

Execution Time
Energy

Figure 7.18: Using the Latitude’s battery state of charge to drive the power man-
agement policy.

7.7.3 Calculation overheads

A major concern when implementing Koala was the overhead introduced, since
this could reduce the energy savings and be detrimental to performance. In order
to minimise the overhead, all calculations were performed in fixed point, and pre-
calculated lookup-tables used where appropriate.

Reducing the number of setpoints considered in the calculations also reduces
the overhead. Therefore, setpoints which are never chosen should be excluded.

On the server, the memory frequency drops to 160MHz (vs. 200MHz) at the
lowest setting (fcpu = 800MHz). Our initial model for this platform took this
into account, but because of the lower memory frequency, this setting was never
selected. We removed this setting from the model, and in doing so, simplified the
performance model (further reducing overhead).

In addition, we experimented with different policies for selecting a setting.
Instead of calculating the predicted performance and energy for all possible set-
tings, the policies execute the energy and performance models as they search the

134

settings. In the common case, where the current setting is the most optimal, only
four settings need be calculated (current, above, below, and maximum). On the
Laptop, with 11 settings, this reduces the number of settings by nearly a factor
of three. The CPU may not be at the energy optimal frequency for every times-
lice, and the effect on energy savings will depend on the workload characteristics.
Most benchmarks we observed were not disadvantaged by this optimisation.

Depending on the memory behaviour of the workload that ran in the previ-
ous slice, the performance of the calculations may be affected by a small number
of cache misses to bring in model parameters from main memory. The perfor-
mance of the calculations was particularly affected when running the memory-
bound swim. The cost of a cache miss on the server is 200 cycles. Therefore
cache misses are a significant portion of the total cost of the calculations.

We ran the set of benchmarks on kernels with and without Koala enabled. On
both the laptop and the server, for both a single task executing, and for two con-
current tasks, the mean performance difference was well within the standard de-
viation of the benchmarks. To emphasise the overheads, the timer tick frequency
was increased up to 1000Hz, but the mean difference in performance between the
two kernels was still unmeasurable.

135

136

CHAPTER 8

CONCLUSIONS

“To punish me for my contempt of authority, Fate has made me an

authority myself.” – Albert Einstein, 1930

Operating-system level power management is a critical component when re-
ducing the energy used by computing systems, from small mobile devices to high-
end servers. It is a complicated problem, and the heuristic approach often used by
modern operating systems generally leads to poor results, since optimal decisions
can only be made with intimate knowledge of both the platform and the workload.

This thesis presents the Koala approach, which solves this problem using a
combination of two techniques. Firstly, it gives the OS insight into the relevant
properties of a platform and an application, with a model that allows the OS to
obtain accurate estimates of a running process’s power consumption, as well as the
performance and power response to frequency scaling. The models can be used
for prediction when combined with a temporal locality argument, which gives a
sufficient accuracy in the case of the workloads we tested.

These models encapsulate a knowledge of the underlying hardware. If the
models reflect the behaviour of the system, Koala’s policies will naturally adapt
to that behaviour. Koala can therefore replicate the effect of many previously-
presented policies which dealt with challenging hardware behaviour explicitly,
such as those which dealt with the complexities of non-ideal batteries.

The second component is a policy that allows the OS to tune the system’s op-
eration towards an energy-management objective. The generalised energy-delay
policy contains a single parameter which the OS can use to run the system at
maximum performance, minimum energy, reduced thermal load, or intermediate
values representing other trade-offs between performance and energy. The OS can
tune this parameter to adapt to a changing energy-management objective.

137

Rather than treating every process the same, Koala adjusts individual pro-
cesses differently in order to achieve the best overall result. Specifically, memory-
bound processes, where small reductions in performance result in large energy
savings, are throttled more than CPU-bound processes, where small energy sav-
ings come at the cost of a significant performance penalty. The approach led to
impressive results, with one test showing more than 26% of the system’s energy
saved for less than a 1% performance loss. On one platform we studied, our sys-
tem even improved some applications’ performance!

The main shortcoming is in the accuracy of the models for specific worst-case
benchmarks. In both systems we examined closely, a single benchmark’s be-
haviour was poorly predicted. While in both cases energy was still saved for this
benchmark, the significant errors in the prediction of its performance and energy
use certainly lead to sub-optimal power management. The reason for these lapses
in accuracy are likely a result of an insufficient characterisation set, co-linearities
in the selected parameters, or simply because the hardware-provided performance
events are not sufficient to predict the system’s behaviour for that particular work-
load. In any of these cases, the accuracy could be improved by hardware man-
ufacturers adding support for Koala’s performance and energy models: with a
knowledge of the system’s internal operation, and the ability to add specific coun-
ters, it would be possible to build a highly-accurate model with a low calculation
overhead.

While the techniques presented in this thesis allow for excellent energy man-
agement, the improvements outlined later in this chapter will improve the mod-
elling accuracy on a wider range of platforms and workloads (such as multi-core
systems and I/O-based workloads), reduce the calculation overheads and provide
the presently-missing high-level policy components which automatically responds
to a system’s performance and thermal demands.

8.1 Contributions

The contributions of this thesis are outlined explicitly here.
First, through the experimental examination of a large range of platforms, this

thesis showed that the traditional academic approach to frequency scaling was at

138

odds with the behaviour of real platforms. We identified the cause of many of
these deviations, and showed that it was impossible for any single heuristic to ac-
curately, or even effectively, manage the energy consumption in that environment.
This is the first presentation of many of these effects that we are aware of.

The operating system must, therefore, be aware of the platform’s and work-
load’s behaviour. This thesis presented a method of encapsulating that knowledge
in a platform model which can estimate the parameters which need to be con-
trolled (performance and power) rather than attempting to control the parameters
which merely have some effect on the these (frequency and voltage).

The thesis refined the previously existing single-setting energy modelling
techniques into models which allow the prediction of the performance and en-
ergy of a system at alternate power-management settings. Moreover, it presents a
methodology for building such models. The resulting equations took into account
many of the power-management challenges identified, and present no obstacle
to representing all of these. The model’s output is real-world and testable: the
system’s performance and energy consumption. These models are useful in them-
selves, allowing user feedback about the system’s power consumption in the ab-
sence of dedicated sensors. We also considered methods of integrating idle-mode
management, switching-latency overhead and other dynamic effects. These form
extensions to the basic model which improve the accuracy of the power manage-
ment scheme.

We also developed a new low-level policy, the generalised energy-delay pol-
icy, which allows a continuous trade-off between power, energy and performance.
The policy, like the majority of the Koala framework, is generic for any platform
and workload, given the above power and performance models.

Lastly, we conducted a thorough evaluation of the new power-management
scheme using a real operating system, real platforms, real workloads, real mea-
surements, with stated assumptions. Our assumptions are not fundamentally prob-
lematic, but serve to temporarily limit the scope of this work for tractability. We
could demonstrate that the system saves substantial amounts of energy in some
cases, and optimally trades power and performance. The implementation includes
user-land tools for use in modelling, and in run-time monitoring. We showed that
the overheads involved were negligible.

139

8.2 Future Work

This work prompts a new focus in active power management, with a variety of
future work.

It is imperative that we relax the assumptions made when developing Koala,
since these limit the types of systems on which the framework can be effectively
deployed. While these assumptions are substantial, we cannot conceive of any
fundamental problems with the approach. For example, a solution to the single-
core limitation will predict the effect of other cores’ activity on the core being
scaled. Similarly, memory contention must be taken into account in systems using
DMA. I/O can be modelled using similar techniques to those we’ve used for the
computing components. We are presently investigating the latter problem, build-
ing extensive I/O models for different classes of peripherals based on information
gathered in the operating system.

Hardware support should be built in to systems concerned with power man-
agement. We have seen technologies such as IEM and the Core i7 processor with
this kind of support, and this could be further tailored for Koala. Hardware man-
ufacturers should provide:

• dedicated hardware for constructing workload-specific power and perfor-
mance models. This would include dedicated counters and specific PMC
events. Such hardware would dramatically improve the accuracy of the
models by providing a sufficient number of counters. If the calculation
overheads associated with the models became unreasonable, this too could
be implemented in hardware.

• power, temperature and other sensors suitable for those models, or suitable
for measurement-based estimation;

• dedicated power-management controllers such as those implemented in the
Core i7 and Montecito processors. Implementing parts of Koala in firmware
at the hardware level would allow for much finer grained frequency scaling,
potentially improving the energy savings possible. Such a controller re-
quires a very tight coupling with the operating system.

140

This thesis has provided and validated Koala’s low-level policies, but has only
provided toy policies at the high-level. These high-level policies should deter-
mine the importance of performance, power and energy, expressed as α. Much of
the related work discussed in Chapter 2 is now relevant, since these unwittingly
deal with this problem. Integrating Koala-derived information into the scheduler
would also give significant benefits, allowing fairer time-sharing. Processes which
are throttled could be given extra CPU time according to the performance loss cal-
culated by Koala. Every process would then suffer an equal apparent performance
loss. Other modifications to the scheduler could reduce frequency switching over-
heads by scheduling processes with identical setpoints in sequence.

Lastly, some attention needs to be paid to practicality. The experiments in this
thesis took many thousands of man-hours to devise and conduct. Hardware man-
ufacturers could provide a models for their hardware, alleviating these concerns,
and putting the task of model-building the hands of those with the most detailed
relevant knowledge. Even roughly-calibrated models would provide a basis for
later characterisation during a burn-in phase.

8.3 Final words

The development of Koala presents an exciting reality: that academic-developed
DVFS techniques can be applicable to real-world systems. By effectively handling
the platform oddities which are not traditionally examined, this work provides
a predictable environment for making power-management decisions. While the
systems and workloads examined during this thesis are necessarily limited, the
fundamental concepts and policies can be applied to any system for which a model
can be built. In that context, this is the first development and implementation of a
truly generic power-management infrastructure.

141

142

BIBLIOGRAPHY

[1] Nevine AbouGhazaleh, Bruce R. Childers, Daniel Mosse, and Rami G. Melhem.

Integrated CPU cache power management in multiple clock domain processors. In

Proceedings of the 3rd International Conference on High Performance Embedded

Architectures and Compilers, pages 209–223, Göteborg, Sweden, January 27-29

2008.

[2] Andrea Acquaviva, Luca Benini, and Bruno Ricco. Software-controlled processor

speed setting for low-power streaming multimedia. IEEE Transactions on CAD

ICAS, 20(11):1283–1292, November 2001.

[3] Tarek A. AlEnawy and Hakan Aydin. On energy-constrained real-time schedul-

ing. In Proceedings of the 16th Euromicro Conference on Real-Time Systems

(ECRTS04), pages 165–174, July 2004.

[4] Apple Computer, Inc. Darwin web page. URL http://developer.apple.com/
Darwin, 2009.

[5] ARM Limited. Application Note 32: The ARMulator. URL http://infocenter.arm.
com/help/topic/com.arm.doc.dai0032f/AppNote32 ARMulator.pdf, 2003.

[6] ARM Limited. IEM Software Technical Overview, r0p1 edition, 2005.

[7] ARM Limited. Intelligent energy manager (IEM) hardware control system in the

ARM1176JZF-S development chip. Application Note 172, ARM Limited, Novem-

ber 2006.

[8] ARM Limited. Intelligent Energy Manager documentation, 2007.

[9] ARM Limited. IEM technology web page. URL http://www.arm.com/products/
esd/iem home.html, 2008.

[10] ARM Limited. Intelligent Energy Controller Technical Reference Manual (ARM

DDI 0304C). ARM Limited, r0p1 edition, 2008.

143

http://developer.apple.com/Darwin
http://developer.apple.com/Darwin
http://infocenter.arm.com/help/topic/com.arm.doc.dai0032f/AppNote32_ARMulator.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dai0032f/AppNote32_ARMulator.pdf
http://www.arm.com/products/esd/iem_home.html
http://www.arm.com/products/esd/iem_home.html

[11] ASUSTek COMPUTER INC. Eee PC User’s Manual, Windows XP Edition, Eee

PC 901 Series, June 2008.

[12] T. Austin, E. Larson, and D. Ernst. SimpleScalar: an infrastructure for computer

system modeling. IEEE Computer, 35(2):59–67, February 2002.

[13] Hakan Aydin, Vinay Devadas, and Dakai Zhu. System-level energy management

for periodic real-time tasks. In Proceedings of the 27th IEEE Real-Time Systems

Symposium, pages 313–322, Rio de Janeiro, Brazil, December 2006. IEEE Com-

puter Society Press.

[14] Jan-Derk Bakker, Erik Mouw, Marc Joosen, and Johan Pouwelse. The LART

pages. http://www.lart.tudelft.nl, 2000.

[15] Nikhil Bansal, Kanishka Lahiri, and Anand Raghunathan. Automatic power mod-

eling of infrastructure IP for system-on-chip power analysis. In Proceedings of the

20th International Conference on VLSI Design, pages 513–520, Jan. 2007.

[16] Nikhil Bansal, Kanishka Lahiri, Anand Raghunathan, and Srimat T. Chakradhar.

Power monitors: A framework for system-level power estimation using heteroge-

neous power models. In Proceedings of the 18th International Conference on VLSI

Design, 2005.

[17] Frank Bellosa. The benefits of event-driven energy accounting in power-sensitive

systems. In Proceedings of the 9th SIGOPS European Workshop, pages 37–42,

Kolding, Denmark, September 17–20 2000.

[18] Frank Bellosa, Simon Kellner, Martin Waitz, and Andreas Weißel. Event-driven

energy accounting for dynamic thermal management. In Proceedings of the Fourth

Workshop on Compilers and Operating Systems for Low Power (COLP 03), New

Orleans, LA, USA, September 27 2003.

[19] Lloyd Bircher, Madhavi Valluri, Jason Law, and Lizy John. Runtime identification

of microprocessor energy saving opportunities. In Proceedings of the International

Symposium on Low Power Electronics and Design, pages 275–280, San Diego, CA,

USA, August 8–10 2005.

[20] W. Lloyd Bircher and Lizy K. John. Complete system power estimation: A trickle-

down approach based on performance events. In Proceedings of the IEEE In-

144

http://www.lart.tudelft.nl

ternational Symposium on Performance Analysis of Systems and Software, pages

158–168, San Jose, CA, USA, April 25–27 2007. IEEE Computer Society.

[21] Scott A. Brandt, Scott Banachowski, Caixue Lin, and Timothy Bisson. Dynamic

integrated scheduling of hard real-time, soft real-time and non-real-time processes.

In Proceedings of the 24th IEEE Real-Time Systems Symposium, Cancun, Mexico,

December 2003.

[22] D. Brooks, P. Bose, S. Schuster, H. Jacobson, P. Kudva, A. Buyuktosungolu, J-

D Wellman, V. Zyuban, M. Gupta, and P. Cook. Power-aware microarchitecture:

design and modeling challenges for the next generation microprocessors. IEEE

Micro, 20:26–44, 2000.

[23] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a framework for

architectural-level power analysis and optimizations. In Proceedings of the 27th

Annual International Symposium on Computer Architecture (ISCA), pages 83–94,

2000.

[24] F. Chang, K. Farkas, and P. Ranganathan. Energy-driven statistical profiling: De-

tecting software hotspots. In Proceedings of the Workshop on Power Aware Com-

puting Systems, 2002.

[25] Kihwan Choi, R. Soma, and M. Pedram. Fine-grained dynamic voltage and fre-

quency scaling for precise energy and performance tradeoff based on the ratio of

off-chip access to on-chip computation times. IEEE Transactions on CAD ICAS,

24(1):18–28, January 2005.

[26] Kihwan Choi, Ramakrishna Soma, and Massoud Pedram. Dynamic voltage and

frequency scaling based on workload decomposition. In Proceedings of the In-

ternational Symposium on Low Power Electronics and Design, pages 174–179,

August 2004.

[27] C.K.Y. Chun. eXtreme energy conservation for mobile communications. In

Proceedings of the 2006 IEEE International SOC Conference, pages 185–188,

September 2006.

[28] Sung Woo Chung and Kevin Skadron. Using on-chip event counters for high-

resolution, real-time temperature measurement. In Proceedings of the 10th Inter-

society Conference on Thermal and Thermomechanical Phenomena in Electronics

Systems (ITHERM06), pages 114–120, June 2006.

145

[29] Todd Cignetti, Kirill Komarov, and Carla Ellis. Energy estimation tools for the

Palm. In Proceedings of ACM MSWiM 2000: Modeling, Analysis and Simulation

of Wireless and Mobile Systems, 2000.

[30] Gilberto Contreras and Margaret Martonosi. Power prediction for Intel XScale

processors using performance monitoring unit events. In Proceedings of the Inter-

national Symposium on Low Power Electronics and Design, San Diego, CA, USA,

August 2005.

[31] Dell Corporation. DELL Latitude D600 product specification sheet:

SS LAT D600 081304. http://www.hackerconsulting.ca/Downloads/DELL%
20laptops/dell%20D600%20specs.pdf, August 2004.

[32] Intel Corporation. Intel XScale technology web page. http://developer.intel.com/
design/intelxscale/, 2003.

[33] Intel Corporation. Mobile Intel Pentium III processors web page. http://www.
intel.com/support/processors/mobile/pentiumiii/ss.htm, 2003.

[34] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and M. J. Ir-

win. Memory energy management using software and hardware directed power

mode control. Technical Report CSE-00-004, Department of Computer Science

and Engineering, Pennsylvania State University, 2000.

[35] Advanced Micro Devices. AMD PowerNow! technology web page.

URL http://www.amd.com/us-en/Processors/ProductInformation/0,
,30 118 9486 964,00.html, 2000.

[36] Jack Doweck. Inside intel core microarchitecture and smart memory access.

Whitepaper, Intel Corporation, 2006.

[37] Evelyn Duesterwald, Calin Cascaval, and Sandhya Dwarkadas. Characterizing

and predicting program behavior and its variability. In Proceedings of the 12th

International Conferenece on Parallel Architectures and Compilation Techniques,

September 2003.

[38] Carla Ellis. The case for higher-level power management. In Proceedings of Ho-

tOS, 1999.

146

http://www.hackerconsulting.ca/Downloads/DELL%20laptops/dell%20D600%20specs.pdf
http://www.hackerconsulting.ca/Downloads/DELL%20laptops/dell%20D600%20specs.pdf
http://developer.intel.com/design/intelxscale/
http://developer.intel.com/design/intelxscale/
http://www.intel.com/support/processors/mobile/pentiumiii/ss.htm
http://www.intel.com/support/processors/mobile/pentiumiii/ss.htm
http://www.amd.com/us-en/Processors/ProductInformation/0,,30_118_9486_964,00.html
http://www.amd.com/us-en/Processors/ProductInformation/0,,30_118_9486_964,00.html

[39] Extech Instruments Corporation. Extech 380801 Appliance Tester / Power Analyzer

Product Datasheet, August 2008. URL http://www.extech.com/instrument/
products/310 399/380801.html.

[40] Xiaobo Fan, Carla S. Ellis, and Alvin R. Lebeck. Synergy between power-aware

memory systems and processor voltage scaling. Technical Report CS-2002-12,

Duke University, 2002.

[41] Krisztian Flautner, Steven K. Reinhardt, and Trevor N. Mudge. Automatic perfor-

mance setting for dynamic voltage scaling. In Mobile Computing and Networking,

pages 260–271, 2001.

[42] Marc Fleischmann. Longrun power management: Dynamic power management

for Crusoe processors. Whitepaper, Transmeta Corporation, January 2001.

[43] Jason Flinn. Extending Mobile Computer Battery Life through Energy-Aware

Adaptation. PhD thesis, Carnegie Mellon University, 2001.

[44] Jason Flinn, Eya de Lara, M. Satyanarayanan, Dan S. Wallach, and Willy

Zwaenepoel. Reducing the energy usage of office applications. In Proceedings

of the IFIP/ACM International Conference on Distributed Systems Platforms, Hei-

delberg, Germany, 2001.

[45] Jason Flinn, Keith Farkas, and Jennifer Anderson. Power and energy characteriza-

tion of the ItSY pocket computer (version 1.5). Technical Report TN-56, Western

Research Laboratory, Compaq, 2000.

[46] Jason Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile applica-

tions. In Proceedings of the 17th ACM Symposium on Operating Systems Principles

(SOSP), 1999.

[47] Jason Flinn and M. Satyanarayanan. Powerscope: A tool for profiling the energy

usage of mobile applications. In Proceedings of the Second IEEE, Workshop on

Mobile Computing Systems and Applications, 1999.

[48] R. Fonseca, P. Dutta, P. Levis, I. Stoica, CA Berkeley, and CA Stanford. Quanto:

Tracking energy in networked embedded systems. In Proceedings of the 8th

USENIX Symposium on Operating Systems Design and Implementation (OSDI08),

pages 323–338, 2008.

147

http://www.extech.com/instrument/products/310_399/380801.html
http://www.extech.com/instrument/products/310_399/380801.html

[49] Freescale Semiconductor, Inc. eXtreme energy conservation: Advanced power-

saving software for wireless devices. Whitepaper XTMENRGYCNSVWP,

Freescale Semiconductor, Inc., February 2006.

[50] Freescale Semiconductor Literature Distribution Centre, P.O. Box 5405, Denver,

Colorado, 80217. MCIMX31 and MCIMX31L Applications Processors Reference

Manual, December 2008.

[51] Florian Fruth. Run-time energy characterization of the Intel PXA. Study thesis,

Operating System Group, University of Erlangen, Germany, April 2005.

[52] Future Technology Devices Itnernational Ltd. FT232R USB UART IC, 2009.

[53] The GNU Compiler Collection. http://gcc.gnu.org/.

[54] Mohammad Ali Ghodrat, Kanishka Lahiri, and Anand Raghunathan. Accelerating

system-on-chip power analysis using hybrid power estimation. In Proceedings

of the 44th annual Design Automation Conference (DAC07), pages 883–886, San

Diego, California, 2007.

[55] Richard A. Golding, Peter Bosch II, Carl Staelin, Tim Sullivan, and John Wilkes.

Idleness is not sloth. In Proceedings of USENIX Winter, pages 201–212, 1995.

[56] Kinshuk Govil, Edwin Chan, and Hal Wasserman. Comparing algorithms for dy-

namic speed-setting of a low-power CPU. In Mobile Computing and Networking,

pages 13–25, 1995.

[57] Paul M. Greenawalt. Modeling power management for hard disks. In Proceed-

ings of the Conference on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOTS94), pages 62–66, 1994.

[58] Dirk Grunwald, Philip Levis, Keith I. Farkas, Charles B. Morrey III, and Michael

Neufeld. Policies for dynamic clock scheduling. In Proceedings of the 4th USENIX

Symposium on Operating Systems Design and Implementation, pages 73–86, San

Diego, CA, USA, October 2000.

[59] Dirk Grunwald, Philip Levis, Keith I. Farkas, Charles B. Morrey III, and Michael

Neufeld. Policies for dynamic clock scheduling. In Proceedings of the 4th Sym-

posium on Operating Systems Design and Implementation (OSDI), pages 73–86,

2000.

148

http://gcc.gnu.org/

[60] Sudhanva Gurumurthi, Anand Sivasubramaniam, Mary Jane Irwin, Narayanan Vi-

jaykrishnan, Mahmut T. Kandemir, Tao Li, and Lizy Kurian John. Using complete

machine simulation for software power estimation: The softwatt approach. In Pro-

ceedings for the 8th International Symposium on High Performance Computer Ar-

chitecture, pages 141–150, 2002.

[61] Mathhew R Guthaus, Jeffrey S. Reingenberg, Dan Ernst, Todd M. Austing, Trevor

Mudge, and Richard B Brown. Mibench: A free, commercially representative

embedded benchmark suite. In Proceedings of the 4th IEEE Annual Workshop on

Workload Characterization, December 2001.

[62] Graham Hellestrand. Using virtual system prototyping technology to optimize real-

time systems for power. Whitepaper, VaST Systems Technology, October 2005.

[63] J. L. Henning. SPEC CPU2000: measuring CPU performance in the new millen-

nium. IEEE Transactions on Computers, 33(7):28–35, July 2000.

[64] J.L. Henning. SPEC CPU2006 benchmark descriptions. Computer Architecture

News, 34(4), September 2006.

[65] S. Herbert and D. Marculescu. Variation-aware dynamic voltage/frequency scal-

ing. In Proceedings of the 15th International Symposium on High Performance

Computer Architecture (HPCA09), pages 301–312, February 2009.

[66] Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation, Phoenix

Technologies Ltd., and Toshiba Corporation. Advanced configuration and power

interface specification. URL http://www.acpi.info/spec.htm, June 2009.

[67] Paul G. Howard. Next generation intel R© microarchitecture nehalem. Whitepaper,

Microway, Inc, 2009.

[68] Chung-Hsing Hsu and Wu chun Feng. Effective dynamic voltage scaling through

CPU-boundedness detection. In Proceedings of the 2004 Workshop on Power-

Aware Computer Systems, pages 135–149, Portland, OR, USA, December 2004.

[69] Chung-Hsing Hsu and Ulrich Kremer. The design, implementation, and evaluation

of a compiler algorithm for CPU energy reduction. In Proceedings of the ACM SIG-

PLAN Conference on Programming Language Design and Implementation, pages

38–48, San Diego, California, USA, June 2003.

149

http://www.acpi.info/spec.htm

[70] Gumstix Inc. Gumstix basix and connex website. http://docwiki.gumstix.org/
Basix and connex, July 2009.

[71] Intel Corp. IA-32 Architecture Software Developer’s Manual Volume 3: System

Programming Guide, 2001. URL ftp://download.intel.com/design/Pentium4/
manuals/245472.htm.

[72] Intel Corp. IA-32 Architecture Software Developer’s Manual, 2002. URL http:
//developer.intel.com/design/pentium4/manuals.

[73] Intel Corp., http://developer.intel.com. Intel Xscale Microarchitecture for the

PXA255 Processor, March 2003.

[74] Intel Corp. Intel PXA 255 Processor Developer’s Manual, 2004. URL http://www.
xscale-freak.com/XSDoc/PXA255/27869302.pdf.

[75] Intel Corp. Intel PXA 27x Processor Family Developer’s Manual, 2004. URL

http://mmpod.googlecode.com/files/Intel PXA270 Developers Manual.pdf.

[76] Intel Corp. Intel XScale Core Developer’s Manual, 2004. URL http://download.
intel.com/design/intelxscale/27347302.pdf.

[77] Intel Corp. Mobile Intel Atom Processor N270 Single Core, May 2008. http:
//www.intel.com/products/processor/atom/techdocs.htm.

[78] Intel Corporation. Intel Pentium M Processor with 2-MB L2 Cache and 533-MHz

Front Side Bus, July 2005.

[79] Intel Corporation. Intel Pentium M Processor on 90nm Process with 2-MB L2

Cache, January 2006.

[80] Intel Corporation. Powertop web site. URL http://www.lesswatts.org/projects/
powertop/, July 2009.

[81] Canturk Isci, A. Buyuktosungolu, and Margaret Martonosi. Long-term workload

phases: duration predictions and applications to DVFS. IEEE Micro, 25(5):39–51,

Sept-Oct 2005.

[82] Canturk Isci, Gilberto Contreras, and Margaret Martonosi. Live, runtime phase

monitoring and prediction on real systems with application to dynamic power

150

http://docwiki.gumstix.org/Basix_and_connex
http://docwiki.gumstix.org/Basix_and_connex
ftp://download.intel.com/design/Pentium4/manuals/245472.htm
ftp://download.intel.com/design/Pentium4/manuals/245472.htm
http://developer.intel.com/design/pentium4/manuals
http://developer.intel.com/design/pentium4/manuals
http://www.xscale-freak.com/XSDoc/PXA255/27869302.pdf
http://www.xscale-freak.com/XSDoc/PXA255/27869302.pdf
http://mmpod.googlecode.com/files/Intel_PXA270_Developers_Manual.pdf
http://download.intel.com/design/intelxscale/27347302.pdf
http://download.intel.com/design/intelxscale/27347302.pdf
http://www.intel.com/products/processor/atom/techdocs.htm
http://www.intel.com/products/processor/atom/techdocs.htm
http://www.lesswatts.org/projects/powertop/
http://www.lesswatts.org/projects/powertop/

management. In Proceedings of the 39th Annual IEEE/ACM International Sym-

posium on Microarchitecture (MICRO), pages 359–370, Washington, DC, USA,

2006. IEEE Computer Society.

[83] Canturk Isci and Margaret Martonosi. Runtime power monitoring in high-end

processors: Methodology and empirical data. In Proceedings of the 36th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO-36), page 93,

December 2003.

[84] Canturk Isci and Margaret Martonosi. Phase characterization for power: Evalu-

ating control-flow-based and event-counter-based techniques. In Proceedings on

the 12th International Symposium on High-Performance Computer Architecture,

pages 121–132, February 2006.

[85] K. Itoh, K. Sasaki, and Y. Nakagome. Trends in low-power RAM circuit technolo-

gies. In Proceedings of the IEEE, pages 84–87, 1995.

[86] Ravindra Jejurikar. Optimized slowdown in real-time task systems. In Proceedings

of the 16th Euromicro Conference on Real-Time Systems (ECRTS04), pages 1588–

1598, July 2004.

[87] W. Kim, D. Shin, H. Yun, J. Kim, and S. Min. Performance comparison of dy-

namic voltage scaling algorithms for hard real-time systems. In Proceedings of the

Symposium on Real-Time and Embedded Technology and Applications, 2002.

[88] J.G. Koomey. Estimating total power consumption by servers in the U.S. and the

world. Technical report, Lawrence Berkeley National Laboratory, February 2007.

[89] R. Kotla, A. Devgan, S. Ghiasi, T. Keller, and F. Rawson. Characterizing the impact

of different memory-intensity levels. In Proceedings of the 7th IEEE International

Workshop on Workload Characterisation (WWC04), pages 3–10, 2004.

[90] Amit Kumar, Li Shang, Li-Shiuan Peh, and Niraj K. Jha. HybDTM: a coordinated

hardware-software approach for dynamic thermal management. In Proceedings of

the 43rd ACM/IEEE Conference on Design, Automation and Test in Europe, pages

548–553, San Francisco, CA, July 2006.

[91] Martin P. Lawitzky, David C. Snowdon, and Stefan M. Petters. Integrating real time

and power management in a real system. In Proceedings of the 4th Workshop on

151

Operating System Platforms for Embedded Real-Time Applications, Prague, Czech

Republic, July 2008.

[92] Alvin Lebeck, Xiaobo Fan, Heng Zeng, and Carla Ellis. Power aware page al-

location. In Proceedings of the Ninth International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS IX), 2000.

[93] Kester Li, Roger Kumpf, Paul Horton, and Thomas E. Anderson. A quantitative

analysis of disk drive power management in portable computers. In Proceedings

of USENIX Winter, 1994.

[94] Jacob Lorch. A complete picture of the energy consumption of a portable computer.

Technical report, University of California at Berkeley, 1995.

[95] Jacob R. Lorch and Alan Jay Smith. Improving dynamic voltage scaling algorithms

with PACE. In Proceedings of the ACM SIGMETRICS Conference, pages 50–61,

2001.

[96] Yung-Hsiang Lu, Luca Benini, and Giovanni De Micheli. Operating-system di-

rected power reduction. In Proceedings of the 2000 International Symposium on

Low Power Electronics and Design, pages 37–42. Stanford University, 2000.

[97] A. Mallik, B. Lin, G. Memik, P. Dinda, and R.P. Dick. User-driven frequency

scaling. IEEE COMPUTER ARCHITECTURE LETTERS, 5(2):61, 2006.

[98] Thomas L. Martin. Balancing Batteries, Power, and Performance: System Issues

in CPU Speed-Setting for Mobile Computing. PhD thesis, Carnegie Mellon Uni-

versity, Pittsburgh, Pennsylvania, 2001.

[99] Thomas L. Martin. Balancing Batteries, Power, and Performance: System Issues in

CPU Speed-Setting for Mobile Computing. PhD thesis, Carnegie Melon University,

2001.

[100] Thomas L. Martin and Daniel P. Siewiorek. Nonideal battery and main memory

effects on cpu speed-setting for low power. IEEE Transactions on Very Large Scale

Integration Systems, 9(1):29–34, February 2001.

[101] R. McGowen, C.A. Poirier, C. Bostak, J. Ignowski, M. Millican, W.H. Parks, and

S. Naffziger. Power and temperature control on a 90-nm Itanium family processor.

IEEE Journal of Solid-State Circuits, 41(1):229–237, Jan. 2006.

152

[102] Andreas Merkel and Frank Bellosa. Balancing power consumption in multipro-

cessor systems. In Proceedings of the First ACM SIGOPS EuroSys Conference,

Leuven, Belgium, April 18–21 2006.

[103] Microchip Technology Inc. MCP3909: Energy Metering IC with SPI Interface and

Active Power Pulse Output, March 2009.

[104] Micron Technology, Inc. Micron web site. URL http://www.micron.com, 2009.

[105] R. Min, M. Bhardwaj, S. Cho, A. Sinha, E. Shih, A. Wang, and A. Chandrakasan.

Low-power wireless sensor networks, 2001.

[106] R. Min, T. Furrer, and A. Chandrakasan. Dynamic voltage scaling techniques for

distributed microsensor networks. In Proceedings of the IEEE Workshop on Very

Large Scale Integration, 2000.

[107] Akihiko Miyoshi, Charles Lefurgy, Eric Van Hensbergen, Ram Rajamony, and Raj

Rajkumar. Critical power slope: understanding the runtime effects of frequency

scaling. In Proceedings of the 16th International Conference on Supercomputing,

pages 35–44, New York, NY, USA, June 2002. ACM Press.

[108] P. Nagpurkar. Analysis, Detection, and Exploitation of Phase Behavior in Java

Programs. PhD thesis, UNIVERSITY OF CALIFORNIA, 2007.

[109] Dushyanth Narayanan, Jason Flinn, and M. Satyanarayanan. Using history to im-

prove mobile application adaptation. In Proceedings of the 3rd IEEE Workshop on

Mobile Computing Systems and Applications, 2000.

[110] Rolf Neugebauer and Derek McAuley. Energy is just another resource: Energy

accounting and energy pricing in the Nemesis OS. In Proceedings of the 8th IEEE

Workshop on Hot Topics in Operating Systems (HotOS-VIII), 2001.

[111] Venkatesh Pallipadi, Shaohua Li, , and Adam Belay. cpuidle — do nothing, effi-

ciently... In Proceedings of the 2007 Ottawa Linux Symposium, 2007.

[112] Venkatesh Pallipadi and Alexey Starikovskiy. The ondemand governor. In Pro-

ceedings of the Ottawa Linux Symposium, volume 2, pages 223–238, 2006.

[113] Jorgen Peddersen and Sri Parameswaran. CLIPPER: Counter-based low impact

processor power estimation at run-time. In Proceedings of the 2007 Asia and South

153

http://www.micron.com

Pacific Design Automation Conference (ASPDAC07), pages 890–895, Washington,

DC, USA, 2007. IEEE Computer Society.

[114] Jorgen Peddersen and Sri Parameswaran. Energy driven application self adaptation

at run-time. In Proceedings of the 20th International Conference on VLSI Design,

pages 385–390, January 2007.

[115] Paul I. Pénzes and Alain J. Martin. Energy-delay efficiency of VLSI computations.

In Proceedings of the 12th ACM Great Lakes symposium on VLSI (GLSVLSI02),

pages 104–111, New York, NY, USA, 2002. ACM.

[116] Colin Percival. Enhanced speedstep driver for freebsd. URL http://www.
daemonology.net/freebsd-est/, 2009.

[117] Trevor Pering, Thomas Burd, and Robert Brodersen. Voltage scheduling in the

lpARM microprocessor system. In Proceedings of the International Symposium

on Low Power Electronics and Design, 2000.

[118] Trevor Pering, Tom Burd, and Robert Brodersen. The simulation and evaluation of

dynamic voltage scaling algorithms. In Proceedings of the International Sympo-

sium on Low Power electronics and Design, pages 76–81, 1998.

[119] Phytec America LLC. Phytec America website. URL http://www.phytec.com,

2009.

[120] Padmanabhan Pillai and Kang G. Shin. Real-time dynamic voltage scaling for

low-power embedded operating systems. In Proceedings of the 18th ACM Sym-

posium on Operating Systems Principles (SOSP01), pages 89–102, Lake Louise,

Alta, Canada, October 2001.

[121] Christian Poellabauer, Leo Singleton, and Karsten Schwan. Feedback-based dy-

namic voltage and frequency scaling for memory-bound real-time applications. In

Proceedings of the 11th IEEE Real-Time and Embedded Technology and Applica-

tions Symposium, volume 00, pages 234–243, 2005.

[122] J. Pouwelse, K. Langendoen, and H. Sips. Dynamic voltage scaling on a low-

power microprocessor. In Proceedings of the 7th ACM International Conference

on Mobile Computing and Networking (MOBICOM01), pages 251–259, Rome,

Italy, 2001.

154

http://www.daemonology.net/freebsd-est/
http://www.daemonology.net/freebsd-est/
http://www.phytec.com

[123] M.D. Powell, A. Biswas, J.S. Emer, S.S. Mukherjee, B.R. Sheikh, and S. Yardi.

CAMP: A technique to estimate per-structure power at run-time using a few simple

parameters. In Proceedings of the 15th IEEE International Symposium on High

Performance Computer Architecture (HCPA09), pages 289–300, February 2009.

[124] Voodoo Power. voodoo-power: OSX alternative power management. URL http:
//code.google.com/p/voodoo-power/, 2009.

[125] R Development Core Team. R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, Vienna, Austria, 2008. ISBN

3-900051-07-0.

[126] Dinesh Rajan, Russell Zuck, and Christian Poellabauer. Workload-aware dual-

speed dynamic voltage scaling. In Proceedings of the 12th IEEE Conference on

Embedded and Real-Time Computing and Applications, pages 251–256, 2006.

[127] Y. Sazeides, R. Kumar, D.M. Tullsen, and T. Constantinou. The danger of interval-

based power efficiency metrics: When worst is best. IEEE Computer Architecture

Letters, 4(1), 2005.

[128] Jed Scaramella. Worldwide server power and cooling expense: 2006-2010 forecast.

White paper 203598, IDC, September 2006. http://www.sun.com/service/eco/
IDCWorldwideServerPowerConsumption.pdf.

[129] Seiko Epson Corporation. S1F81100 Series: System power supply IC, March 2005.

[130] Semtech Corporation. SC1476: Portable IMVP-IV Dual Phase Power Supply Con-

troller Datasheet, December 2002.

[131] D. Sengupta and R. Saleh. Generalized power-delay metrics in deep submicron

CMOS designs. IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, 26(1):183–189, Jan. 2007.

[132] Kiran Seth, Aravindh Anantaraman, Frank Mueller, and Eric Rotenberg. FAST:

Frequency-aware static timing analysis. ACM Transactions on Embedded Comput-

ing Systems, 5(1):200–224, 2006.

[133] Timothy Sherwood and Brad Calder. Time varying behaviour of programs. Techni-

cal Report UCSD-CS99-630, University of California at San Diego, August 1999.

155

http://code.google.com/p/voodoo-power/
http://code.google.com/p/voodoo-power/
http://www.sun.com/service/eco/IDCWorldwideServerPowerConsumption.pdf
http://www.sun.com/service/eco/IDCWorldwideServerPowerConsumption.pdf

[134] Timothy Sherwood, Erez Perelman, and Brad Calder. Basic block distribution anal-

ysis to find periodic behavior and simulation points in applications. In Proceedings

of the International Conference on Parallel Architectures and Compilation Tech-

niques, September 2001.

[135] Dongkun Shin, Jihong Kim, and Seongsoo Lee. Low-energy intra-task voltage

scheduling using static timing analysis. In Proceedings of Design Automation Con-

ference, pages 438–443, 2001.

[136] T. Simunic, H. Vikalo, P. Glynn, and G. De Micheli. Energy efficient design of

portable wireless systems. In Proceedings of the 2000 International Symposium on

Low Power Electronics and Design (ISLPED’00), pages 49–54, 2000.

[137] Tajana Simunic, Luca Benini, Andrea Acquaviva, Peter W. Glynn, and Gio-

vanni De Micheli. Dynamic voltage scaling and power management for portable

systems. In Proceedings of the Design Automation Conference, pages 524–529,

2001.

[138] Tajana Simunic, Luca Benini, Peter Glynn, and Giovanni De Micheli. Dynamic

power management of a laptop hard disk. In Proceedings of IEEE conference on

Design, Automation and Test in Europe (DATE), pages 11–19, 2000.

[139] Tajana Simunic, Luca Benini, and Giovanni De Micheli. Cycle-accurate simula-

tion of energy consumption in embedded systems. In Proceedings of the Design

Automation Conference, pages 867–872, 1999.

[140] Tajana Simunic, Luca Benini, and Giovanni De Micheli. Energy-efficient design

of battery-powered embedded systems. In Proceedings of the International Sym-

posium on Low Power Electronics and Design, pages 212–217, 1999.

[141] Tajana Simunic, Giovanni De Micheli, Luca Benini, and Mat Hans. Source code

optimization and profiling of energy consumption in embedded systems. In Pro-

ceedings of the IEEE International Symposium on System Synthesis, pages 193–

199, 2000.

[142] Karan Singh, Major Bhadauria, and Sally A. McKee. Real time power estimation

and thread scheduling via performance counters. SIGARCH Computer Architecture

News, 37(2):46–55, 2009.

156

[143] Amit Sinha and Anantha Chandrakasan. Jouletrack — a web based tool for soft-

ware energy profiling. In Proceedings of the Design Automation Conference, pages

220–225, 2001.

[144] David C. Snowdon, Etienne Le Sueur, Stefan M. Petters, and Gernot Heiser. Koala:

A platform for OS-level power management. In Proceedings of the 4th EuroSys

Conference, Nuremberg, Germany, April 2009.

[145] David C. Snowdon, Stefan M. Petters, and Gernot Heiser. Power measurement as

the basis for power management. In Proceedings of the 1st Workshop on Operating

System Platforms for Embedded Real-Time Applications, Palma, Mallorca, Spain,

July 2005.

[146] David C. Snowdon, Stefan M. Petters, and Gernot Heiser. Accurate on-line predic-

tion of processor and memory energy usage under voltage scaling. In Proceedings

of the 7th International Conference on Embedded Software, pages 84–93, Salzburg,

Austria, October 2007.

[147] David C. Snowdon, Sergio Ruocco, and Gernot Heiser. Power management and

dynamic voltage scaling: Myths and facts. In Proceedings of the 2005 Workshop

on Power Aware Real-time Computing, New Jersey, USA, September 2005.

[148] David C. Snowdon, Godfrey van der Linden, Stefan M. Petters, and Gernot Heiser.

Accurate run-time prediction of performance degradation under frequency scaling.

In Proceedings of the 3rd Workshop on Operating System Platforms for Embedded

Real-Time Applications, Pisa, Italy, July 2007.

[149] Elmar Stahleder. Optimization of energy consumption. Whitepaper, Lauterbach

GmbH, June 2007.

[150] Jan Stoess, Christian Lang, and Frank Bellosa. Energy management for hypervisor-

based virtual machines. In Proceedings of the 2007 USENIX Technical Conference,

Santa Clara, CA, June 2007.

[151] Jon Stokes. Power gating and turbo mode: Intel talks nehalem

at IDF. URL http://arstechnica.com/hardware/news/2008/08/
power-gating-and-turbo-mode-intel-talks-nehalem-at-idf.ars, August

2008.

157

http://arstechnica.com/hardware/news/2008/08/power-gating-and-turbo-mode-intel-talks-nehalem-at-idf.ars
http://arstechnica.com/hardware/news/2008/08/power-gating-and-turbo-mode-intel-talks-nehalem-at-idf.ars

[152] Tai Kee Tan, Anand Rahunathan, Ganesh Lakshminarayana, and Niraj K. Jha.

High-level energy macromodeling of embedded software. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 21(9):1037–1050,

September 2002.

[153] Texas Instruments Incorporated. MSP430x13x, MSP430x14x, MSP430x14x1

Mixed Signal Microcontroller, July 2004.

[154] Texas Instruments Incorporated. TPS65021: Power management IC for Li-Ion

powered systems, July 2007.

[155] O.S. Unsal, J.W. Tschanz, K. Bowman, V. De, X. Vera, A. Gonzalez, and O. Er-

gin. Impact of parameter variations on circuits and microarchitecture. ACM/IEE

International Symposium on Microarchitecture, 26(6):30–39, Nov.-Dec. 2006.

[156] Energy Star Program U.S. Environmental Protection Agency. Report to congress

on server and data center energy efficiency public law 109-431. Technical Report

Public Law 109-431, U.S. Environmental Protection Agency, August 2007.

[157] Amin Vahdat, Alvin Lebeck, and Carla Ellis. Every joule is previous: The case for

revisiting operating system design for energy efficiency. In Proceedings of the 9th

ACM SIGOPS European Workshop, 2000.

[158] Prashant Vaibhav. xnu-speedstep: A kernel extension for OS X to enable In-

tel speedstep and undervolting on any kernel. URL http://code.google.com/p/
xnu-speedstep/, 2009.

[159] A. Varma, B. Ganesh, M. Sen, S. R. Choudhary, L. Srinivasan, and B. Jacob. A

control-theoretic approach to dynamic voltage scaling. In Proceedings of the Inter-

national Conference on Compilers, Architectures and Synthesis for Embedded Sys-

tems (CASES). Dept. of Electrical & Computer Engineering, University of Mary-

land at College Park, October 2003.

[160] Suji Velupillai and Ken Tough. Intelligent energy manager (IEM) benchmarking on

a Freescale’s iMX31 multimedia processor. Technical report, Intrinsyc Software,

September 2007.

[161] Vasanth Venkkatachalam, Chrisian Probst, and Michael Franz. A new way of es-

timating compute boundedness and its application to dynamic voltage scaling. In-

ternational Journal on Embedded Systems, 1(1):64–74, 2006.

158

http://code.google.com/p/xnu-speedstep/
http://code.google.com/p/xnu-speedstep/

[162] VMware, Inc. VMware helps enterprises and governments of all sizes go

green. URL http://www.vmware.com/company/news/releases/greenit 09.
html, April 2009.

[163] Martin Waitz. Accounting amd control of power consumption in energy-aware op-

erating systems. Diploma thesis, Operating System Group, University of Erlangen,

Germany, January 2003.

[164] Mark Weiser, Brent Welch, Alan J. Demers, and Scott Shenker. Scheduling for

reduced CPU energy. In Proceedings of the 1st USENIX Symposium on Operating

Systems Design and Implementation (OSDI94), pages 13–23, Monterey, CA, USA,

1994.

[165] Andreas Weissel and Frank Bellosa. Process cruise control—event-driven clock

scaling for dynamic power management. In Proceedings of the International Con-

ference on Compilers, Architecture and Synthesis for Embedded Systems, Greno-

ble, France, October 8–11 2002.

[166] Andreas Weissel and Frank Bellosa. Process cruise control: event-driven clock

scaling for dynamic power management. In Proceedings of the International

Conference on Compilers, Architecture, and Synthesis for Embedded Systems

(CASES02), Grenoble, France, October 2002.

[167] Andreas Weissel, Bjoern Beutel, and Frank Bellosa. Cooperative I/O: A novel I/O

semantics for energy-aware applications. In Proceedings of the 5th Symposium on

Operating System Design and Implementation (OSDI02), 2002.

[168] FreeBSD Wiki. FreeBSD powerd website. URL http://wiki.freebsd.org/powerd.

[169] John Wilkes. Predictive power conservation. Technical Report HPL-CSP-92-5,

Hewlett Packard Laboratories, 1992.

[170] Fen Xie, Margaret Martonosi, and Sharad Malik. Compile-time dynamic voltage

scaling settings: Opportunities and limits. In Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and Implementation, pages 49–62,

New York, NY, USA, 2003. ACM Press.

[171] Fen Xie, Margaret Martonosi, and Sharad Malik. Efficient behavior-driven runtime

dynamic voltage scaling policies. In Proceedings of the 3rd International Confer-

ence on Hardware/Software Codesign and System Synthesis, pages 105–110, 2005.

159

http://www.vmware.com/company/news/releases/greenit_09.html
http://www.vmware.com/company/news/releases/greenit_09.html
http://wiki.freebsd.org/powerd

[172] Yisehac Yohannes and John Hoddinott. Classification and regression trees: An in-

troduction. Whitepaper, International Food Policy Research Institute, March 1999.

[173] Wanghong Yuan and Klara Nahrstedt. Energy-efficient soft real-time CPU schedul-

ing for mobile multimedia systems. In Proceedings of the 19th ACM Symposium

on Operating Systems Principles (SOSP03), pages 149–163, Urbana, IL, 2003.

University of Illinois at Urbana-Champaign, ACM Press.

[174] Hang Zeng and Carla S. Ellis Alivn R. Lebeck. Experiences in Managing Energy

with ECOSystem. IEEE Pervasive Computing, 4(1):62–68, 2005.

[175] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin Vahdat. Currentcy: Unify-

ing policies for resource management. In Proceedings of the USENIX 2003 Annual

Technical Conference, San Antonio, Texas, June 2003.

[176] Heng Zeng, Xiaobo Fan, Carla Ellis, Alvin Lebeck, and Amin Vahdat. ECOSys-

tem: Managing energy as a first class operating system resource. In Tenth Inter-

national Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS X), 2002.

[177] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan. Hotleak-

age: A temperature-aware model of subthreshold and gate leakage for architects.

Technical report, University of Virginia Department of Computer Science, March

2003.

160

APPENDIX A

PLATFORMS

A variety of platforms were evaluated during the course of this thesis. Some of the plat-

forms were used more than others because fine-grained frequency scaling, such as that

implemented by Koala, is by nature more effective, and therefore more interesting in the

context of this thesis, on some platforms than others. All of the platforms which were

examined are described here, including those that were given cursory inspection.

161

A.1 PLEB 2 (PXA255) — PLEB 2

Figure A.1: PLEB 2 with Echidna

Processor PXA255
Architecture ARMv5TE
Tested Settings 22
Variable Frequencies 3
Variable Voltages 1
Energy Measurement Echidna
Performance Counters 2 + cycle counter
Performance Events 14

PLEB 2 was designed for the purposes of experimentation during this thesis. It is a

single-board computer, consisting of a PXA255 processor [74] which, as specified, can be

clocked at up to 398MHz (but was over-clocked to 471MHz for the purposes of collecting

a larger range of data). It has 64MB SDRAM and 8MB flash. The PXA255 is based on an

ARMv5T-compatible XScale core with a 7-stage integer and 8-stage memory pipeline. It

has split L1 caches and TLBs, write, fill and pend buffers. The data cache supports both

write-through and write-back policies.

162

The system includes a LAN91C111 network interface IC, which was used to transfer

benchmark software and results. The interface was disabled during all measurements to

avoid interrupts and active power. There are several other components on-board, such as

LEDs and resistors. Combined with the CPU, memory and flash, these contribute to a

sizeable static power.

Various voltage supplies are generated by an S1F81100 power-management chip from

a constant 4.1V source. It consists of three buck converters which switch to the CPU core,

memory and IO interface voltages. The maximum efficiency for the core voltage is quoted

at 80%, with 90% for the memory and IO interface voltage supplies. The S1F81100

technical manual [129] presents graphs showing an approximately constant efficiency for

the loads in PLEB 2. This chip can be controlled by the PXA255 via an I2C bus, allowing

for adjustment of the processor’s core voltage. All other circuits run at a fixed 3.3V.

A number of frequencies are generated by the PXA255’s clock management unit.

These include the core clock (fcpu), system bus clock (fbus), SDRAM clock (fmem),

peripheral bus clock (fio), real-time clock (frtc), etc. Because of the way these clocks

are synthesised, only certain combinations can be generated. We call each of these clock

combinations a setpoint. Typical of a real system, only fcpu , fbus and fmem are varied in

these experiments.

All possible combinations of fcpu, fbus and fmem were considered, including those

outside the chip’s specifications. The frequencies were limited to reasonable values: fcpu
varies between 99 and 471MHz, fbus varies between 50 and 236MHz and fmem varies

between 99 and 133MHz. A total of 22 unique setpoints were used.

The electrical specifications for the PXA255 give the appropriate CPU core voltage

for a number of frequency settings. Since this information does not specify the core volt-

age required for every possible frequency, a roughly linear relationship between frequency

and voltage was found and used to calculate the voltage for the unspecified frequencies.

Furthermore, the S1F81100 power supply chip only allows discrete steps of 0.1V. For

each frequency the available voltage closest to a linear interpolation between frequency-

voltage pairs specified in the processor’s documentation was chosen and confirmed to

operate correctly.

Switching frequencies on PLEB 2 is software sequenced, with a slow interface to the

S1F81100 power supply IC. The I2C bus used can run at a maximum of 400kHz, the

S1F81100 requires a 6-byte transfer to switch voltages, and the PXA255’s I2C hardware

provides no buffering so each byte’s transmission causes an interrupt in order to load the

next. In addition the frequency change overhead can be large — the CPU is unavailable

163

for ∼ 500µs when the system’s PLL re-locks. A faster frequency-change mechanism is

available via the Turbo mode bit. This controls a divider which is configured during the

PLL lock. The latency for this switch was measured at ∼20 cycles. Therefore to change

between two pre-determined frequencies has a low overhead,but changing between ar-

bitrary frequencies, or changing voltages, has a high overhead (in the context of a 4ms

timer-tick period).

The PXA255 provides two performance counters and one cycle counter. The con-

figurable counters can each be set to count one of 14 events, described in the PXA255

developer’s manual [74].

All PLEB 2 experiments presented is this thesis were conducted in Linux 2.6.24

patched to support the platform. Kernel modules were written for benchmarking pur-

poses: to support the performance-monitoring unit, voltage scaling via the power supply

chip, triggering of energy measurements, and frequency scaling based on cpufreq.

Energy measurements were made via the Echidna board, with triggering via a GPIO

pin on the PXA255. The Echidna measures the power used to supply the S1F81100 power

supply IC at 4.1V. This was supplied by a voltage controlled laboratory power supply.

In addition to the above energy measurement mechanism, a small microcontroller is

embedded on the motherboard, along with sense resistors and amplifiers for measuring the

current drawn from the memory, IO and CPU core power supplies. This microcontroller

can communicate with the PXA255 via an SPI bus.

Figures A.2, A.3 and A.4 show the normalised execution time, measured power and

normalised energy for a memory-bound and a CPU-bound benchmark. In each of these

plots connected points run at the same memory and bus frequency.

It is clear from Figure A.2 that memory and CPU intensive applications behave differ-

ently on this platform. The CPU-bound twolf test scales as expected with the CPU

frequency (reducing the frequency from 400 MHz to 100 MHz results in about four times

the execution time), whereas gzip test is much more consistent. The difference in

the memory performance resulting from the changing memory and bus frequencies can

clearly be seen in the plot of gzip test.

The average power for each of those benchmarks can be seen in Figure A.3, with the

power required to access memory resulting in a higher power draw for gzip test.

More interesting in this case is the energy used as depicted in Figure A.4 (normalised

to the energy at one of the 471 MHz settings. Counter-intuitively, the energy required

for the CPU-bound benchmark is reduced as the frequency increases. This is because the

run-time (see Figure A.2) is significantly reduced, and, for this graph, we assume that the

164

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 50 100 150 200 250 300 350 400 450 500

N
or

m
al

is
ed

 E
xe

cu
tio

n
T

im
e

(%
)

CPU Frequency (MHz)

PLEB 2 Performance

gzip_test
twolf_test

Figure A.2: Normalised execution time for memory-bound (gzip test) and
CPU-bound (twolf test) benchmarks on PLEB 2.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 50 100 150 200 250 300 350 400 450 500

P
ow

er
 (

W
)

CPU Frequency (MHz)

PLEB 2 Power

gzip_test
twolf_test

Figure A.3: Measured power for memory-bound (gzip test) and CPU-bound
(twolf test) benchmarks on PLEB 2.

165

 80

 100

 120

 140

 160

 180

 200

 220

 50 100 150 200 250 300 350 400 450 500

N
or

m
al

is
ed

 E
ne

rg
y

(%
)

CPU Frequency (MHz)

PLEB 2 Energy

gzip_test
twolf_test

Figure A.4: Normalised energy for memory-bound (gzip test) and CPU-
bound (twolf test) benchmarks on PLEB 2.

system is shut down following the benchmark run.

The bus and memory frequency make a difference to the energy used. At

fcpu =471 MHz the CPU-bound benchmark uses more energy with a higher bus and

memory frequency (266 MHz and 133 MHz respectively). But, for the memory-bound

benchmark, we see the opposite effect. Since the higher bus/memory frequency does not

improve the system’s performance for CPU-bound applications, it makes sense to use the

lower bus/memory frequency settings for those workloads.

PLEB 2’s idle power, running the benchmarking kernel with the network interface dis-

abled, was measured at 0.533W. Figure A.5 shows the energy required to run the bench-

mark, once the power required to idle the system has been subtracted (see Section 4.5).

The plot seems erratic, but this can be explained by the large minimum voltage step on

PLEB 2 — 100mV. Figure A.6 shows the voltage which is used to run each frequency,

which, unsurprisingly, looks very similar to the dynamic energy plot — according to the

commonly-assumed model, energy is proportional to voltage.

While performance and power models were developed and tested for PLEB 2 (dis-

cussed in Section 7.5), Koala was not ported due to the prohibitively high overhead of

switching frequencies on this platform.

166

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 50 100 150 200 250 300 350 400 450 500

N
or

m
al

is
ed

 E
ne

rg
y

(%
)

CPU Frequency (MHz)

PLEB 2 Energy Without Idle Power

gzip_test
twolf_test

Figure A.5: Normalised energy without idle power for memory-bound
(gzip test) and CPU-bound (twolf test) benchmarks on PLEB 2.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 50 100 150 200 250 300 350 400 450 500

V
cp

u
(V

)

CPU Frequency (MHz)

Vcpu on PLEB2

Figure A.6: Voltage setting vs. frequency for PLEB 2.

167

A.2 Gumstix Connex (PXA255) — Gumstix

Figure A.7: Gumstix Connex with EtherStix network card

Processor PXA255
Architecture ARMv5TE
Tested Settings 22
Variable Frequencies 3
Variable Voltages 0
Energy Measurement Echidna
Performance Counters 2 + cycle counter
Performance Events 14
Other notes 16-bit data bus

The Gumstix Connex platform [70] is very similar to PLEB 2 (Section A.1). It

consists of the same PXA255 system-on-a-chip, with a similar arrangement of 64MB

SDRAM and 4MB flash. In contrast to PLEB 2, which has a 32-bit data bus, the Gumstix

has a 16-bit main memory data bus. This reduces the system’s memory bandwidth.

The same set of 22 settings were tested, however the Gumstix uses a different power

supply IC to PLEB 2. This power supply limits the CPU core voltage to a fixed 1.3V

168

and only frequency scaling, rather than voltage scaling, information is available for the

Gumstix. The benchmarking, energy measurement methodology, kernel modifications,

and other infrastructure, are shared with PLEB 2.

An Etherstix network interface board was used to provide network connectivity. It

uses the same LAN91C111 network interface IC as the PLEB 2 NIC.

The Gumstix was supplied at 5V through an Echidna. 5V was supplied by a regulated

supply.

This platform provides an example of a second system based on an identical processor

to PLEB 2, and gives an idea of how platform design (as opposed to processor design) can

affect the system power, and frequency scaling decisions. In the case of the Gumstix, the

fixed CPU voltage and 16-bit data bus substantially modify the behaviour of a platform

which is otherwise very similar to PLEB 2. Figures A.8, A.9 and A.10 show the behaviour

of the system.

As for PLEB 2, an increased memory frequency decreases the total energy used for

a memory-bound benchmark, and increases it for a CPU-bound benchmark. This is of

particular note at the highest tested frequency, where an 8% energy saving can be made

by using the highest memory frequency for gzip test, but doing so for twolf test

would result in a 4.7% increase.

The effect of scaling the frequency alone (rather than in tandem with the voltage) is

shown more clearly when a typical idle power (0.31W) is subtracted from the measured

energy (see Section 4.5 for details). For a given memory frequency, the energy savings

are nearly constant for the CPU-bound benchmark. Changing the memory frequency has

an effect on the system’s power, but not on the performance in this case.

When this typical idle power is subtracted from the measured energy (see Section 4.5

for details), we can see the effect of scaling frequency without voltage (since this platform

doesn’t support voltage scaling). This is shown in Figure A.11. The energy used to run

the CPU-bound benchmark is clearly effected by the memory frequency, with increasing

memory frequency leading to increased dynamic energy. This is not true for the memory-

bound workload, since it runs more efficiently with a high memory frequency. For the

CPU-bound benchmark, the energy is hardly effected by changes in CPU frequency (for

the same memory frequency), whereas clear energy savings are possible by reducing the

CPU frequency when running the memory-bound benchmark. This is consistent with the

commonly assumed model, which suggests that the dynamic energy is independent of

frequency when running at a constant voltage.

The idle power subtracted in this case is only the idle sleep state, rather than the

169

 50

 100

 150

 200

 250

 300

 350

 400

 450

 50 100 150 200 250 300 350 400 450 500

N
or

m
al

is
ed

 E
xe

cu
tio

n
T

im
e

(%
)

CPU Frequency (MHz)

Gumstix Execution Time

gzip_test
twolf_test

Figure A.8: Normalised execution time for memory-bound (gzip test) and
CPU-bound (twolf test) benchmarks on Gumstix.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 50 100 150 200 250 300 350 400 450 500

P
ow

er
 (

W
)

CPU Frequency (MHz)

Gumstix Power

gzip_test
twolf_test

Figure A.9: Measured power for memory-bound (gzip test) and CPU-bound
(twolf test) benchmarks on Gumstix.

170

 80

 100

 120

 140

 160

 180

 200

 220

 50 100 150 200 250 300 350 400 450 500

N
or

m
al

is
ed

 E
ne

rg
y

(%
)

CPU Frequency (MHz)

Gumstix Energy

gzip_test
twolf_test

Figure A.10: Normalised Energy for memory-bound (gzip test) and CPU-
bound (twolf test) benchmarks on Gumstix.

deeper 33MHz idle, sleep or deep sleep states. Lower power sleep states would

bias the results toward the higher frequencies (i.e. somewhere between Figure A.10 and

Figure A.11).

Similarly to PLEB 2, performance and power models were developed and are dis-

cussed in Section 7.5. Koala was ported to the Gumstix, but the prohibitively high fre-

quency and voltage switching overheads led to no further testing in the context of this

thesis (although some work in combining Koala with real-time scheduling, taking into

account switching overheads was conducted by a Lawitzky et al. [91]).

171

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 50 100 150 200 250 300 350 400 450 500

N
or

m
al

is
ed

 E
ne

rg
y

(%
)

CPU Frequency (MHz)

Gumstix Energy Without Idle Power

gzip_test
twolf_test

Figure A.11: Normalised Energy for memory-bound (gzip test) and CPU-
bound (twolf test) benchmarks on Gumstix, after subtracting a typical idle
power.

172

A.3 I-Box (PXA270) — I-Box

Figure A.12: I-Box with Echidna

Processor PXA270
Architecture ARMv5TE
Tested Settings 169
Variable Frequencies 3
Variable Voltages 1
Energy Measurement Echidna
Performance Counters 4 + cycle counter
Performance Events 14

The I-Box was designed by the author as a side-project during the course of this

thesis. It is a platform for the development of digital video surveillance applications. It

is commercially licensed and therefore a good example of a typical real-world embedded

system. Power was a key factor in the I-Box design, and the hardware involved is typical

of many battery-powered embedded systems (although it is not specifically designed to

run from a battery).

173

The I-Box hardware consists of a PXA270 processor [75] which can be clocked at

up to 624MHz. It has 64MB SDRAM and 4MB flash. Various peripherals are integrated

on-board, including a video decoder, MPEG encoder, video output IC, network interface,

USB host, compact flash, LCD and audio I/O. Like the PXA255, the PXA270 is based on

an XScale core.

Like PLEB 2 and the Gumstix, a LAN91C111 network IC is used for network con-

nectivity, but was disabled during all measurements.

Various voltages are generated by a TPS65021 [154] power management chip. This

chip interfaces with the PXA270 via an I2C bus, allowing for adjustment of the proces-

sor’s core voltage. The memory bus and IO interfaces all run at a fixed 3.3V (although

the PXA270 can handle voltage scaling of the memory bus). The TPS65021 is supplied

with 5V by a second DC-DC converter. During energy measurements for this thesis, the

TPS65021 was supplied with 5V directly via an Echidna. The Echidna was triggered

using the I-Box’s alarm interface (which is in turn controlled by a GPIO).

A number of frequencies are generated by the clock management unit within the

PXA270, which is a more flexible version of the one in the PXA255. These include,

among others, the core clock (fcpu), system bus clock(fbus), SDRAM clock(fmem), pe-

ripheral bus clock(fio), real-time clock(frtc). The first three were varied during experi-

ments for this thesis.

Since the PXA270 documentation only specifies a limited number of frequency-

voltage pairings, a quadratic model was derived from these (see Figure A.13) to calculate

the voltage for a given frequency. The voltage setting is used as part of the system energy

model.

All possible combinations of fcpu, fbus and fmem were considered. The frequencies

were limited to allowable values. Duplicate setpoints were removed for the purposes of

modelling. fcpu varies between 52 and 624MHz, fbus varies between 52 and 246MHz

and fmem varies between 52 and 136.5MHz. A total of 169 unique setpoints were tested.

Like PLEB 2, the PXA processor in the I-Box has a high PLL re-lock overhead of

∼500µs, as well as a multi-cycle overhead for a turbo mode switch. The PXA270 adds

an half-turbo mode, which changes the CPU frequency to a second pre-defined divider

from the PLL-generated clock. Depending on the PLL and turbo settings, it is possible

to obtain different combinations of three frequencies (run, half-turbo and turbo), and for

the same frequency to be available in different subsets. The switching overhead therefore

varies depending not only on the frequency, but on the PLL settings. The voltage scaling

hardware was also improved in the I-Box with the addition of a dedicated I2C unit for

174

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 100 200 300 400 500 600 700

V
ol

ta
ge

 (
V

)

Frequency (MHz)

Recommended operating points
Chosen operating points

Figure A.13: Voltage vs. Frequency model for the PXA270

power supply communications, adding frequency and voltage change sequencing in hard-

ware. Unfortunately, this unit runs at a slow 40kHz, and so the voltage change overhead

is still very large.

The PXA270 has two more event counters than the PXA255, along with the cycle

counter. The configurable counters can each be configured to count one of the same 14

events as the PXA255 [75].

All experiments were conducted under Linux 2.6.24. Much of the same benchmarking

infrastructure as was used for PLEB 2 and the Gumstix was used in I-Box experimenta-

tion. Drivers were developed for frequency scaling and the TPS65021 power supply IC.

The characteristics of the I-Box are, unsurprisingly, similar to PLEB 2 (albeit with

more available frequency setpoints) and are shown in Figures A.14, A.15 and A.16. CPU-

bound benchmarks scale with the CPU frequency, and are unaffected by changes to the

memory or bus frequency.

Similarly to PLEB 2, performance and power models were developed and are dis-

cussed in Section 7.5. Koala was ported to the I-Box, but the prohibitively high frequency

and voltage switching overheads led to no further testing.

The I-Box idle power is dominated by peripherals rather than the processor power. In

addition, the idle modes have not been fine-tuned. As a result, the idle power is nearly

175

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700

N
or

m
al

is
ed

 E
xe

cu
tio

n
T

im
e

(%
)

CPU Frequency (MHz)

I-Box Execution Time

gzip_test
twolf_test

Figure A.14: Normalised execution time for memory-bound (gzip test) and
CPU-bound (twolf test) benchmarks on I-Box.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 100 200 300 400 500 600 700

P
ow

er
 (

W
)

CPU Frequency (MHz)

I-Box Power

gzip_test
twolf_test

Figure A.15: Measured power for memory-bound (gzip test) and CPU-bound
(twolf test) benchmarks on I-Box.

176

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700

N
or

m
al

is
ed

 E
ne

rg
y

(%
)

CPU Frequency (MHz)

I-Box Energy

gzip_test
twolf_test

Figure A.16: Normalised Energy for memory-bound (gzip test) and CPU-
bound (twolf test) benchmarks on I-Box.

indistinguishable from the active power running a CPU-bound benchmark at the lowest

frequency setting. This is shown in Figure A.17, where the lowest-frequency setting uses

0% of the dynamic energy for the highest performance setting. The idle power in this

situation is 0.89W.

If the system were able to disable some of the peripherals while idle, disable memory,

or improve the idle power by only ∼0.2W, then the DVFS optimisation becomes much

more interesting. Figure A.18 shows this scenario, where clear and dissimilar optima are

present for both the memory-bound and CPU-bound workload.

177

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600 700

N
or

m
al

is
ed

 E
ne

rg
y

(%
)

CPU Frequency (MHz)

I-Box Energy Without Idle Power

gzip_test
twolf_test

Figure A.17: Normalised Energy without idle power for memory-bound
(gzip test) and CPU-bound (twolf test) benchmarks on I-Box.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 100 200 300 400 500 600 700

N
or

m
al

is
ed

 E
ne

rg
y

(%
)

CPU Frequency (MHz)

I-Box Energy Without 0.7W Idle Power

gzip_test
twolf_test

Figure A.18: Normalised Energy, assuming an 0.7W idle power, for memory-
bound (gzip test) and CPU-bound (twolf test) benchmarks on I-Box.

178

A.4 phyCORE-iMX31 Rapid Development Kit
(iMX31) — Phycore

Figure A.19: phyCORE-iMX31 Rapid Development Kit

Processor iMX31 (ARM1136JF-S)
Architecture ARMv6
Tested Settings 4 1

Variable Frequencies 1 2

Variable Voltages 1
Energy Measurement Echidna
Performance Counters 6 + cycle counter 3

Performance Events 35 3

The phyCORE-i.MX31 Rapid Development Kit is a computer-on-module system pro-

vided by Phytec America [119]. It is based on a Freescale iMX31 system-on-chip proces-

sor [50]. The iMX31 is based on the ARM1136JF-S processor core, which implements the

ARMv6 architecture. It has an 8-stage integer pipeline with separate load-store and arith-

metic pipelines. The iMX31 in the Phycore board has a core frequency of up to 532MHz.

179

The iMX31 itself provides a number of integrated peripherals including a vector floating

point unit, image processing unit, LCD controller, etc. The Phytec rapid development kit

provides a rich set of peripherals including 10/100 MBit Ethernet, USB2.0 host, CAN,

Audio, etc.

The Phycore is supplied at 5.0V. Power and energy were measured using an Echidna

board triggered via a GPIO from the iMX31.

Two different performance monitoring units are available in the iMX31. The first is

the in-core performance metrics unit (PMU). This resides in the ARM1136 core itself,

acting as an ARM co-processor. It has two counters and a cycle counter. Each of the

counters can monitor one of 20 events occurring within the core, including the number

of instructions executed, data cache accesses, data cache misses, etc. The second perfor-

mance monitoring unit, EVTMON, is external to the core. It is a 32-bit IP-bus peripheral

used for monitoring Level 2 Cache Controller (L2CC) events [50], of which there are

15 which relate to the level 2 cache and include the number of read requests, cache hits,

evictions, etc. There are four counters.

The iMX31 differed from all other processors examined in that it has a variable fre-

quency bus between the level 2 cache and the core itself. While processors such as the

PXA255 and PXA270 had variable bus and memory frequencies, the bus operated be-

tween the core and the memory controller with no level 2 cache, meaning the latency

on each memory access is affected consistently by scaled memory and bus frequencies.

The arrangement in the iMX31 means that the average latency of a memory instruction

is dependent on the probability of residency in the L1 cache, the L2 cache bus frequency,

probability of residency in the L2 cache, and then the main memory frequency. All of

these are variable and must be taken into account in a reasonable performance model.

DVFS is supported very well by the iMX31, with significant hardware support. Dy-

namic Process and Temperature Compensation (DPTC) provides hardware adaptation of

the CPU voltage to compensate for both process and thermal variation. The system times

the delay through reference circuits in order to determine whether the core voltage is too

high or low, increasing or decreasing the voltage when a delay less than the lower lower

or greater than the upper limit (respectively) is observed. Another interesting feature is

a hardware DVFS mechanism based on event counting. Events from all over the sys-

tem are monitored, weighted and the weighted values aggregated. The events are largely

associated with the system’s multi-master memory interface, but include interrupt events.

DVFS decisions can be automatically made by the hardware with a mechanism for calling

an interrupt when a programmable threshold is exceeded.

180

Further DVFS support is seen in the form of external pins which can control the

system voltage (which is how DPTC can interface with the power management IC). A

virtually limitless range of settings is available by using the three on-chip PLLs to generate

frequencies. The platform uses an MC13783 integrated power management IC which has

voltage scaling support via a fast SPI interface. In addition the Freescale parts support a

direct connection for increasing, decreasing or maximising the voltage quickly.

The way in which these features could be utilised in the context of this thesis is left

to future work. The voltage chosen by DPTC could be used as a parameter to Koala’s

models. The load tracking count could be used as an input to Koala models, and the

threshold-based interrupt generation might be used for workload prediction. In this way,

the in-built DVFS hardware compliments the Koala approach.

This platform was intended to be representative of a cutting-edge ARM-based device

with a rich set of DVFS hardware. The iMX31 has been used extensively in recent mo-

bile smartphones and is an excellent example of a modern high-performance embedded

processor. Unfortunately some difficulty was had implementing frequency and voltage

switches reliably, and so the experimentation which was possible was limited.

The characteristics of the Phycore development platform seem to indicate that it is a

relatively un-interesting platform for DVFS work. This is because the platform’s memory

runs at a high speed in comparison to the CPU frequency, and so the memory latency is

smaller compared to other platforms. The platform’s behaviour is shown in Figures A.20,

A.21 and A.22.

Figure A.21 shows the power being used — the memory-bound benchmark saves less

power than the CPU-bound benchmark from DVFS because less power is expended in the

CPU. The reverse is true at higher frequencies, where the higher CPU power for the CPU-

bound benchmark is exacerbated by the higher frequency and clock rate. The platform

also has a relatively high static power in comparison to the power which can be saved via

clock scaling. This is because the system is a development platform with many on-board

peripherals, LEDs, and other power-consuming devices that would likely be omitted in a

real mobile system.

A typical idle power for the entire platform was measured at 2.45W. The majority

of this can be assumed to be associated with the platform rather than the processor. The

effect of subtracting this (as in Section 4.5) is shown in Figure A.23. It is clear that real

savings can be made when idle time is generated via frequency scaling. Also note that

for all benchmarks there is an energy-optimal point which is neither the minimum nor

maximum. It is also not the same for each benchmark – as expected, the memory-bound

181

 100

 150

 200

 250

 300

 350

 400

 450

 100 150 200 250 300 350 400 450 500 550

N
or

m
al

is
ed

 E
xe

cu
tio

n
T

im
e

(%
)

CPU Frequency (MHz)

Phycore Execution Time

mcf_test
twolf_test

Figure A.20: Normalised execution time for memory-bound (mcf test) and
CPU-bound (twolf test) benchmarks on Phycore.

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 100 150 200 250 300 350 400 450 500 550

P
ow

er
 (

W
)

CPU Frequency (MHz)

Phycore Power

mcf_test
twolf_test

Figure A.21: Measured power for memory-bound (mcf test) and CPU-bound
(twolf test) benchmarks on Phycore.

182

 100

 150

 200

 250

 300

 350

 100 150 200 250 300 350 400 450 500 550

N
or

m
al

is
ed

 E
ne

rg
y

(%
)

CPU Frequency (MHz)

Phycore Energy

mcf_test
twolf_test

Figure A.22: Normalised Energy for memory-bound (mcf test) and CPU-
bound (twolf test) benchmarks on Phycore.

benchmark has a lower energy-optimal frequency than the CPU-bound benchmark.

These results suggest that there is merit in investigating DVFS further on iMX31-

based platforms (and comparing with ARM’s IEM solution to DVFS). As mentioned, the

difficulty when implementing the drivers required for DVFS on this platform resulted in

very little further development.

183

 80

 85

 90

 95

 100

 105

 110

 115

 120

 100 150 200 250 300 350 400 450 500 550

N
or

m
al

is
ed

 E
ne

rg
y

(%
)

CPU Frequency (MHz)

Phycore Energy Without Idle Power

mcf_test
twolf_test

Figure A.23: Normalised Energy without idle power for memory-bound
(mcf test) and CPU-bound (twolf test) benchmarks on Phycore.

184

A.5 Dell Latitude D600 (Pentium-M) — Latitude

Figure A.24: Providing and measuring the power to the Latitude laptop via the
battery.

Processor Pentium-M 745 (Dothan)
Architecture IA-32
Tested Settings 12
Variable Frequencies 1 1
Variable Voltages 1
Energy Measurement Echidna
Performance Counters 2 + cycle counter
Performance Events >164

The Dell Latitude D600 [31] laptop was one of two Intel Pentium-M based laptops

which were tested, and exhibited a number of features confirming the theories in this

thesis. It is based on an Intel Pentium-M 745 [79] which is a Dothan processor running

at 1800MHz maximum frequency. The CPU is an IA-32 [72] based processor on a 90nm

process with a front-side-bus running at 400MHz. It has a 32kB instruction cache and

32-kB write-back data cache. It has a 2MB level 2 cache, and uses a variant of the P6

185

microarchitecture. Its features include speculative and out-of-order execution, a 12-14

stage pipeline and register renaming. It was found to be of particular importance that the

processor uses pre-fetching to increase the likelihood of level 2 cache hits.

The system uses an Intel 855PM chipset which supports DDR SDRAM, of which the

laptop under test had 1 GB in two 512 MB modules. Major peripherals included in the

system are a display with dimmable backlight connected to an ATI Radeon 9000 video

controller on the AGP bus exported by the 855PM north bridge. 1000Base-T Ethernet,

wireless ethernet, audio, a keyboard and touch pad. See the cited specifications for more

details, since the peripherals are largely ignored for this study.

The system can be scaled to one of 12 settings. Not all of these were advertised via

ACPI’s P-states. The MSR settings which were configured by ACPI were examined, and

then set directly using the /dev/msr interface in Linux for benchmarking, and, in the

case of Koala, directly using MSR writes within the kernel. The MSR allows for the

base frequency of 100MHz to multiplied by 6, 8, 9, ..., 17, or 18. Using a multiplier of

7 consistently caused the system to hang. Voltage scaling can be set via a VID, which

communicates with the core power supply DC-DC converter. That converter generates

a voltage which can be varied in 16mV steps. Communications between the processor

and converter is via a direct parallel connection. The ACPI settings used by the machine

were used as the basis for the chosen settings. Since not all frequencies were available

via ACPI, the voltage for the extra frequencies was chosen via linear interpolation. Since

the voltage can only be scaled in 16mV steps, this led to some non-linearities in the

relationship — see Section 3.2.9 and Figure 3.11.

The system can be powered by either a battery, or a 19V DC supply provided by an

mains-power adapter. Initially, power measurements were conducted by removing the

battery and measuring the current provided by the power adapter using an echidna. This

led to some very strange results — in some cases, the power used could increase when the

frequency and voltage were decreased (see Figure A.32). This did not fit any previously

discussed models. This strange behaviour was found to be caused by a change in the

efficiency of the core voltage converter, which was dependent on both the current drawn

by the CPU core, and the voltage with which it was supplied. When supplied at the

battery’s lower voltage (∼12V), the core voltage converter’s efficiency was constant. The

effect is further described later in this Section — see Figures A.27 and A.32.

The problem was worked around by supplying the system from the battery rather than

the power adapter. The battery was instrumented using an echidna. This was complicated

by the battery management IC within the battery itself which must correctly communi-

186

cate with the laptop in order for the system to start up. It was further complicated via the

battery management IC’s protection features which disable the battery following any tam-

pering (particularly disconnecting the battery cells from the battery management IC). The

problem was solved by using patch wires to connect a second connector to the battery,

with the echidna connected in series with the power pins. The battery was kept charged

by permanently by connecting it to a laboratory power supply. See Figure A.24.

Triggering of the echidna was achieved via the system’s parallel port.

Frequency switching overheads were the lowest of any system tested, with the CPU

being stalled for only 10µs. Frequency and voltage change are sequenced internally by

hardware in the CPU, so changes to the frequency and voltage are effected by a simple

write to an MSR.

The Pentium-M provides two performance counters and one cycle counter (referred to

as the time-stamp counter (TSC) on x86). Both are quickly accessed by dedicated instruc-

tions. The two performance counters can each count one of a large variety of events as de-

scribed in Intel’s System Programming Guide [71]. A set of 164 events were seen to have

some potential relevance to power and performance (this subset was chosen to minimise

the benchmarking time). Events which were ignored included MMX-related events (since

no MMX-enabled benchmark programs were used) and other clearly-irrelevant metrics.

The Dell Latitude D600 has an integrated temperature sensor which is primarily used

to vary the speed of the system’s cooling fan. This was accessible via the BIOS. Similarly,

the fan speed can be set and read, also via the BIOS. Information available via the smart

battery IC within the battery is available via the smart battery interfaces in ACPI, for

which there are Linux drivers. Modifications to the benchmarker program were made

to support the gathering of all of these statistics.

Figures A.25, A.26 and A.27 show how the Latitude laptop behaves when frequency

scaling. Figure A.25 shows the execution time of a memory-bound and a CPU-bound

benchmark. The CPU-bound benchmark’s execution time scales with the inverse of the

frequency, whereas the memory-bound benchmark’s execution time stays nearly constant.

This indicates that the memory-bound benchmark gets nearly no improvement in perfor-

mance from a frequency increase. The result of this can be clearly seen in Figure A.27,

where the two benchmarks have opposite behaviour – the CPU-bound benchmark in-

creases its energy use as the frequency is increased (since the run-time is reduced). The

memory-bound benchmark decreases its energy use as the frequency is increased, since

the run-time remains the same and the power drawn is reduced.

The discontinuity in the Figure A.26 between 1100MHz and 1200MHz, and between

187

 100

 150

 200

 250

 300

 350

 600 800 1000 1200 1400 1600 1800

N
or

m
al

is
ed

 E
xe

cu
tio

n
T

im
e

(%
)

CPU Frequency (MHz)

swim_ref
twolf_ref

Figure A.25: Normalised execution time for memory-bound (swim test) and
CPU-bound (twolf test) benchmarks on the Latitude laptop.

1700MHz and 1800MHz is caused by a discontinuity in the voltage setting. The voltage

is adjusted by an equal step for all other intervals. See Figure 3.11 for illustration.

While swim and gzip show the opposite extremes of behaviour, other benchmarks

show intermediate behaviours. Figure A.28 shows the equake benchmark shows distinct

energy-optimal point that is at neither the maximum nor minimum frequency.

Figure A.29 shows the effect of frequency scaling without a voltage change. The total

energy required for gzip is increased dramatically since the lower power due to a fre-

quency reduction is more than compensated for by the increased run-time. Interestingly

this shows that it is possible to save a small amount of energy for a memory-bound bench-

mark via frequency scaling alone — there is so little change in the run-time between the

higher frequencies that the reduction in power due to a reduced frequency is enough to

save some energy.

Figures A.30 and A.31 provide detail on the effect of using the power adapter. The

power drawn is significantly higher due to extra losses in the DC-DC converters. More

interestingly, compared with the case where the current at the battery is measured, there

are new discontinuities. In the case where the voltage is kept constant at its maximum,

and only the frequency is adjusted, it can be seen that by reducing the frequency for

188

 14

 16

 18

 20

 22

 24

 26

 28

 600 800 1000 1200 1400 1600 1800

P
ow

er
 (

W
)

CPU Frequency (MHz)

swim_ref
twolf_ref

Figure A.26: Measured power for memory-bound (swim ref) and CPU-bound
(twolf ref) benchmarks on the Latitude laptop.

 80

 100

 120

 140

 160

 180

 200

 600 800 1000 1200 1400 1600 1800

N
or

m
al

is
ed

 E
ne

rg
y

(%
)

CPU Frequency (MHz)

swim_ref
twolf_ref

Figure A.27: Normalised Energy for memory-bound (swim ref) and CPU-
bound (twolf ref) benchmarks on the Latitude laptop.

189

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 600 800 1000 1200 1400 1600 1800

N
or

m
al

is
ed

 E
ne

rg
y

(%
)

CPU Frequency (MHz)

equake_ref

equake_ref

Figure A.28: Normalised Energy for the partially memory-bound (equake ref)
benchmark on the Latitude.

swim from 1500MHz to 1400MHz, the power is actually increased! The same can be

said for the CPU-bound (on this platform) gzip between 900MHz and 1000MHz. This

is completely counter-intuitive to all previously presented models, which would assume

that a reduction in frequency should always reduce the power consumed. Note that this

effect is not present when the power is measured directly from the battery. The effect can

be traced to the efficiency of the DC-DC converter, which changes with load and input-

voltage. At light loads with a high input voltage, the converter runs in discontinuous

mode, and the particular converter used changes its modulation scheme, resulting in a

dramatic change in the efficiency as it does so. Since the memory-bound swim has a

lighter CPU load than the CPU-intensive gzip,

Other effects, such as the temperature and fan effects observed in Figure 3.7, also

contribute to the irregularities in this graph (for example, the curve in the constant-voltage

plot is caused by a reduced temperature at lower frequencies).

If the idle power is considered and subtracted in accordance with Section 4.5, the be-

haviour of the system changes dramatically. Comparing Figure A.27 with Figure A.32

shows the effect of removing a typical idle power component from the workload’s en-

ergy measurement. The effect of increasing the idle power from zero to a typical value

190

 95

 100

 105

 110

 115

 120

 125

 600 800 1000 1200 1400 1600 1800

N
or

m
al

is
ed

 E
ne

rg
 (

%
)

CPU Frequency (MHz)

Energy on Latitude, no voltage scaling

gziptest Max Vcpu
swimtest Max Vcpu

Figure A.29: Normalised Energy for memory-bound (swim test) and CPU-
bound (gzip test) benchmarks on the Latitude laptop while running at the
maximum voltage (1.34V) from the power adapter.

191

 18

 20

 22

 24

 26

 28

 30

 600 800 1000 1200 1400 1600 1800

P
ow

er
 (

W
)

CPU Frequency (MHz)

swim Power on Latitude

Min Vcpu -- no adapter
Min Vcpu -- with adapter

Max Vcpu -- with adapter

Figure A.30: Measured power for memory-bound (swim test) benchmarks on
the Latitude laptop, measured at both battery and power adapter.

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 600 800 1000 1200 1400 1600 1800

P
ow

er
 (

W
)

CPU Frequency (MHz)

gzip power on Latitude

Min Vcpu -- no adapter
Min Vcpu -- with adapter

Max Vcpu -- with adapter

Figure A.31: Measured power for CPU-bound (gzip test) benchmarks on the
Latitude laptop, measured at both battery and power adapter.

192

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 600 800 1000 1200 1400 1600 1800

N
or

m
al

is
ed

 E
ne

rg
y

(%
)

CPU Frequency (MHz)

swim_ref
twolf_ref

gzip_graphic_ref

Figure A.32: Normalised energy for CPU-bound (twolf ref) and memory-
bound (swim ref) benchmarks on Latitude, with the idle power component
removed. gzip graphic ref is included here to demonstrate a clear non-
linearity.

is to bias the minimum-energy frequency to a lower-performance setting, since the time

spent idle (of which there is more at higher-performance settings) uses more energy. The

gzip graphic ref was included in the latter figure to illustrate the case where the in-

teraction between an increased idle power and a non-linear frequency-voltage relationship

could lead to significant irregularities in the energy-frequency graph. Between 1100MHz

and 1200MHz (where there is a non-linearity in the relationship between voltage and fre-

quency) we see the energy increase as we reduce the frequency. This effect has been either

undiscovered or ignored in academic DVFS research.

Note that while all benchmarks generally run more efficiently at lower frequencies,

the energy savings compared with the relative performance is very different for each

benchmark. This means that in a resource-constrained system memory-bound bench-

marks should be scaled more aggressively than CPU-bound benchmarks.

The Latitude laptop was the only one of the systems which was tested at different

temperatures. The results are shown in Chapter 3 — Figure 3.7. Changing the temperature

alters the balance between dynamic and static power and the idle power. This changes the

193

optimal frequency setpoint. Testing was done using a small refrigerator to modify the

ambient temperature around the laptop.

The Latitude laptop was the primary system used for experimentation in the context

of this thesis.

194

A.6 IBM Thinkpad T43 (Pentium-M) — T43

Figure A.33: IBM T43 laptop with Echidna

Processor Pentium-M 750 (Dothan)
Architecture IA-32
Tested Settings 8
Variable Frequencies 1 1
Variable Voltages 1
Energy Measurement Echidna
Performance Counters 2 + cycle counter
Performance Events >164

The IBM Thinkpad T43 uses a slightly different version of the Pentium-M processor

to the Dell Latitude D600 — the Pentium-M 750 [78]. It has a higher peak clock frequency

(1866MHz) and a higher front-side bus (533MHz). The peripherals available are very

similar to the Latitude.

Power was measured by removing the battery, and placing an echidna in-line with the

power adapter. None of the non-linearities present in the Latitude laptop were observed

in the T43. Triggering was via the parallel port.

195

The T43 was used only for preliminary experiments due to subsequent access issues.

196

A.7 Asus EEEPC 901 (Atom) — EEEPC

Figure A.34: EEEPC Atom-based computer

Processor Atom N270
Architecture IA-32
Tested Settings 7
Variable Frequencies 1
Variable Voltages 1
Energy Measurement Echidna
Performance Counters 2 + cycle counter
Performance Events >113

The EEEPC 901 [11] is based on an Intel Atom processor [77], which is intended for

low-power applications such as embedded systems and netbooks. This processor is based

around a different microarchitecture to the Pentium-M, but implements the same IA-32

ISA. It uses a two-issue, in-order pipeline. It supports symmetric multi-threading (SMT)

in order to avoid pipeline stalls due to long-latency instructions (such as during cache

misses), however SMT was disabled for all experiments. It has a 32-kB instruction cache

and 24-kB write-back data cache, with a 512-kB, 8-way L2 cache.

197

The EEEPC 901 has 1GB of DDR2 SDRAM, an 8.9” display, 20GB flash drive, wired

and wireless ethernet, and a 6-cell Lithium ION battery among other peripherals.

Speed setting is done in the same way as the Pentium-M — an MSR is set with a

frequency and voltage ID, and the frequency change sequence is handled in hardware.

The P-states provided by ACPI were used to generate the seven voltage and frequency

settings. These multiplied a base frequency of 133MHz by 6 to give 798MHz, up to a

multiplier of 12 which gave 1596MHz. The voltage varies between 0.940V for the lowest

setting to 1.276V for the upper setting. The power supply chip interfaces to the Atom via

a dedicated bus. The memory frequency remains constant across all CPU frequencies.

Energy measurements were taken using an Echidna at the AC-adapter input. The

battery was removed. Triggering was performed via a USB-serial converter driving the

DTR line.

The Atom includes two performance counters and a time-stamp counter. The events

which can be monitored by the two counters are described in the Intel system program-

ming guide [71]. A set of 113 events were deemed potentially relevant to the performance

and power of the system. Note that the time-stamp counter in the Atom behaves differ-

ently to every other platform examined here: it counts real-time (in ns) rather than cycles.

The behaviour of the EEEPC 901 is shown in Figures A.35, A.36 and A.37. It is clear

from Figure A.36 that the memory power consumption has a big effect on the over-all

system power, with the memory-bound art 1 and art 2 benchmarks having a much

higher power draw than the other less memory-bound benchmarks.

An initial examination of the energy use of an EEEPC 901 platform showed that,

in the case of a 0-power idle mode, and no thermal problems, the optimal DVFS policy

was trivial: run at the highest CPU frequency. However, when a typical idle power is

subtracted from the total power and the energy calculated (see Section 4.5) it is clear that

significant energy savings are possible as shown in Figure A.38

Of note on this platform is the high power when idle – it is nearly as high as the power

required to run at full speed. Since the Atom was designed specifically for a low-power

idle modes, the operating system is probably not making appropriate use of the available

idle modes.

198

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 700 800 900 1000 1100 1200 1300 1400 1500 1600

N
or

m
al

is
ed

 E
xe

cu
tio

n
T

im
e

(%
)

CPU Frequency (MHz)

art_1_ref
art_2_ref

ammp_ref
applu_ref

bzip2_graphic_ref
bzip2_program_ref

gzip_graphic_ref

Figure A.35: Normalised execution time for a range of benchmarks on the EEEPC
901 Netbook.

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

 14

 14.5

 700 800 900 1000 1100 1200 1300 1400 1500 1600

N
or

m
al

is
ed

 P
ow

er
 (

W
)

CPU Frequency (MHz)

EEEPC 901 Power

art_1_ref
art_2_ref

ammp_ref
applu_ref

bzip2_graphic_ref
bzip2_program_ref

gzip_graphic_ref

Figure A.36: Measured power for a range of benchmarks on the EEEPC 901
Netbook.

199

 90

 100

 110

 120

 130

 140

 150

 160

 170

 180

 700 800 900 1000 1100 1200 1300 1400 1500 1600

N
or

m
al

is
ed

 E
ne

rg
y

(%
)

CPU Frequency (MHz)

EEEPC 901 Energy

art_1_ref
art_2_ref

ammp_ref
applu_ref

bzip2_graphic_ref
bzip2_program_ref

gzip_graphic_ref

Figure A.37: Normalised Energy for a range of benchmarks on the EEEPC 901
Netbook.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 700 800 900 1000 1100 1200 1300 1400 1500 1600

N
or

m
al

is
ed

 E
ne

rg
y

(%
)

CPU Frequency (MHz)

EEEPC 901 Energy without Idle Power

art_1_ref
art_2_ref

ammp_ref
applu_ref

bzip2_graphic_ref
bzip2_program_ref

gzip_graphic_ref

Figure A.38: Normalised Energy for a range of benchmarks on the EEEPC 901
Netbook, with the idle power subtracted.

200

A.8 Compucon K1-1000D (AMD Opteron 246) —
Opteron

Figure A.39: Compucon K1-1000D Opteron-based server with Extech power
analyser

The AMD Opteron-based server (a Compucon K1-1000D) is based on an AMD

Opteron 246 processor clocked at 2 GHz. It has a 1 1MB cache interfaced to a 1 GHz

hypertransport bus. It has 512 MB of DDR400 SDRAM by default (some experiments

added a second 512 MB DIMM, allowing for dual-channel memory accesses).

The Opteron’s voltage scaling system is coordinated by software. The result is a

significant overhead for voltage and frequency changes, since the CPU is unavailable

for the duration of the voltage/frequency switch. This is exacerbated by the Opteron’s

requirement that the voltage be scaled to the maximum value before the frequency switch

can be performed, and subsequently to the target voltage. A driver was written by Etienne

Le Sueur to scale the voltage and frequency, and the voltage was ramped much faster

201

Processor AMD Opteron 246
Architecture IA-32
Tested Settings 5
Variable Frequencies 2
Variable Voltages 1
Energy Measurement Extech True RMS Power Analyzer 380801
Performance Counters 4 + cycle counter
Performance Events >177

than the specification, resulting in a worst-case switching overhead of 140µs. The worst

case when run within the specification was ∼2ms. The best case switching time (with the

out-of-spec voltage ramp) was 15µs.

Five frequency and voltage pairs were chosen between 0.8 GHz at 0.9 V and 2.0 GHz

at 1.5 V. It had been assumed that the memory frequency would remain constant for all

CPU frequencies, but it was discovered experimentally (using a digital storage oscillo-

scope (DSO)) that the memory frequency lowers to 160 MHz at a CPU frequency of

0.8 GHz. At all other settings the memory frequency remains at 200 MHz.

A cycle counter and four user-configurable counters were available. The counters can

measure several hundred events, of which we examined 177.

Power measurement was performed using a commercial AC power meter with an

accuracy of 0.9% sampled at 2.5 Hz. This was inserted between the wall socket and

the machine’s power plug and thus measured the system’s total AC power consumption

(which is appropriate, since a reduction of the total AC power consumption being the

main goal for server power management). The data was received via a serial connection

by a program running on the machine itself. The power and performance overhead these

measurements is considered negligible.

The basic results from the Opteron-based server are shown in Figures A.40, A.41 and

A.42. The memory-bound benchmark is highly memory-bound with a 20% increase in ex-

ecution time for a halving of the frequency. The CPU-bound benchmark is only slightly

less than double the execution time for half of the frequency, as expected. The system

power is clearly higher for the memory-bound benchmark due to the extra power drawn

by the memory itself. At the lowest frequency, a much lower power is drawn for both

benchmarks, and this is attributable to the lower memory frequency for that setting. In

terms of the total energy used to run the benchmark, the CPU-bound benchmark increases

to the left, indicating that the reduced power at lower-frequency settings does not com-

pensate for the extra energy drawn due to the longer run-time. Since the memory-bound

202

 100

 120

 140

 160

 180

 200

 220

 240

 800 1000 1200 1400 1600 1800 2000

N
or

m
al

is
ed

 E
xe

cu
tio

n
T

im
e

(%
)

CPU Frequency (MHz)

Opteron Execution Time

swim_ref
vortex_1_ref

Figure A.40: Normalised execution time for memory-bound (swim test) and
CPU-bound (vortex 1 test) benchmarks on the Opteron-based server.

benchmark’s run-time is nearly independent of CPU frequency, it exhibits an energy sav-

ing of more than 10% at reduced frequency settings.

When we subtract the energy which would be used to idle for the execution time of

the benchmark, we see that the extra energy required to run the benchmark decreases with

CPU frequency, and that the lowest frequency saves disproportionally more energy thanks

to the reduced memory frequency.

The Opteron-based server was used underwent testing for nearly all aspects of this

thesis.

203

 75

 80

 85

 90

 95

 100

 105

 110

 115

 800 1000 1200 1400 1600 1800 2000

P
ow

er
 (

W
)

CPU Frequency (MHz)

Opteron Power

swim_ref
vortex_1_ref

Figure A.41: Measured power for memory-bound (swim ref) and CPU-bound
(vortex 1 ref) benchmarks on the Opteron-based server.

 80

 90

 100

 110

 120

 130

 140

 150

 160

 800 1000 1200 1400 1600 1800 2000

N
or

m
al

is
ed

 E
ne

rg
y

(%
)

CPU Frequency (MHz)

Opteron Energy

swim_ref
vortex_1_ref

Figure A.42: Normalised Energy for memory-bound (swim ref) and CPU-
bound (vortex 1 ref) benchmarks on the Opteron-based server.

204

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 800 1000 1200 1400 1600 1800 2000

N
or

m
al

is
ed

 E
ne

rg
y

(%
)

CPU Frequency (MHz)

Opteron Energy Without Idle Power

swim_ref
vortex_1_ref

Figure A.43: Normalised energy for CPU-bound (vortex 1 ref) and memory-
bound (swim ref) benchmarks on Opteron, with the idle power component re-
moved.

205

A.9 Intel Menlow Software Developer’s Platform
(Silverthorne) — Menlow

Some tests were conducted on an Intel Menlow developer’s platform which used a pre-

release version of the Atom processor (Silverthorne). The platform is a developer’s system

utilising integrated chipsets designed for ultra-mobile PCs. The details of this platform

and its results are not discussed here due to a non-disclosure agreement, but in any case

the system did not exhibit useful energy savings via frequency and voltage scaling using

Koala.

A.10 Dell Server (Intel Xeon) — Xeon

A multi-core Intel Netburst-era Xeon-based system was tested. Unfortunately, with only

three possible settings, this platform was considered un-interesting and therefore results

are not presented here.

206

APPENDIX B

ECHIDNA

The Echidna is a simple circuit consisting of an FTDI 232R [52] USB to serial converter,

an MSP430F149 microcontroller [153], and an MCP3909 energy measurement IC [103].

These provide USB connectivity, some programmable processing, and a simultaneously

sampling, 16-bit sigma-delta ADC (with the appropriate signal conditioning circuitry for

voltage and current measurements). Modifications were made to the basic circuit to scale

the signals appropriately for different current and voltage ranges (for example, the Lati-

tude D600 laptop uses a 16V input, whereas PLEB2 requires a 4.1V supply). Echidna has

an accuracy of better than 1mA and 1mV for current and voltage respectively, giving a

power accuracy of about 5mW or 0.4%. In some cases, the voltage accuracy was reduced

when the voltage range was increased, however, the percentage errors remain less than

1%.

Echidna is supplied with a trigger signal in the form of a logic level (0, or 3.3V). A

high signal indicates that the device should be measuring and accumulating data. A high-

to-low transition indicates that it should print any accumulated data to the serial port and

zero out the accumulators. The total energy is integrated while the device is accumulat-

ing, allowing for an accurate energy measurement. Echidna samples and accumulates at

approximately 4kHz.

Triggers are provided from platforms via a number of means. Some are triggered

via PC-style parallel ports, others by general-purpose input/output (GPIO) pins, others

using the DTR line on either a real, or USB, serial port. Triggering via these hardware

mechanisms allows for accurate timing — the measurement will begin very close to the

start of a benchmark, and end very close to the end.

207

11

22

33

44

55

66

77

88

D
D

C
C

B
B

A
A

N
at

io
na

l I
C

T
Au

str
al

ia
Le

ve
l 4

22
3

AN
ZA

C
 P

de
K

en
sin

gt
on

NS
W

, 2
05

2

E
ch

id
na

 T
op

 L
ev

el
 S

ch
em

at
ic

10
/0

6/
20

09
5:

20
:0

6
PM

Z:
\p

ro
je

ct
s\

ph
d\

w
or

k\
pm

2\
en

er
gy

m
ea

s2
\h

ar
dw

ar
e\

D
oc

um
en

ts
\T

op
Le

ve
l.S

ch

Ti
tle

Si
ze

:
N

um
be

r:

D
at

e:
Fi

le
:

R
ev

is
io

n:

Sh
ee

t
of

Ti
m

e:
A

4

1 2

J3 C
O

N
2

A
D

C
0

A
D

C
1

A
D

C
2

A
D

C
3

A
D

C
4

A
D

C
5

A
D

C
6

A
D

C
7

P1
.0

P1
.1

P1
.2

P1
.3

P1
.4

P1
.5

P1
.6

P1
.7

P2.0
P2.1

P2
.2

P2
.3

P2
.4

P2
.5

P2
.6

P2
.7

P3
.0

P3
.1

P3
.2

P3
.3

P3
.4

P3
.5

P3
.6

P3
.7

P4
.0

P4
.1

P4
.2

P4
.3

P4
.4

P4
.5

P4
.6

P4
.7

P5
.0

P5
.1

P5
.2

P5
.3

P5
.4

P5
.5

P5
.6

P5
.7

M
SP

43
0F

14
9

M
SP

43
0F

14
9.

SC
H

D
O

C

3V
3 R

2
1k

D
1

Y
EL

LO
W

YELLOWLED

R
ED

LE
D

Y
EL

LO
W

LE
D

3V
3 R

3
1k

D
2

R
ED

REDLED

1 1

H
1

H
O

LE

1 1

H
2

H
O

LE

1 1

H
3

H
O

LE

1 1

H
4

H
O

LE

U
A

R
T1

TX
U

A
R

T1
R

X
TX

D
R

X
D

U
SB

5V

U
SB

G
N

D
U

SB
3V

3

U
_U

SB
se

ria
l

U
SB

se
ria

l.S
ch

D
oc

5V

O
ut

2

Vcc1 GND 3

T1 TM
P3

7F
T9

3V
3

G
N

D
G

N
D

Te
m

pe
ra

tu
re

 S
en

so
r

Lo
w

-P
as

s f
ilt

er
C

11
10

0n
FR

4

R

R
9

0R
02

C
10

10
0n

F

G
N

D

1 2

J4 C
O

N
2

IN

O
U

T

R
7

2k R
11

18
k

G
N

D

U
SB

3V

1 2 3 4 5 6 7 8 9 10

J2 C
O

N
10

A
G

N
D

G
N

D
3V

3

A
D

C
3_

TE
M

P

C
15

1u

A
V

C
C

C
14

10
u

P1 N
IC

TA
 L

O
G

O

A
G

N
D

A
G

N
D

R
5C

10
0R

R
5D

10
0R

R
6A

10
0R

R
6B

10
0R

R
6C

10
0R

R
5B

10
0R

O
U

T
O

U
T

G
N

D
ENININ

U
3

52
00

C
13

10
u

3V
3

C
12

10
u

G
N

D
G

N
D

5V

D
V

D
D

1

H
PF

2

A
V

D
D

3

N
C

4

C
H

0+
5

C
H

0-
6

C
H

1-
7

C
H

1+
8

M
C

LR
9

R
EF

IN
/O

U
T

10

A
G

N
D

11

SC
K

/F
2

12

SD
I/F

1
13

C
S/

F0
14

G
1

15
G

0
16

O
SC

1
17

O
SC

2
18

N
C

19

SD
O

/N
EG

20

D
G

N
D

21

H
FO

U
T

22

FO
U

T1
23

FO
U

T0
24

U
5

M
C

P3
90

9

VDD1 GND1

GND2VDD2

U
6

IL
71

7

G
N

D
A

G
N

D

3V
3A

V
C

C
C

23
10

0n
F

C
22

10
0n

F
A

G
N

D
G

N
D

SO
M

I0

C
S0

SI
M

O
0

U
C

LK
0

R
15

RR
14

R

A
V

C
C

A
G

N
D

VDD1 GND1

GND2VDD2

U
7

IL
71

2

3V
3A

V
C

C
C

29
10

0n
F

C
28

10
0n

F
A

G
N

D
G

N
D

G
N

D
A

G
N

D

A
V

C
C

16
x

G
ai

n
A

G
N

D

C
26

10
u

C
27

10
0n

F

A
G

N
D

Y
3

3.
57

95
45

C
24

18
pF

C
18

18
pF

A
G

N
D

A
G

N
D

nM
C

LR

nM
C

LR
C

21
2.

2n
F

R
8

7k
15

R
10

7k
15

R
12

7k
15

R
13

7k
15

C
25

2.
2n

F

A
G

N
D

A
V

C
C

A
G

N
D

A
V

C
C

C
20

10
0n

F

C
17

10
0n

F

C
19

10
u

C
16

10
u

V
IN

1

GND 2

En
ab

le
3

N
R

4

V
O

U
T

5
U

4
R

EG
11

3-
5

A
G

N
D

C
35

10
nF

A
G

N
D

P0C1001 P0C1002

P0C1101 P0C1102

P0C1201 P0C1202

P0C1301 P0C1302

P0C1401 P0C1402

P0C1501 P0C1502

P0C1601 P0C1602

P0C1701 P0C1702

P
0
C
1
8
0
1

P
0
C
1
8
0
2

P0C1901 P0C1902

P0C2001 P0C2002

P0C2101 P0C2102

P
0
C
2
2
0
1

P
0
C
2
2
0
2

P
0
C
2
3
0
1

P
0
C
2
3
0
2

P
0
C
2
4
0
1

P
0
C
2
4
0
2

P0C2501 P0C2502

P0C2601 P0C2602

P0C2701 P0C2702

P
0
C
2
8
0
1

P
0
C
2
8
0
2

P
0
C
2
9
0
1

P
0
C
2
9
0
2

P0C3501 P0C3502

P0D10A P0D10K

P0D20A P0D20K

P0H101

P0H201

P0H301

P0H401

P
0
J
2
0
1

P
0
J
2
0
2

P
0
J
2
0
3

P
0
J
2
0
4

P
0
J
2
0
5

P
0
J
2
0
6

P
0
J
2
0
7

P
0
J
2
0
8

P
0
J
2
0
9

P
0
J
2
0
1
0

P
0
J
3
0
1

P
0
J
3
0
2

P
0
J
4
0
1

P
0
J
4
0
2

P0R201 P0R202

P0R301 P0R302

P
0
R
4
0
1

P
0
R
4
0
2

P
0
R
5
B
0
3

P
0
R
5
B
0
4

P
0
R
5
C
0
5

P
0
R
5
C
0
6

P
0
R
5
D
0
7

P
0
R
5
D
0
8

P
0
R
6
A
0
1

P
0
R
6
A
0
2

P
0
R
6
B
0
3

P
0
R
6
B
0
4

P
0
R
6
C
0
5

P
0
R
6
C
0
6

P0R701 P0R702

P
0
R
8
0
1

P
0
R
8
0
2

P0R901 P0R902

P
0
R
1
0
0
1

P
0
R
1
0
0
2

P0R1101 P0R1102

P
0
R
1
2
0
1

P
0
R
1
2
0
2

P
0
R
1
3
0
1

P
0
R
1
3
0
2

P0R1401 P0R1402 P0R1501 P0R1502

P0T101

P
0
T
1
0
2

P0T103

P
0
U
3
0
1

P
0
U
3
0
2

P
0
U
3
0
4

P
0
U
3
0
5

P
0
U
3
0
7

P
0
U
3
0
8

P
0
U
4
0
1

P0U402

P
0
U
4
0
3

P
0
U
4
0
4

P
0
U
4
0
5

P
0
U
5
0
1

P
0
U
5
0
2

P
0
U
5
0
3

P
0
U
5
0
4

P
0
U
5
0
5

P
0
U
5
0
6

P
0
U
5
0
7

P
0
U
5
0
8

P
0
U
5
0
9

P
0
U
5
0
1
0

P
0
U
5
0
1
1

P
0
U
5
0
1
2

P
0
U
5
0
1
3

P
0
U
5
0
1
4

P
0
U
5
0
1
5

P
0
U
5
0
1
6

P
0
U
5
0
1
7

P
0
U
5
0
1
8

P
0
U
5
0
1
9

P
0
U
5
0
2
0

P
0
U
5
0
2
1

P
0
U
5
0
2
2

P
0
U
5
0
2
3

P
0
U
5
0
2
4

P0U601 P0U602

P
0
U
6
0
3

P
0
U
6
0
4

P
0
U
6
0
5

P
0
U
6
0
6

P0U608

P0U609

P
0
U
6
0
1
1

P
0
U
6
0
1
2

P
0
U
6
0
1
3

P
0
U
6
0
1
4

P0U6015 P0U6016

P0U701

P
0
U
7
0
2

P
0
U
7
0
3

P0U704

P0U705

P
0
U
7
0
6

P
0
U
7
0
7

P0U708

P0Y301 P0Y302

P0C1001

P0C1302

P
0
C
2
2
0
2

P
0
C
2
8
0
2

P0D10A

P0D20A

P
0
J
2
0
1

P0T101

P
0
U
3
0
1

P
0
U
3
0
2

P0U601 P0U701

P0C1202

P
0
U
3
0
5

P
0
U
3
0
7

P
0
U
3
0
8

P0C1101

P
0
R
4
0
1

N
0
A
D
C
3
0
T
E
M
P

P0C1401

P0C1501

P0C1601

P0C1701

P
0
C
1
8
0
2

P0C1901

P0C2002

P
0
C
2
3
0
1

P
0
C
2
4
0
2

P0C2601

P0C2702

P
0
C
2
9
0
1

P0C3502

P
0
J
4
0
2

P0R901

P
0
R
1
0
0
2

P0R1102

P
0
R
1
3
0
2

P0R1502

P0U402

P
0
U
5
0
1
1

P
0
U
5
0
1
6

P
0
U
5
0
2
1

P0U609

P0U6015 P0U705

P0C1502

P0C1602

P0C1702

P0C1902

P0C2001

P
0
C
2
3
0
2

P
0
C
2
9
0
2

P0R1401

P
0
U
4
0
5

P
0
U
5
0
1

P
0
U
5
0
3

P
0
U
5
0
1
5

P0U6016 P0U708

P
0
U
6
0
5

N
0
C
S
0

P0C1002

P0C1102

P0C1201

P0C1301

P
0
C
2
2
0
1

P
0
C
2
8
0
1

P
0
J
2
0
2

P0T103

P
0
U
3
0
4

P0U602

P0U608

P0U704

P0C1402

P
0
J
3
0
1

P
0
J
4
0
1

P0R701

P
0
U
4
0
1

P
0
U
4
0
3

P
0
C
1
8
0
1

P
0
U
5
0
1
7

P0Y301

P0C2101

P
0
R
1
0
0
1

P
0
U
5
0
6

P0C2102

P
0
R
8
0
1

P
0
U
5
0
5

P
0
C
2
4
0
1

P
0
U
5
0
1
8

P0Y302

P0C2501

P
0
R
1
3
0
1

P
0
U
5
0
7

P0C2502

P
0
R
1
2
0
1

P
0
U
5
0
8

P0C2602

P0C2701

P
0
U
5
0
1
0

P0C3501

P
0
U
4
0
4

P0D10K P0R202

P0D20K P0R302

P0H101

P0H201

P0H301

P0H401

P
0
J
2
0
3

P
0
J
2
0
4

P
0
J
2
0
5

P
0
R
6
C
0
6

P
0
J
2
0
6

P
0
R
6
B
0
4

P
0
J
2
0
7

P
0
R
6
A
0
2

P
0
J
2
0
8

P
0
R
5
D
0
8

P
0
J
2
0
9

P
0
R
5
C
0
6

P
0
J
2
0
1
0

P
0
R
5
B
0
4

P
0
J
3
0
2

P
0
R
8
0
2

P0R902

P
0
R
4
0
2

P
0
T
1
0
2

P
0
R
5
B
0
3

P
0
R
5
C
0
5

P
0
R
5
D
0
7

P
0
R
6
A
0
1

P
0
R
6
B
0
3

P
0
R
6
C
0
5

P0R702 P0R1101

P
0
R
1
2
0
2

P0R1402 P0R1501

P
0
U
5
0
2

P
0
U
5
0
4

P
0
U
5
0
1
2

P
0
U
6
0
1
4

P
0
U
5
0
1
3

P
0
U
6
0
1
3

P
0
U
5
0
1
4

P
0
U
6
0
1
2

P
0
U
5
0
1
9

P
0
U
5
0
2
0

P
0
U
6
0
1
1

P
0
U
5
0
2
2

P
0
U
7
0
6

P
0
U
5
0
2
3

P
0
U
5
0
2
4

P
0
U
7
0
2

P
0
U
7
0
3

P
0
U
5
0
9

P
0
U
7
0
7

N
0
N
M
C
L
R

N
0
N
M
C
L
R

P0R301
N0REDLED

N
0
R
E
D
L
E
D

P
0
U
6
0
4

N
0
S
I
M
O
0
 P
0
U
6
0
6

N
0
S
O
M
I
0

N
0
U
A
R
T
1
R
X

N
0
U
A
R
T
1
T
X

P
0
U
6
0
3

N
0
U
C
L
K
0

P0R201
N0YELLOWLED

N
0
Y
E
L
L
O
W
L
E
D

P0C1001 P0C1002

P0C1101 P0C1102

P0C1201 P0C1202

P0C1301 P0C1302

P0C1401 P0C1402

P0C1501 P0C1502

P0C1601 P0C1602

P0C1701 P0C1702

P
0
C
1
8
0
1

P
0
C
1
8
0
2

P0C1901 P0C1902

P0C2001 P0C2002

P0C2101 P0C2102

P
0
C
2
2
0
1

P
0
C
2
2
0
2

P
0
C
2
3
0
1

P
0
C
2
3
0
2

P
0
C
2
4
0
1

P
0
C
2
4
0
2

P0C2501 P0C2502

P0C2601 P0C2602

P0C2701 P0C2702

P
0
C
2
8
0
1

P
0
C
2
8
0
2

P
0
C
2
9
0
1

P
0
C
2
9
0
2

P0C3501 P0C3502

P0D10A P0D10K

P0D20A P0D20K

P0H101

P0H201

P0H301

P0H401

P
0
J
2
0
1

P
0
J
2
0
2

P
0
J
2
0
3

P
0
J
2
0
4

P
0
J
2
0
5

P
0
J
2
0
6

P
0
J
2
0
7

P
0
J
2
0
8

P
0
J
2
0
9

P
0
J
2
0
1
0

P
0
J
3
0
1

P
0
J
3
0
2

P
0
J
4
0
1

P
0
J
4
0
2

P0R201 P0R202

P0R301 P0R302

P
0
R
4
0
1

P
0
R
4
0
2

P
0
R
5
B
0
3

P
0
R
5
B
0
4

P
0
R
5
C
0
5

P
0
R
5
C
0
6

P
0
R
5
D
0
7

P
0
R
5
D
0
8

P
0
R
6
A
0
1

P
0
R
6
A
0
2

P
0
R
6
B
0
3

P
0
R
6
B
0
4

P
0
R
6
C
0
5

P
0
R
6
C
0
6

P0R701 P0R702

P
0
R
8
0
1

P
0
R
8
0
2

P0R901 P0R902

P
0
R
1
0
0
1

P
0
R
1
0
0
2

P0R1101 P0R1102

P
0
R
1
2
0
1

P
0
R
1
2
0
2

P
0
R
1
3
0
1

P
0
R
1
3
0
2

P0R1401 P0R1402 P0R1501 P0R1502

P0T101

P
0
T
1
0
2

P0T103

P
0
U
3
0
1

P
0
U
3
0
2

P
0
U
3
0
4

P
0
U
3
0
5

P
0
U
3
0
7

P
0
U
3
0
8

P
0
U
4
0
1

P0U402

P
0
U
4
0
3

P
0
U
4
0
4

P
0
U
4
0
5

P
0
U
5
0
1

P
0
U
5
0
2

P
0
U
5
0
3

P
0
U
5
0
4

P
0
U
5
0
5

P
0
U
5
0
6

P
0
U
5
0
7

P
0
U
5
0
8

P
0
U
5
0
9

P
0
U
5
0
1
0

P
0
U
5
0
1
1

P
0
U
5
0
1
2

P
0
U
5
0
1
3

P
0
U
5
0
1
4

P
0
U
5
0
1
5

P
0
U
5
0
1
6

P
0
U
5
0
1
7

P
0
U
5
0
1
8

P
0
U
5
0
1
9

P
0
U
5
0
2
0

P
0
U
5
0
2
1

P
0
U
5
0
2
2

P
0
U
5
0
2
3

P
0
U
5
0
2
4

P0U601 P0U602

P
0
U
6
0
3

P
0
U
6
0
4

P
0
U
6
0
5

P
0
U
6
0
6

P0U608

P0U609

P
0
U
6
0
1
1

P
0
U
6
0
1
2

P
0
U
6
0
1
3

P
0
U
6
0
1
4

P0U6015 P0U6016

P0U701

P
0
U
7
0
2

P
0
U
7
0
3

P0U704

P0U705

P
0
U
7
0
6

P
0
U
7
0
7

P0U708

P0Y301 P0Y302

P0C1001

P0C1302

P
0
C
2
2
0
2

P
0
C
2
8
0
2

P0D10A

P0D20A

P
0
J
2
0
1

P0T101

P
0
U
3
0
1

P
0
U
3
0
2

P0U601 P0U701

P0C1202

P
0
U
3
0
5

P
0
U
3
0
7

P
0
U
3
0
8

N
0
A
D
C
3
0
T
E
M
P

P0C1101

P
0
R
4
0
1

P0C1401

P0C1501

P0C1601

P0C1701

P
0
C
1
8
0
2

P0C1901

P0C2002

P
0
C
2
3
0
1

P
0
C
2
4
0
2

P0C2601

P0C2702

P
0
C
2
9
0
1

P0C3502

P
0
J
4
0
2

P0R901

P
0
R
1
0
0
2

P0R1102

P
0
R
1
3
0
2

P0R1502

P0U402

P
0
U
5
0
1
1

P
0
U
5
0
1
6

P
0
U
5
0
2
1

P0U609

P0U6015 P0U705

P0C1502

P0C1602

P0C1702

P0C1902

P0C2001

P
0
C
2
3
0
2

P
0
C
2
9
0
2

P0R1401

P
0
U
4
0
5

P
0
U
5
0
1

P
0
U
5
0
3

P
0
U
5
0
1
5

P0U6016 P0U708

N
0
C
S
0

P
0
U
6
0
5

P0C1002

P0C1102

P0C1201

P0C1301

P
0
C
2
2
0
1

P
0
C
2
8
0
1

P
0
J
2
0
2

P0T103

P
0
U
3
0
4

P0U602

P0U608

P0U704

P0C1402

P
0
J
3
0
1

P
0
J
4
0
1

P0R701

P
0
U
4
0
1

P
0
U
4
0
3

P
0
C
1
8
0
1

P
0
U
5
0
1
7

P0Y301

P0C2101

P
0
R
1
0
0
1

P
0
U
5
0
6

P0C2102

P
0
R
8
0
1

P
0
U
5
0
5

P
0
C
2
4
0
1

P
0
U
5
0
1
8

P0Y302

P0C2501

P
0
R
1
3
0
1

P
0
U
5
0
7

P0C2502

P
0
R
1
2
0
1

P
0
U
5
0
8

P0C2602

P0C2701

P
0
U
5
0
1
0

P0C3501

P
0
U
4
0
4

P0D10K P0R202

P0D20K P0R302

P0H101

P0H201

P0H301

P0H401

P
0
J
2
0
3

P
0
J
2
0
4

P
0
J
2
0
5

P
0
R
6
C
0
6

P
0
J
2
0
6

P
0
R
6
B
0
4

P
0
J
2
0
7

P
0
R
6
A
0
2

P
0
J
2
0
8

P
0
R
5
D
0
8

P
0
J
2
0
9

P
0
R
5
C
0
6

P
0
J
2
0
1
0

P
0
R
5
B
0
4

P
0
J
3
0
2

P
0
R
8
0
2

P0R902

P
0
R
4
0
2

P
0
T
1
0
2

P
0
R
5
B
0
3

P
0
R
5
C
0
5

P
0
R
5
D
0
7

P
0
R
6
A
0
1

P
0
R
6
B
0
3

P
0
R
6
C
0
5

P0R702 P0R1101

P
0
R
1
2
0
2

P0R1402 P0R1501

P
0
U
5
0
2

P
0
U
5
0
4

P
0
U
5
0
1
2

P
0
U
6
0
1
4

P
0
U
5
0
1
3

P
0
U
6
0
1
3

P
0
U
5
0
1
4

P
0
U
6
0
1
2

P
0
U
5
0
1
9

P
0
U
5
0
2
0

P
0
U
6
0
1
1

P
0
U
5
0
2
2

P
0
U
7
0
6

P
0
U
5
0
2
3

P
0
U
5
0
2
4

P
0
U
7
0
2

P
0
U
7
0
3

N
0
N
M
C
L
R

P
0
U
5
0
9

P
0
U
7
0
7

N0REDLED
P0R301

N
0
S
I
M
O
0
 P
0
U
6
0
4

N
0
S
O
M
I
0
 P
0
U
6
0
6

N
0
U
A
R
T
1
R
X

N
0
U
A
R
T
1
T
X

N
0
U
C
L
K
0
 P
0
U
6
0
3

N0YELLOWLED
P0R201

11

22

33

44

D
D

C
C

B
B

A
A

N
at

io
na

l I
C

T
Au

str
al

ia
Le

ve
l 4

22
3

AN
ZA

C
 P

de
K

en
sin

gt
on

NS
W

, 2
05

2

M
SP

43
0F

14
9

M
ic

ro
co

nt
ro

lle
r

10
/0

6/
20

09
5:

20
:0

7
PM

Z:
\p

ro
je

ct
s\

ph
d\

w
or

k\
pm

2\
en

er
gy

m
ea

s2
\h

ar
dw

ar
e\

D
oc

um
en

ts
\M

SP
43

0F
14

9.
SC

H
D

O
C

Ti
tle

Si
ze

:
N

um
be

r:

D
at

e:
Fi

le
:

R
ev

is
io

n:

Sh
ee

t
of

Ti
m

e:
A

4

D
V

cc
1

P6
.3

/A
3

2

P6
.4

/A
4

3

P6
.5

/A
5

4

P6
.6

/A
6

5

P6
.7

/A
7

6

V
re

f+
7

X
IN

8

X
O

U
T/

TC
LK

9

V
eR

EF
+

10

V
eR

EF
-

11

P1
.0

/T
A

C
LK

12

P1
.1

/T
A

0
13

P1
.2

/T
A

1
14

P1
.3

/T
A

2
15

P1
.4

/S
M

C
LK

16

P1.5/TA0 17

P1.6/TA1 18

P1.7/TA2 19

P2.0/ACLK 20

P2.1/TAINCLK 21

P2.2/CAOUT/TA0 22

P2.3/CA0/TA1 23

P2.4/CA1/TA2 24

P2.5/Rosc 25

P2.6/ADC12CLK 26

P2.7/TA0 27

P3.0/STE0 28

P3.1/SIMO0 29

P3.2/SOMI0 30

P3.3/UCLK0 31

P3.4/UTXD0 32

P3
.5

/U
R

X
D

0
33

P3
.6

/U
TX

D
1

34
P3

.7
/U

R
X

D
1

35
P4

.0
/T

B
0

36
P4

.1
/T

B
1

37
P4

.2
/T

B
2

38
P4

.3
/T

B
3

39
P4

.4
/T

B
4

40
P4

.5
/T

B
5

41
P4

.6
/T

B
6

42
P4

.7
/T

B
C

LK
43

P5
.0

/S
TE

1
44

P5
.1

/S
IM

O
1

45
P5

.2
/S

O
M

I1
46

P5
.3

/U
C

LK
1

47
P5

.4
/M

C
LK

48

P5.5/SMCLK49 P5.6/ACLK50 P5.7/TBoutH51 XT2OUT52 XT2IN53 TDO/TDI54 TDI55 TMS56 TCK57 /RST/NMI58 P6.0/A059 P6.1/A160 P6.2/A261 AVss62 DVss63 AVcc64

U
1

M
SP

43
0F

14
9

N
C

1

V
in

2

R
ES

ET
#

3

JT
A

G
 T

D
O

4

JT
A

G
 T

D
I

5

JT
A

G
 T

M
S

6

JT
A

G
 T

C
K

7

G
N

D
8

J1 Tr
iti

um
 JT

A
G

 C
on

ne
ct

or

3V
3

G
N

D

A
D

C
3

A
D

C
4

A
D

C
5

A
D

C
6

A
D

C
7

ADC2
ADC1
ADC0

P3
.5

P3.4
P3.3

P1
.1

P2.2

/R
ES

ET
TD

O
TD

I
TM

S
TC

K

G
N

D

3V
3

R
1

10
k

3V
3

C
3

10
nF

/RESET
TCK
TMS
TDI
TDO

Y
1

32
.7

68
 K

H
z

Y
2

7.
37

28
 M

H
zC
8

18
pF

C
9

18
pF

G
N

D

G
N

D

X
T1

IN

XT2IN
XT2OUT

X
T1

IN

X
T2

IN

X
T2

O
U

T

X
T1

O
U

T

P5
.2

P5
.1

P5
.3

P5
.0

P1
.4

P3.2

P1
.3

P4
.7

P4
.6

P4
.5

P4
.4

P4
.3

P4
.2

P4
.1 P4

.0

V
re

f+

P1
.0

P1
.2

P1.5
P1.6
P1.7
P2.0
P2.1

P2.3
P2.4
P2.5
P2.6
P2.7
P3.0
P3.1

P3
.6

P5
.4

P5.5
P5.6
P5.7

C
6

10
0n

F

X
T1

O
U

T

G
N

D

U
se

 re
m

ai
ni

ng
 p

or
ts

 o
n

P1
, P

2
fo

r
 in

pu
ts

, a
s t

he
y

ca
n

ge
ne

ra
te

 in
te

rr
up

ts

G
o

th
ro

ug
h

co
nn

ec
to

r a
nd

 a
llo

ca
te

 e
xt

ra
 p

in
s a

nd
 G

PI
O

s t
o

 h
er

e

U
SA

R
T1

 w
ill

 b
e

us
ed

 in
 S

PI
 m

od
e,

 ta
lk

in
g

to
 C

A
N

 (M
C

P2
51

0)

V
re

f i
s i

nt
er

na
l

 re
fe

re
nc

e
- s

et
 M

SP
43

0
to

 u
se

 2
.5

V

P3
.7

C
A

N
 in

te
rr

up
t i

s c
on

ne
ct

ed
 to

 P
1.

4
C

A
N

_C
S

is
 c

on
ne

ct
ed

 to
 P

5.
0

SI
M

O
1

is
 c

on
ne

ct
ed

 to
 P

5.
1

SO
M

I i
s c

on
ne

ct
ed

 to
 P

5.
2

U
C

LK
1

is
 c

on
ne

ct
ed

 to
 P

5.
3

ADC0
ADC1
ADC2

A
D

C
3

A
D

C
4

A
D

C
5

A
D

C
6

A
D

C
7

P1
.0 P1

.1
P1

.2
P1

.3
P1

.4

P1.5
P1.6
P1.7
P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7
P3.0
P3.1
P3.2
P3.3
P3.4

P3
.5

P3
.6

P3
.7

P4
.0

P4
.1

P4
.2

P4
.3

P4
.4

P4
.5

P4
.6

P4
.7

P5
.0

P5
.1

P5
.2

P5
.3

P5
.4

P5.5
P5.6
P5.7

/R
ES

ET

3V
3

V
cc

3

G
N

D
2

R
ES

ET
#

1

U
2

X
C

61
C

N
20

02
M

R

C
7

10
uF

G
N

D

C
1

10
0n

F
C

2
10

uF

3V
3

G
N

D

C
4

10
0n

F
C

5
10

uF

Pi
n

1
is

 n
or

m
al

ly
 u

nc
on

ne
ct

ed
M

ad
e

it
3V

3
to

 h
el

p
la

yo
ut

ER
EF

+
ER

EF
-

P0C101 P0C102

P0C201 P0C202

P0C301 P0C302

P0C401 P0C402

P0C501 P0C502

P0C601 P0C602

P0C701 P0C702

P
0
C
8
0
1

P
0
C
8
0
2

P
0
C
9
0
1

P
0
C
9
0
2

P
0
J
1
0
1

P
0
J
1
0
2

P
0
J
1
0
3

P
0
J
1
0
4

P
0
J
1
0
5

P
0
J
1
0
6

P
0
J
1
0
7

P
0
J
1
0
8

P0R101 P0R102

P
0
U
1
0
1

P
0
U
1
0
2

P
0
U
1
0
3

P
0
U
1
0
4

P
0
U
1
0
5

P
0
U
1
0
6

P
0
U
1
0
7

P
0
U
1
0
8
 P
0
U
1
0
9

P
0
U
1
0
1
0

P
0
U
1
0
1
1

P
0
U
1
0
1
2

P
0
U
1
0
1
3

P
0
U
1
0
1
4

P
0
U
1
0
1
5

P
0
U
1
0
1
6

P0U1017

P0U1018

P0U1019

P0U1020

P0U1021

P0U1022

P0U1023

P0U1024

P0U1025

P0U1026

P0U1027

P0U1028

P0U1029

P0U1030

P0U1031

P0U1032

P
0
U
1
0
3
3

P
0
U
1
0
3
4

P
0
U
1
0
3
5

P
0
U
1
0
3
6

P
0
U
1
0
3
7

P
0
U
1
0
3
8

P
0
U
1
0
3
9

P
0
U
1
0
4
0

P
0
U
1
0
4
1

P
0
U
1
0
4
2

P
0
U
1
0
4
3

P
0
U
1
0
4
4

P
0
U
1
0
4
5

P
0
U
1
0
4
6

P
0
U
1
0
4
7

P
0
U
1
0
4
8

P0U1049

P0U1050

P0U1051

P0U1052

P0U1053

P0U1054

P0U1055

P0U1056

P0U1057

P0U1058

P0U1059

P0U1060

P0U1061

P0U1062

P0U1063

P0U1064

P
0
U
2
0
1

P
0
U
2
0
2

P
0
U
2
0
3

P0Y101 P0Y102 P0Y201 P0Y202

P0C301

P
0
J
1
0
3

P0R101

P0U1058

P
0
U
2
0
1

N0/RESET

N
0
/
R
E
S
E
T

N
0
/
R
E
S
E
T

P0C101

P0C201

P0C401

P0C501

P
0
J
1
0
1

P
0
J
1
0
2

P0R102

P
0
U
1
0
1

P0U1064

P
0
U
2
0
3

P0U1059 N0ADC0
P0ADC0

P0U1060 N0ADC1
P0ADC1

P0U1061 N0ADC2
P0ADC2

P
0
U
1
0
2

N
0
A
D
C
3

P
0
A
D
C
3

P
0
U
1
0
3

N
0
A
D
C
4

P
0
A
D
C
4

P
0
U
1
0
4

N
0
A
D
C
5

P
0
A
D
C
5

P
0
U
1
0
5

N
0
A
D
C
6

P
0
A
D
C
6

P
0
U
1
0
6

N
0
A
D
C
7

P
0
A
D
C
7

P
0
U
1
0
1
0

N
0
E
R
E
F
+

P
0
U
1
0
1
1

N
0
E
R
E
F
0

P0C102

P0C202

P0C302

P0C402

P0C502

P0C602

P0C702

P
0
C
8
0
2

P
0
C
9
0
2

P
0
J
1
0
8

P0U1062

P0U1063

P
0
U
2
0
2

P
0
U
1
0
1
2

N
0
P
1
0
0

P
0
P
1
0
0

P
0
U
1
0
1
3

N
0
P
1
0
1

P
0
P
1
0
1

P
0
U
1
0
1
4

N
0
P
1
0
2

P
0
P
1
0
2

P
0
U
1
0
1
5

N
0
P
1
0
3

P
0
P
1
0
3

P
0
U
1
0
1
6

N
0
P
1
0
4

P
0
P
1
0
4

P0U1017
N0P105

P0P105

P0U1018
N0P106

P0P106

P0U1019
N0P107

P0P107

P0U1020
N0P200

P0P200

P0U1021
N0P201

P0P201

P0U1022
N0P202

P0P202

P0U1023
N0P203

P0P203

P0U1024
N0P204

P0P204

P0U1025
N0P205

P0P205

P0U1026
N0P206

P0P206

P0U1027
N0P207

P0P207

P0U1028
N0P300

P0P300

P0U1029
N0P301

P0P301

P0U1030
N0P302

P0P302

P0U1031
N0P303

P0P303

P0U1032
N0P304

P0P304

P
0
U
1
0
3
3

N
0
P
3
0
5

P
0
P
3
0
5

P
0
U
1
0
3
4

N
0
P
3
0
6

P
0
P
3
0
6

P
0
U
1
0
3
5

N
0
P
3
0
7

P
0
P
3
0
7

P
0
U
1
0
3
6

N
0
P
4
0
0

P
0
P
4
0
0

P
0
U
1
0
3
7

N
0
P
4
0
1

P
0
P
4
0
1

P
0
U
1
0
3
8

N
0
P
4
0
2

P
0
P
4
0
2

P
0
U
1
0
3
9

N
0
P
4
0
3

P
0
P
4
0
3

P
0
U
1
0
4
0

N
0
P
4
0
4

P
0
P
4
0
4

P
0
U
1
0
4
1

N
0
P
4
0
5

P
0
P
4
0
5

P
0
U
1
0
4
2

N
0
P
4
0
6

P
0
P
4
0
6

P
0
U
1
0
4
3

N
0
P
4
0
7

P
0
P
4
0
7

P
0
U
1
0
4
4

N
0
P
5
0
0

P
0
P
5
0
0

P
0
U
1
0
4
5

N
0
P
5
0
1

P
0
P
5
0
1

P
0
U
1
0
4
6

N
0
P
5
0
2

P
0
P
5
0
2

P
0
U
1
0
4
7

N
0
P
5
0
3

P
0
P
5
0
3

P
0
U
1
0
4
8

N
0
P
5
0
4

P
0
P
5
0
4

P0U1049 N0P505
P0P505

P0U1050 N0P506
P0P506

P0U1051 N0P507
P0P507

P
0
J
1
0
7

P0U1057 N0TCK

N
0
T
C
K

P
0
J
1
0
5

P0U1055 N0TDI

N
0
T
D
I

P
0
J
1
0
4

P0U1054 N0TDO

N
0
T
D
O

P
0
J
1
0
6

P0U1056 N0TMS

N
0
T
M
S

P0C601

P0C701

P
0
U
1
0
7

N
0
V
R
E
F
+

P
0
U
1
0
8

P0Y102

N
0
X
T
1
I
N

N
0
X
T
1
I
N

P
0
U
1
0
9

P0Y101

N
0
X
T
1
O
U
T

N
0
X
T
1
O
U
T

P
0
C
9
0
1

P0U1053

P0Y201

N0XT2IN

N
0
X
T
2
I
N

P
0
C
8
0
1

P0U1052

P0Y202

N0XT2OUT

N
0
X
T
2
O
U
T

P0ADC0

P0ADC1

P0ADC2

P
0
A
D
C
3

P
0
A
D
C
4

P
0
A
D
C
5

P
0
A
D
C
6

P
0
A
D
C
7

P
0
P
1
0
0

P
0
P
1
0
1

P
0
P
1
0
2

P
0
P
1
0
3

P
0
P
1
0
4

P0P105

P0P106

P0P107

P0P200

P0P201

P0P202

P0P203

P0P204

P0P205

P0P206

P0P207

P0P300

P0P301

P0P302

P0P303

P0P304

P
0
P
3
0
5

P
0
P
3
0
6

P
0
P
3
0
7

P
0
P
4
0
0

P
0
P
4
0
1

P
0
P
4
0
2

P
0
P
4
0
3

P
0
P
4
0
4

P
0
P
4
0
5

P
0
P
4
0
6

P
0
P
4
0
7

P
0
P
5
0
0

P
0
P
5
0
1

P
0
P
5
0
2

P
0
P
5
0
3

P
0
P
5
0
4

P0P505

P0P506

P0P507

P0C101 P0C102

P0C201 P0C202

P0C301 P0C302

P0C401 P0C402

P0C501 P0C502

P0C601 P0C602

P0C701 P0C702

P
0
C
8
0
1

P
0
C
8
0
2

P
0
C
9
0
1

P
0
C
9
0
2

P
0
J
1
0
1

P
0
J
1
0
2

P
0
J
1
0
3

P
0
J
1
0
4

P
0
J
1
0
5

P
0
J
1
0
6

P
0
J
1
0
7

P
0
J
1
0
8

P0R101 P0R102

P
0
U
1
0
1

P
0
U
1
0
2

P
0
U
1
0
3

P
0
U
1
0
4

P
0
U
1
0
5

P
0
U
1
0
6

P
0
U
1
0
7

P
0
U
1
0
8
 P
0
U
1
0
9

P
0
U
1
0
1
0

P
0
U
1
0
1
1

P
0
U
1
0
1
2

P
0
U
1
0
1
3

P
0
U
1
0
1
4

P
0
U
1
0
1
5

P
0
U
1
0
1
6

P0U1017

P0U1018

P0U1019

P0U1020

P0U1021

P0U1022

P0U1023

P0U1024

P0U1025

P0U1026

P0U1027

P0U1028

P0U1029

P0U1030

P0U1031

P0U1032

P
0
U
1
0
3
3

P
0
U
1
0
3
4

P
0
U
1
0
3
5

P
0
U
1
0
3
6

P
0
U
1
0
3
7

P
0
U
1
0
3
8

P
0
U
1
0
3
9

P
0
U
1
0
4
0

P
0
U
1
0
4
1

P
0
U
1
0
4
2

P
0
U
1
0
4
3

P
0
U
1
0
4
4

P
0
U
1
0
4
5

P
0
U
1
0
4
6

P
0
U
1
0
4
7

P
0
U
1
0
4
8

P0U1049

P0U1050

P0U1051

P0U1052

P0U1053

P0U1054

P0U1055

P0U1056

P0U1057

P0U1058

P0U1059

P0U1060

P0U1061

P0U1062

P0U1063

P0U1064

P
0
U
2
0
1

P
0
U
2
0
2

P
0
U
2
0
3

P0Y101 P0Y102 P0Y201 P0Y202

N0/RESET

P0C301

P
0
J
1
0
3

P0R101

P0U1058

P
0
U
2
0
1

P0C101

P0C201

P0C401

P0C501

P
0
J
1
0
1

P
0
J
1
0
2

P0R102

P
0
U
1
0
1

P0U1064

P
0
U
2
0
3

N0ADC0 P0U1059
P0ADC0

N0ADC1 P0U1060
P0ADC1

N0ADC2 P0U1061
P0ADC2

N
0
A
D
C
3

P
0
U
1
0
2

P
0
A
D
C
3

N
0
A
D
C
4

P
0
U
1
0
3

P
0
A
D
C
4

N
0
A
D
C
5

P
0
U
1
0
4

P
0
A
D
C
5

N
0
A
D
C
6

P
0
U
1
0
5

P
0
A
D
C
6

N
0
A
D
C
7

P
0
U
1
0
6

P
0
A
D
C
7

N
0
E
R
E
F
+

P
0
U
1
0
1
0

N
0
E
R
E
F
0

P
0
U
1
0
1
1

P0C102

P0C202

P0C302

P0C402

P0C502

P0C602

P0C702

P
0
C
8
0
2

P
0
C
9
0
2

P
0
J
1
0
8

P0U1062

P0U1063

P
0
U
2
0
2

N
0
P
1
0
0

P
0
U
1
0
1
2

P
0
P
1
0
0

N
0
P
1
0
1

P
0
U
1
0
1
3

P
0
P
1
0
1

N
0
P
1
0
2

P
0
U
1
0
1
4

P
0
P
1
0
2

N
0
P
1
0
3

P
0
U
1
0
1
5

P
0
P
1
0
3

N
0
P
1
0
4

P
0
U
1
0
1
6

P
0
P
1
0
4

N0P105
P0U1017

P0P105
N0P106

P0U1018
P0P106

N0P107
P0U1019

P0P107
N0P200

P0U1020
P0P200

N0P201
P0U1021

P0P201
N0P202

P0U1022
P0P202

N0P203
P0U1023

P0P203
N0P204

P0U1024
P0P204

N0P205
P0U1025

P0P205
N0P206

P0U1026
P0P206

N0P207
P0U1027

P0P207
N0P300

P0U1028
P0P300

N0P301
P0U1029

P0P301
N0P302

P0U1030
P0P302

N0P303
P0U1031

P0P303
N0P304

P0U1032
P0P304

N
0
P
3
0
5

P
0
U
1
0
3
3

P
0
P
3
0
5

N
0
P
3
0
6

P
0
U
1
0
3
4

P
0
P
3
0
6

N
0
P
3
0
7

P
0
U
1
0
3
5

P
0
P
3
0
7

N
0
P
4
0
0

P
0
U
1
0
3
6

P
0
P
4
0
0

N
0
P
4
0
1

P
0
U
1
0
3
7

P
0
P
4
0
1

N
0
P
4
0
2

P
0
U
1
0
3
8

P
0
P
4
0
2

N
0
P
4
0
3

P
0
U
1
0
3
9

P
0
P
4
0
3

N
0
P
4
0
4

P
0
U
1
0
4
0

P
0
P
4
0
4

N
0
P
4
0
5

P
0
U
1
0
4
1

P
0
P
4
0
5

N
0
P
4
0
6

P
0
U
1
0
4
2

P
0
P
4
0
6

N
0
P
4
0
7

P
0
U
1
0
4
3

P
0
P
4
0
7

N
0
P
5
0
0

P
0
U
1
0
4
4

P
0
P
5
0
0

N
0
P
5
0
1

P
0
U
1
0
4
5

P
0
P
5
0
1

N
0
P
5
0
2

P
0
U
1
0
4
6

P
0
P
5
0
2

N
0
P
5
0
3

P
0
U
1
0
4
7

P
0
P
5
0
3

N
0
P
5
0
4

P
0
U
1
0
4
8

P
0
P
5
0
4

N0P505 P0U1049
P0P505

N0P506 P0U1050
P0P506

N0P507 P0U1051
P0P507

N0TCK

P
0
J
1
0
7

P0U1057

N0TDI

P
0
J
1
0
5

P0U1055

N0TDO

P
0
J
1
0
4

P0U1054

N0TMS

P
0
J
1
0
6

P0U1056

N
0
V
R
E
F
+

P0C601

P0C701

P
0
U
1
0
7

N
0
X
T
1
I
N

P
0
U
1
0
8

P0Y102

N
0
X
T
1
O
U
T

P
0
U
1
0
9

P0Y101

N0XT2IN

P
0
C
9
0
1

P0U1053

P0Y201

N0XT2OUT

P
0
C
8
0
1

P0U1052

P0Y202

11

22

33

44

D
D

C
C

B
B

A
A

N
at

io
na

l I
C

T
Au

str
al

ia
Le

ve
l 4

22
3

AN
ZA

C
 P

de
K

en
sin

gt
on

NS
W

, 2
05

2

U
SB

-U
A

R
T

in
te

rf
ac

e

10
/0

6/
20

09
5:

20
:0

7
PM

Z:
\p

ro
je

ct
s\

ph
d\

w
or

k\
pm

2\
en

er
gy

m
ea

s2
\h

ar
dw

ar
e\

D
oc

um
en

ts
\U

SB
se

ria
l.S

ch
D

oc

Ti
tle

Si
ze

:
N

um
be

r:

D
at

e:
Fi

le
:

R
ev

is
io

n:

Sh
ee

t
of

Ti
m

e:
A

4

TX
D

1

D
TR

2

R
TS

3

VCCIO4

R
X

D
5

R
I

6

GND 7

N
C

8

D
SR

9

D
C

D
10

C
TS

11

C
B

U
S4

12
C

B
U

S3
13

C
B

U
S2

14

U
SB

D
P

15
U

SB
D

M
16

3V
3O

U
T

17

GND 18

VCC20 GND 21

R
ES

ET
19

C
B

U
S1

22
C

B
U

S0
23

N
C

24

AGND 25

TEST 26

O
SC

I
27

O
SC

O
28

U
8

FT
23

2R
1 2 3 4

J5 C
O

N
4

U
SB

5V

C
31

10
0n

L1 FE
R

R
IT

E C
33

10
0n

U
SB

3V
3

TX
D

R
X

D

U
SB

3V
3

R
16

1k

D
3

LE
D

Q
1

ZX
M

61
P0

3F

U
SB

5V

U
SB

3V
3

R
17

1k
C

34
10

0n

U
SB

5V

U
SB

G
N

D
U

SB
3V

3

U
SB

3V
3

C
30

10
u

C
32

10
0n

P0C3001 P0C3002

P0C3101 P0C3102

P0C3201 P0C3202

P0C3301 P0C3302

P0C3401 P0C3402

P0D30A P0D30K

P
0
J
5
0
1

P
0
J
5
0
2

P
0
J
5
0
3

P
0
J
5
0
4

P
0
L
1
0
1

P
0
L
1
0
2

P
0
Q
1
0
1

P0Q102 P0Q103

P0R1601 P0R1602

P
0
R
1
7
0
1

P
0
R
1
7
0
2

P
0
U
8
0
1

P
0
U
8
0
2

P
0
U
8
0
3

P0U804

P
0
U
8
0
5

P
0
U
8
0
6

P0U807

P
0
U
8
0
8

P
0
U
8
0
9

P
0
U
8
0
1
0

P
0
U
8
0
1
1

P
0
U
8
0
1
2

P
0
U
8
0
1
3

P
0
U
8
0
1
4

P
0
U
8
0
1
5

P
0
U
8
0
1
6

P
0
U
8
0
1
7

P0U8018

P
0
U
8
0
1
9

P0U8020
P0U8021

P
0
U
8
0
2
2

P
0
U
8
0
2
3

P
0
U
8
0
2
4

P0U8025

P0U8026

P
0
U
8
0
2
7

P
0
U
8
0
2
8

P0C3101

P
0
J
5
0
1

P
0
L
1
0
1

P0C3401

P
0
Q
1
0
1

P
0
R
1
7
0
1

P0D30A P0R1601 P0D30K

P
0
U
8
0
2
3

P
0
J
5
0
2

P
0
U
8
0
1
6

P
0
J
5
0
3

P
0
U
8
0
1
5

P
0
R
1
7
0
2

P
0
U
8
0
1
2

P
0
U
8
0
2

P
0
U
8
0
3

P
0
U
8
0
6

P
0
U
8
0
8

P
0
U
8
0
9

P
0
U
8
0
1
0

P
0
U
8
0
1
1

P
0
U
8
0
1
3

P
0
U
8
0
1
4

P
0
U
8
0
1
9

P
0
U
8
0
2
2

P
0
U
8
0
2
4

P
0
U
8
0
2
7

P
0
U
8
0
2
8

P
0
U
8
0
5

P
0
R
X
D

P
0
U
8
0
1

P
0
T
X
D

P0C3301

P0R1602

P0U804

P
0
U
8
0
1
7

N
0
U
S
B
3
V
3

N
0
U
S
B
3
V
3

N
0
U
S
B
3
V
3

N
0
U
S
B
3
V
3

P
0
U
S
B
3
V
3

P0C3002

P0C3201

P
0
L
1
0
2

P0Q103

P0U8020

P0C3001

P0C3102

P0C3202

P0C3302

P
0
J
5
0
4

P0U807

P0U8018

P0U8021

P0U8025

P0U8026

N
0
U
S
B
G
N
D

N
0
U
S
B
G
N
D

N
0
U
S
B
G
N
D

N
0
U
S
B
G
N
D

N
0
U
S
B
G
N
D

N
0
U
S
B
G
N
D

N
0
U
S
B
G
N
D

P
0
U
S
B
G
N
D

P
0
R
X
D

P
0
T
X
D

P
0
U
S
B
3
V
3

P
0
U
S
B
G
N
D

P0C3001 P0C3002

P0C3101 P0C3102

P0C3201 P0C3202

P0C3301 P0C3302

P0C3401 P0C3402

P0D30A P0D30K

P
0
J
5
0
1

P
0
J
5
0
2

P
0
J
5
0
3

P
0
J
5
0
4

P
0
L
1
0
1

P
0
L
1
0
2

P
0
Q
1
0
1

P0Q102 P0Q103

P0R1601 P0R1602

P
0
R
1
7
0
1

P
0
R
1
7
0
2

P
0
U
8
0
1

P
0
U
8
0
2

P
0
U
8
0
3

P0U804

P
0
U
8
0
5

P
0
U
8
0
6

P0U807

P
0
U
8
0
8

P
0
U
8
0
9

P
0
U
8
0
1
0

P
0
U
8
0
1
1

P
0
U
8
0
1
2

P
0
U
8
0
1
3

P
0
U
8
0
1
4

P
0
U
8
0
1
5

P
0
U
8
0
1
6

P
0
U
8
0
1
7

P0U8018

P
0
U
8
0
1
9

P0U8020
P0U8021

P
0
U
8
0
2
2

P
0
U
8
0
2
3

P
0
U
8
0
2
4

P0U8025

P0U8026

P
0
U
8
0
2
7

P
0
U
8
0
2
8

P0C3101

P
0
J
5
0
1

P
0
L
1
0
1

P0C3401

P
0
Q
1
0
1

P
0
R
1
7
0
1

P0D30A P0R1601 P0D30K

P
0
U
8
0
2
3

P
0
J
5
0
2

P
0
U
8
0
1
6

P
0
J
5
0
3

P
0
U
8
0
1
5

P
0
R
1
7
0
2

P
0
U
8
0
1
2

P
0
U
8
0
2

P
0
U
8
0
3

P
0
U
8
0
6

P
0
U
8
0
8

P
0
U
8
0
9

P
0
U
8
0
1
0

P
0
U
8
0
1
1

P
0
U
8
0
1
3

P
0
U
8
0
1
4

P
0
U
8
0
1
9

P
0
U
8
0
2
2

P
0
U
8
0
2
4

P
0
U
8
0
2
7

P
0
U
8
0
2
8

P
0
U
8
0
5

P
0
R
X
D

P
0
U
8
0
1

P
0
T
X
D

N
0
U
S
B
3
V
3

P0C3301

P0R1602

P0U804

P
0
U
8
0
1
7

P
0
U
S
B
3
V
3

P0C3002

P0C3201

P
0
L
1
0
2

P0Q103

P0U8020

N
0
U
S
B
G
N
D

P0C3001

P0C3102

P0C3202

P0C3302

P
0
J
5
0
4

P0U807

P0U8018

P0U8021

P0U8025

P0U8026

P
0
U
S
B
G
N
D

C
1

P
0
C
1
0
1

P
0
C
1
0
2

C
2

P0C201

P0C202

C
3

P0C301 P0C302

C4 P0C401 P0C402

C5

P
0
C
5
0
1

P
0
C
5
0
2

C
6

P
0
C
6
0
1

P
0
C
6
0
2

C
7

P0C701

P0C702

C
8
 P

0
C
8
0
1

P
0
C
8
0
2

C
9

P
0
C
9
0
1

P
0
C
9
0
2

C
1
0

P0C1001 P0C1002 C
1
1

P
0
C
1
1
0
1

P
0
C
1
1
0
2

C
1
2

P
0
C
1
2
0
1

P
0
C
1
2
0
2

C
1
3

P0C1301

P0C1302

C
1
4

P
0
C
1
4
0
1

P
0
C
1
4
0
2

C15

P
0
C
1
5
0
1

P
0
C
1
5
0
2

C
1
6

P
0
C
1
6
0
1

P
0
C
1
6
0
2

C
1
7

P0C1701 P0C1702

C
1
8

P
0
C
1
8
0
1

P
0
C
1
8
0
2

C
1
9

P0C1901

P0C1902

C
2
0
 P

0
C
2
0
0
1

P
0
C
2
0
0
2

C
2
1

P0C2101 P0C2102

C
2
2

P0C2201 P0C2202

C23

P0C2301 P0C2302

C
2
4

P
0
C
2
4
0
1

P
0
C
2
4
0
2

C25

P
0
C
2
5
0
1

P
0
C
2
5
0
2

C26

P0C2601

P0C2602 C
2
7

P
0
C
2
7
0
1

P
0
C
2
7
0
2

C
2
8

P0C2801 P0C2802

C
2
9

P0C2901 P0C2902

C30

P
0
C
3
0
0
1

P
0
C
3
0
0
2

C
3
1

P
0
C
3
1
0
1

P
0
C
3
1
0
2

C
3
2

P0C3201 P0C3202

C
3
3

P0C3301 P0C3302

C
3
4

P0C3401 P0C3402

C
3
5

P
0
C
3
5
0
1

P
0
C
3
5
0
2

D
1

P0D10A

P0D10K

D
2

P0D20A

P0D20K

D3

P
0
D
3
0
A

P
0
D
3
0
K

H
1
 P
0
H
1
0
1

H
2
 P
0
H
2
0
1

H
3
 P
0
H
3
0
1

H
4
 P
0
H
4
0
1

J
1

P
0
J
1
0
1

P
0
J
1
0
2

P0J103

P
0
J
1
0
4

P
0
J
1
0
5

P
0
J
1
0
6

P
0
J
1
0
7

P
0
J
1
0
8

P0J109

P
0
J
1
0
1
0

J
2

P
0
J
2
0
1

P
0
J
2
0
2

P
0
J
2
0
3

P
0
J
2
0
4
 P0J205

P
0
J
2
0
6

P
0
J
2
0
7

P
0
J
2
0
8

P
0
J
2
0
9

P
0
J
2
0
1
0

J
3

P0J301 P0J302

J
4

P
0
J
4
0
1

P0J402

J
5

P
0
J
5
0
1

P
0
J
5
0
2

P
0
J
5
0
3

P
0
J
5
0
4

P
0
J
5
0
5

L1

P
0
L
1
0
1

P
0
L
1
0
2

P
1

Q
1

P
0
Q
1
0
1

P
0
Q
1
0
2

P
0
Q
1
0
3

R
1

P
0
R
1
0
1

P
0
R
1
0
2

R2 P0R201 P0R202

R3 P0R301 P0R302

R
4

P
0
R
4
0
1

P
0
R
4
0
2

R
5

P0R501 P0R502 P0R503 P0R504 P0R505 P0R506 P0R507 P0R508

R
6

P0R601 P0R602 P0R603 P0R604 P0R605 P0R606 P0R607 P0R608
R
7

P
0
R
7
0
1
 P
0
R
7
0
2

R
8

P
0
R
8
0
1

P
0
R
8
0
2

R9 P0R901 P0R902

R
1
0

P
0
R
1
0
0
1

P
0
R
1
0
0
2

R
1
1

P
0
R
1
1
0
1

P
0
R
1
1
0
2

R12 P0R1201 P0R1202

R13

P0R1301 P0R1302

R
1
4

P
0
R
1
4
0
1

P
0
R
1
4
0
2

R
1
5

P
0
R
1
5
0
1

P
0
R
1
5
0
2

R16

P
0
R
1
6
0
1

P
0
R
1
6
0
2

R
1
7

P0R1701 P0R1702

T
1

P
0
T
1
0
1

P
0
T
1
0
2

P
0
T
1
0
3

U
1

P
0
U
1
0
1

P
0
U
1
0
2

P
0
U
1
0
3

P
0
U
1
0
4

P
0
U
1
0
5

P
0
U
1
0
6

P
0
U
1
0
7

P
0
U
1
0
8

P
0
U
1
0
9

P
0
U
1
0
1
0

P
0
U
1
0
1
1

P
0
U
1
0
1
2

P
0
U
1
0
1
3

P
0
U
1
0
1
4

P
0
U
1
0
1
5

P
0
U
1
0
1
6
 P0U1017 P0U1018 P0U1019 P0U1020 P0U1021 P0U1022 P0U1023 P0U1024 P0U1025 P0U1026 P0U1027 P0U1028 P0U1029 P0U1030 P0U1031 P0U1032 P

0
U
1
0
3
3

P
0
U
1
0
3
4

P
0
U
1
0
3
5

P
0
U
1
0
3
6

P
0
U
1
0
3
7

P
0
U
1
0
3
8

P
0
U
1
0
3
9

P
0
U
1
0
4
0

P
0
U
1
0
4
1

P
0
U
1
0
4
2

P
0
U
1
0
4
3

P
0
U
1
0
4
4

P
0
U
1
0
4
5

P
0
U
1
0
4
6

P
0
U
1
0
4
7

P
0
U
1
0
4
8

P0U1049 P0U1050 P0U1051 P0U1052 P0U1053 P0U1054 P0U1055 P0U1056 P0U1057 P0U1058 P0U1059 P0U1060 P0U1061 P0U1062 P0U1063 P0U1064 U
2
 P
0
U
2
0
1

P
0
U
2
0
2

P
0
U
2
0
3

U
3

P0U301
P0U302
P0U303
P0U304 P0U305

P0U306
P0U307
P0U308

U
4

P
0
U
4
0
1

P
0
U
4
0
2

P
0
U
4
0
3

P
0
U
4
0
4

P
0
U
4
0
5

U
5

P0U501
P0U502
P0U503
P0U504
P0U505
P0U506
P0U507
P0U508
P0U509
P0U5010
P0U5011
P0U5012 P0U5013

P0U5014
P0U5015
P0U5016
P0U5017
P0U5018
P0U5019
P0U5020
P0U5021
P0U5022
P0U5023
P0U5024

U
6

P
0
U
6
0
1

P
0
U
6
0
2

P
0
U
6
0
3

P
0
U
6
0
4

P
0
U
6
0
5

P
0
U
6
0
6

P
0
U
6
0
7

P
0
U
6
0
8

P
0
U
6
0
9

P
0
U
6
0
1
0

P
0
U
6
0
1
1

P
0
U
6
0
1
2

P
0
U
6
0
1
3

P
0
U
6
0
1
4

P
0
U
6
0
1
5

P
0
U
6
0
1
6

U
7

P
0
U
7
0
1

P
0
U
7
0
2

P
0
U
7
0
3

P
0
U
7
0
4

P
0
U
7
0
5

P
0
U
7
0
6

P
0
U
7
0
7

P
0
U
7
0
8

U
8

P
0
U
8
0
1

P
0
U
8
0
2

P
0
U
8
0
3

P
0
U
8
0
4

P
0
U
8
0
5

P
0
U
8
0
6

P
0
U
8
0
7

P
0
U
8
0
8

P
0
U
8
0
9

P
0
U
8
0
1
0

P
0
U
8
0
1
1

P
0
U
8
0
1
2

P
0
U
8
0
1
3

P
0
U
8
0
1
4

P
0
U
8
0
1
5

P
0
U
8
0
1
6

P
0
U
8
0
1
7

P
0
U
8
0
1
8

P
0
U
8
0
1
9

P
0
U
8
0
2
0

P
0
U
8
0
2
1

P
0
U
8
0
2
2

P
0
U
8
0
2
3

P
0
U
8
0
2
4

P
0
U
8
0
2
5

P
0
U
8
0
2
6

P
0
U
8
0
2
7

P
0
U
8
0
2
8

Y
1

P
0
Y
1
0
0

P
0
Y
1
0
1

P
0
Y
1
0
2

Y
2
 P
0
Y
2
0
1

P
0
Y
2
0
2

Y
3

P
0
Y
3
0
1

P
0
Y
3
0
2

P0C301

P0J103

P
0
R
1
0
1

P0U1058

P
0
U
2
0
1

P
0
C
1
0
1

P0C201

P0C401

P
0
C
5
0
1

P0C1001

P0C1302

P0C2202 P0C2802

P0D10A

P0D20A

P
0
J
1
0
1

P
0
J
1
0
2

P
0
J
2
0
1

P
0
R
1
0
2

P
0
T
1
0
1

P
0
U
1
0
1
 P0U1064

P
0
U
2
0
3

P0U301
P0U302

P
0
U
6
0
1

P
0
U
7
0
1

P
0
C
1
2
0
2

P0C3402 P
0
Q
1
0
2
 P0U305

P0U307
P0U308

P0U1060

P
0
U
6
0
5

P
0
C
1
1
0
1

P
0
R
4
0
1

P
0
U
1
0
5

P
0
C
1
4
0
1

P
0
C
1
5
0
1

P
0
C
1
6
0
1

P0C1701
P
0
C
1
8
0
2

P0C1901

P
0
C
2
0
0
2

P0C2301

P
0
C
2
4
0
2

P0C2601

P
0
C
2
7
0
2

P0C2901

P
0
C
3
5
0
2

P0J402

P0R901

P
0
R
1
0
0
2

P
0
R
1
1
0
2

P0R1302

P
0
R
1
5
0
2

P
0
U
4
0
2

P0U5011
P0U5016

P0U5021

P
0
U
6
0
9

P
0
U
6
0
1
5

P
0
U
7
0
5

P
0
C
1
5
0
2

P
0
C
1
6
0
2

P0C1702

P0C1902

P
0
C
2
0
0
1

P0C2302 P0C2902
P
0
R
1
4
0
1

P
0
U
4
0
5

P0U501
P0U503

P0U5015
P
0
U
6
0
1
6

P
0
U
7
0
8

P
0
C
1
4
0
2

P0J301

P
0
J
4
0
1
 P
0
R
7
0
1
 P
0
U
4
0
1

P
0
U
4
0
3

P
0
C
1
8
0
1

P0U5017

P
0
Y
3
0
1

P0C2101

P
0
R
1
0
0
1

P0U506

P0C2102

P
0
R
8
0
1

P0U505

P
0
C
2
4
0
1

P0U5018

P
0
Y
3
0
2

P
0
C
2
5
0
1

P0R1301 P0U507 P
0
C
2
5
0
2

P0R1201 P0U508 P0C2602

P
0
C
2
7
0
1

P0U5010

P
0
C
3
1
0
1

P
0
J
5
0
1

P
0
L
1
0
1

P0C3401 P
0
Q
1
0
1

P0R1701

P
0
C
3
5
0
1

P
0
U
4
0
4

P0D10K

P0R202
P0D20K

P0R302

P
0
D
3
0
A

P
0
R
1
6
0
1

P
0
D
3
0
K

P
0
U
8
0
2
3

P0J205 P0R606

P
0
J
2
0
6

P0R604 P
0
J
2
0
7

P0R602 P
0
J
2
0
8

P0R508

P
0
J
2
0
9

P0R506
P
0
J
2
0
1
0

P0R504

P0J302

P
0
R
8
0
2

P0R902

P
0
J
5
0
2

P
0
U
8
0
1
6

P
0
J
5
0
3

P
0
U
8
0
1
5

P
0
R
4
0
2

P
0
T
1
0
2

P
0
R
7
0
2

P
0
R
1
1
0
1

P0R1202

P
0
R
1
4
0
2

P
0
R
1
5
0
1
 P0U502

P0R1702 P
0
U
8
0
1
2

P0U5012

P
0
U
6
0
1
4

P0U5013

P
0
U
6
0
1
3

P0U5014

P
0
U
6
0
1
2

P0U5020

P
0
U
6
0
1
1

P0U5022

P
0
U
7
0
6

P0U509

P
0
U
7
0
7

P0U1020

P
0
U
7
0
2

P0U1021

P
0
U
7
0
3

P0R605 P0U1022 P0R603 P0U1023 P0R601 P0U1024 P0R507 P0U1025
P0R505 P0U1026 P0R503 P0U1027
P0U1029

P
0
U
6
0
4

P0U1030

P
0
U
6
0
6

P0U1031

P
0
U
6
0
3

P
0
U
1
0
3
4

P
0
U
8
0
5

P
0
U
1
0
3
5

P
0
U
8
0
1

P0R201

P
0
U
1
0
4
2

P0R301

P
0
U
1
0
4
3

P
0
J
1
0
7

P0U1057 P
0
J
1
0
5

P0U1055

P
0
J
1
0
4

P0U1054

P
0
J
1
0
6

P0U1056

P0C3301

P
0
R
1
6
0
2

P
0
U
8
0
4

P
0
U
8
0
1
7

P
0
C
3
0
0
2

P0C3201 P
0
L
1
0
2

P
0
Q
1
0
3

P
0
U
8
0
2
0

P
0
C
1
0
2

P0C202
P0C302

P0C402

P
0
C
5
0
2

P
0
C
6
0
2

P0C702

P
0
C
8
0
2

P
0
C
9
0
2

P0C1002

P
0
C
1
1
0
2

P
0
C
1
2
0
1

P0C1301

P0C2201 P0C2801

P
0
C
3
0
0
1

P
0
C
3
1
0
2

P0C3202

P0C3302

P
0
J
1
0
8

P
0
J
2
0
2

P
0
J
5
0
4

P
0
T
1
0
3

P0U1062 P0U1063

P
0
U
2
0
2

P0U304

P
0
U
6
0
2

P
0
U
6
0
8

P
0
U
7
0
4

P
0
U
8
0
7

P
0
U
8
0
1
8

P
0
U
8
0
2
1

P
0
U
8
0
2
5

P
0
U
8
0
2
6

P
0
C
6
0
1

P0C701

P
0
U
1
0
7

P
0
U
1
0
8

P
0
Y
1
0
2

P
0
U
1
0
9

P
0
Y
1
0
1

P
0
C
9
0
1

P0U1053 P
0
Y
2
0
1

P
0
C
8
0
1

P0U1052

P
0
Y
2
0
2

	Abstract
	Acknowledgements
	Publications
	Contents
	List of Figures
	List of Tables
	Source Code Listings
	Introduction
	Background and Related Work
	How computers use power
	Evaluating computer power
	Evaluation Metrics
	Dynamic voltage and frequency scaling
	Idle mode management
	OS power management
	Workload prediction
	Application support

	Motivation
	The commonly assumed model
	Power management challenges

	Modelling
	Terminology
	Assumptions
	Execution time model
	Basic Energy model
	Idle energy model
	Temperature and fan effects
	Switching overheads
	Real-time dependencies
	Measurement-based estimation
	Parameter selection and Characterisation

	Policy
	Low-level policy
	High-level policies

	Implementation
	Overview
	Workload Prediction
	Modelling
	Policy
	Other Details
	Infrastructure
	Discussion

	Evaluation
	Methodology
	Platforms
	Characterisation
	Adaptation to workload
	Model accuracy
	Policy
	System Evaluation

	Conclusions
	Contributions
	Future Work
	Final words

	Bibliography
	Platforms
	PLEB 2 (PXA255) --- PLEB 2
	Gumstix Connex (PXA255) --- Gumstix
	I-Box (PXA270) --- I-Box
	phyCORE-iMX31 Rapid Development Kit (iMX31) --- Phycore
	Dell Latitude D600 (Pentium-M) --- Latitude
	IBM Thinkpad T43 (Pentium-M) --- T43
	Asus EEEPC 901 (Atom) --- EEEPC
	Compucon K1-1000D (AMD Opteron 246) --- Opteron
	Intel Menlow Software Developer's Platform (Silverthorne) --- Menlow
	Dell Server (Intel Xeon) --- Xeon

	Echidna

