It’s Time for Trustworthy Systems

Gernot Heiser, Toby Murray and Gerwin Klein
NICTA and University of New South Wales, Sydney, Australia
firstname.lastname @nicta.com.au

Abstract

The time has arrived for truly trustworthy sys-
tems, backed by machine-checked proofs of secu-
rity and reliability. Research demonstrates that for-
mal whole-system analysis that applies to the C and
binary implementation level is feasible, including
proofs of integrity, authority confinement, confi-
dentiality, and worst-case execution time. Because
these proofs build on previous results, they become
easier each year. However, they do have some lim-
itations.

1 Introduction

The time for truly trustworthy systems, backed by
machine-checked formal proof and analysis, has
arrived. Over the past few decades, advances in
formal verification and analysis technologies mean
that these tools can now scale sufficiently to cover
the entire software trusted computing base of ap-
propriately designed real-world systems.

We base this claim on our experience with the
formal verification and analysis of the seL.4 micro-
kernel [3]. A microkernel is a minimal OS kernel;
selL4 weighs in at under 10,000 lines of code. The
microkernel is also the most critical trusted com-
ponent in any system built on it. It lets us build
well-performing systems with millions of lines of
legacy code, while reducing the trusted code base
to the same order of 10,000 lines of code [1] that
weve already demonstrated we can formally verify.

For this to work, the microkernel must be able to
effectively isolate trusted from untrusted code (see
Figure 1), spatially and temporally. The high-level
properties needed for this are integrity, confiden-
tiality, and predictable worst-case execution time
(WCET). Depending on the deployment context,
the focus might shift between safety or security,
and additional properties will be of interest (see
Figure 2).

Untrusted Trusted
Legacy iz
Apps Sensitive
App
——
Linux Trusted
Server Service
——
seL4

CF N\ e I
Figure 1: Separation provided by the sel.4 kernel.

Providing properties such as integrity and confi-
dentiality has been OS kernels primary function for
a long time. The exciting part is that we now can
fully formalize and prove these properties of real
system implementations at the C code level. Even
more interesting is that we can now use them to
drastically reduce the effort of proving whole sys-
tems security goals. Of course, that was the idea
all along: provide strong enforcement mechanisms
that let us construct and conceptually reason about
the system more easily. The shift is from concep-
tual to formal.

Our progress on the deep formal analysis of the
seL4 microkernel has been enabled by our previ-
ous proof of functional correctness [3]. This proof
showed that seL.4s C implementation conforms to
an abstract functional specification of its behavior.
This proof was the first of its kind, with the rel-
atively high cost of roughly 25 person-years. Al-
though this proof is important in its own right, its
true power is in reducing the effort for further anal-
ysis. We can now build on this result when rea-


mailto:first.last@nicta.com.au

Availability Security

Confident./
Info Flow

Functional
Correctness

Memory

Termination
Safety

Integrity

Figure 2: Properties of trustworthy systems.

soning about behaviors of seL.4 because we can re-
duce reasoning about the implementation to rea-
soning about the specification. In our experience,
this means an order of magnitude less effort.

2 Proving Security

Our experience after the functional-correctness
proof demonstrates that proving whole-system se-
curity properties is now tractable at a reasonable
cost. We have since completed a proof of in-
tegrity enforcement for sel.4 in less than 10 person-
months [4], and were completing the dual proof of
confidentiality enforcement. These proofs combine
into the classic security property of noninterfer-
ence. We carefully constructed our confidentiality
and noninterference formulations to be preserved
by the formal refinement statement that embodies
functional correctness. Therefore, we can continue
to exploit the functional-correctness proofs bene-
fits.

Each of these proofs maps the sel.4 protection
state to a corresponding abstract access control pol-
icy. We then define the security properties integrity
and confidentiality against this policy. Integrity
limits what the currently running thread can mod-
ify; confidentiality limits what it can read or infer.

Because selL.4 implements a dynamic capability-
based access control mechanism, its protection
state can evolve. So, we also proved authority con-
finement, which means that, for well-formed poli-
cies, the protection state remains consistent with
the policy. In other words, the policy places an up-
per bound on the authority in the system.

Compared to integrity and authority confine-
ment, confidentiality is harder to reason about. Un-
like modifying information, reading information
isnt directly observable in the system state. To
determine whether the kernel might have read a

private system state on behalf of a subject, we
must consider all other counterfactual executions
in which this private state differs. If the execution
results are the same in all cases, we can conclude
that this private state doesnt influence the execution
and so is never read. The difference from earlier
proofs is that we must consider multiple executions
instead of analyzing one execution at a time.

Even though confidentiality is harder to prove,
completing the confidentiality proofs for almost
all of the selL4 kernel took only under 14 person-
months. Out of more than 1,250 lemmas, only 13
remained unproved at the time of writing.

The next step is to pull kernel-level properties up
to system-level properties. This is precisely what
noninterference is good for. We can use it to sepa-
rate trusted code from legacy code. Also, for suit-
ably designed systems, we can reduce our analysis
from the millions of lines of code for the entire sys-
tem to just the thousands of lines that constitute its
trusted components. Noninterference tells us that
we can analyze the trusted components indepen-
dently of the rest of the system because theyre iso-
lated.

We expect to see full proofs of noninterference
for seL4-based systems in the next one to two
years, based on the noninterference theorem for
selL4.

3 What about Safety?

At the OS level, security and safety mostly re-
duce to the same key properties. However, as Fig-
ure 2 indicates, many safety-critical systems have
an extra requirement: timeliness. Medical im-
plants, industrial robots, and vehicles are hard real-
time systems; they must react to an external event
within a strictly bounded time. Yet they also con-
tain untrustworthy legacy code. Think of a med-
ical implant that must communicate with the ex-
ternal world via a wireless network for monitoring
and maintenance. The network drivers and pro-
tocol stack likely comprise tens of thousands of
lines of code and cant be trusted, requiring the iso-
lation provided by the microkernel. This means
that the microkernel must hand control to the life-
support functions quickly enough, no matter what
the legacy code was doing when some critical sen-
sor raised an interrupt.

Although the system can interrupt the legacy
code at any time, that code might have invoked an



arbitrary microkernel call to obtain a service. The
implication is that the uninterruptible execution
time of all kernel calls must be strictly bounded.
Such strict WCET bounds are reasonably easy
to establish for classic real-time OSs, but such sys-
tems dont provide isolation and therefore arent suit-
able for this class of multicriticality systems. selL.4
has treaded new territory here as well, being the
first OS kernel providing strong isolation that has
undergone complete WCET analysis. This analysis
is sound in that the results are guaranteed to be up-
per bounds on the latencies that can be observed in
real execution. However, even on a highly complex
processor, such as an ARM11 or Cortex-AS, the de-
gree of pessimism is moderate. This is because the
observed latencies (which present a lower bound
on WCET) are within a factor of five of the upper
bounds. Most of this pessimism is the unavoidable
result of underspecified hardware operation [2].

4 How Can I Attack a System with
Proof?

There are limits to what formal security and safety
proofs can achieve. Such fundamental limits also
apply to other methods such as testing, but with the
strength of mathematical proof, its easy to get car-
ried away.

Maybe counterintuitively, the possibility of mis-
takes in the proof tself is a nonissue in practice. The
proof is machine-checked. Although soundness de-
fects cant be fundamentally ruled out, they can be
made arbitrarily unlikely.

The fundamental limits of formal reasoning are
instead the assumptions the proof rests on and the
gap between the formal property and our human
understanding of it. Attacking these is much more
fruitful. For instance, a usual assumption is hard-
ware correctness. A viable attack would be to
make the hardware fail in interesting ways—for in-
stance by overheating—revealing information and
thereby violating confidentiality. Likewise, run-
ning the system on hardware that doesnt match the
proofs assumptions might also cause the system to
fail. These assumptions also embody the systems
assumed context of use. The proof handily iden-
tifies these assumptions and gives us the defense
method: ensure the system is deployed under the
right operating conditions.

A more subtle attack is to exploit hardware de-
tails beneath the lowest abstraction layer in the ver-

ification. If you can exploit the mismatch between
reality and model, you might be able to find a side
channel. For instance, functional models dont talk
about hardware timing, so confidentiality proofs
dont guarantee the absence of covert timing chan-
nels. The defense against these must be with tra-
ditional analyses. In this particular case, you could
use the kernels WCET profile.

You can also attack the understanding of the
specification. Although the specification is easier
to understand than the code, its still by no means
simple. You might find a behavior in the specifi-
cation that is surprising to system designers. The
defense against this is to ensure that your systems
security goal is crisp and easy to understand. Then
prove this goal on the basis of the specification,
shifting understanding from complex to simple.

Although understanding these limitations is nec-
essary, formal analysis provides an immense bene-
fit because validating and defending assumptions is
much easier than analyzing code. If you deploy for-
mal analysis correctly, whole classes of problems
disappear. If youre looking for buffer-overflow at-
tacks in seL4, youre wasting your time. If youre
trying to escalate privilege or corrupt another ap-
plication without authorization, you wont succeed.
The proof has checked all possible behaviors.

Security proofs dont need to end at the internal-
policy level—for example, which component or ac-
tor can talk to whom. Instead, the proof can and
should go up to the systems actual high-level secu-
rity goal—for example, that no information can be
exchanged between two high-level networks. Even
with this level of assurance, theres no magic bul-
let. You still need orthogonal methods to ensure
that youre building the right system with the right
requirements, and not the wrong system correctly.

5 Conclusions

We expect full proofs of security or safety for suit-
ably architected systems within the next one to
two years. We know how to architect and analyze
(some) secure systems with minimal trusted code
bases, we know how to complete kernel-level secu-
rity proofs, and we know how to build trustworthy
user components. The next challenges are to com-
pose these parts into one final proof of a system-
wide security goal and to decrease the cost of ver-
ification through code synthesis and stronger au-
tomation.



Although the initial investment into the
functional-correctness proof of seL4 was high,
this proof keeps paying off as we prove further
properties on top of it. In our experience, these
proofs get easier each year.

The seL4 kernel is just the first system with such
a comprehensive suite of strong high-level proper-
ties. The excuse that machine-checked proofs of
safety and security are infeasible doesnt apply any-
more. The age in which truly security- and safety-
critical systems should be fielded without proof is
ending.

Acknowledgements

NICTA is funded by the Australian Government
as represented by the Department of Broadband,
Communications and the Digital Economy and the
Australian Research Council through the ICT Cen-
tre of Excellence program.

References

[1] J. Andronick, D. Greenaway, and K. El-
phinstone. Towards proving security in the
presence of large untrusted components. In
G. Klein, R. Huuck, and B. Schlich, edi-
tors, 5th SSV, Vancouver, Canada, Oct 2010.
USENIX.

[2] B. Blackham, Y. Shi, and G. Heiser. Im-
proving interrupt response time in a verifiable
protected microkernel. In 7th EuroSys Conf.,
Bern, Switzerland, Apr 2012.

[3] G. Klein, J. Andronick, K. Elphinstone,
G. Heiser, D. Cock, P. Derrin, D. Elka-
duwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood. sel.4:
Formal verification of an operating system ker-
nel. CACM, 53(6):107-115, Jun 2010.

[4] T. Sewell, S. Winwood, P. Gammie, T. Murray,
J. Andronick, and G. Klein. seL.4 enforces in-
tegrity. In M. C. J. D. van Eekelen, H. Geuvers,
J. Schmaltz, and F. Wiedijk, editors, 2nd ITP,
volume 6898 of LNCS, pages 325-340, Ni-
jmegen, The Netherlands, Aug 2011. Springer-
Verlag.



	Introduction
	Proving Security
	What about Safety?
	How Can I Attack a System with Proof?
	Conclusions

