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ABSTRACT

Modern implementations of DBMS software are intended to
take advantage of high core counts that are becoming com-
mon in high-end servers. However, we have observed that
several database platforms, including MySQL, Shore-MT,
and a commercial system, exhibit throughput collapse as
load increases, even for a workload with little or no logi-
cal contention for locks. Our analysis of MySQL identifies
latch contention within the lock manager as the bottleneck
responsible for this collapse.

We design a lock manager with reduced latching, imple-
ment it in MySQL, and show that it avoids the collapse
and generally improves performance. Our efficient imple-
mentation of a lock manager is enabled by a staged allo-
cation and de-allocation of locks. Locks are pre-allocated
in bulk, so that the lock manager only has to perform sim-
ple list-manipulation operations during the acquire and re-
lease phases of a transaction. De-allocation of the lock data-
structures is also performed in bulk, which enables the use
of fast implementations of lock acquisition and release, as
well as concurrent deadlock checking.

Categories and Subject Descriptors

H.2.4 [Database Management|: Systems—concurrency,
transaction processing; D.1.3 [Programming Tech-
niques]: Concurrent Programming
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1. INTRODUCTION

Present high-end computing platforms, as they are fre-
quently used for database servers, now feature dozens of pro-
cessor cores, and will soon exceed 100 cores. It is therefore
important that database transaction processing can utilise
such a large number of cores efficiently.

This is not trivial, as higher core counts result in increased
contention for shared data structures in the DBMS internals.
A few years ago, studies [11,17] showed that many open-
source and commercial database engines exhibit limited
multi-core scalability, and even performance collapse, due to
bottlenecks in their lock, log or transaction manager. This
has triggered significant research activity [3,5,12,14-17,19]
aimed at reducing lock or latch contention.

Yet, significant scalability problems still exist for serializ-
able transactions, surprisingly even under read-only work-
loads, where the locks never conflict with one another
(though of course they must still be taken, since the sys-
tem must work properly if updates are submitted). This is
illustrated in Figure 1, which shows throughput of a seri-
alizable, read-only workload on MySQL under varying load
using 4, 8 or 16 cores of the same 32-core platform. (Detailed
specification of the setup is given in Section 5.)
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Figure 1: MySQL throughput under varying multi-
programming level (MPL) on 4 (green), 8 (yellow)
and 16 cores (red).

The figure clearly shows that on 4 cores the database be-
haves as expected, with 8 cores throughput degrades at high
load to about 75 % of peak throughput. On 16 cores, high-
load performance collapses to about 1/3 of peak, and well
below what the 4-core configuration can handle. The peak
throughput of 16 cores is also below that of 8.
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Our analysis of this undesirable effect shows that it is
caused by latch contention in the lock manager. Each time
a transaction acquires or releases a lock, it grabs the mutex
protecting the global table of locks. Even though the mutex
is only held briefly, cache-line bouncing [18] makes acquiring
or releasing it expensive under high contention [4].

We propose a solution to this problem, based on a (mostly)
latch-free implementation of the lock manager. The de-
sign is enabled by the observation that the lock acquisition
and release operations can be split into two: the alloca-
tion (and initialisation) and de-allocation of the lock data
structure, and the manipulation of this data structure. The
latter can be implemented latch-free, and thus contention-
free. We perform allocation and de-allocation of locks in
bulk, thus amortising any remaining latching overhead over
a large number of locks. Furthermore, de-allocation becomes
a garbage-collection exercise which can be performed asyn-
chronously to transaction processing. We refer to this ap-
proach as staged lock acquisition and release.

This paper makes the following contributions:

e We identify scalability issues leading to performance
collapse under high workloads when running on a plat-
form featuring dozens of cores. We show that this col-
lapse occurs on multiple open-source (MySQL, Shore-
MT) as well as on a commercial database engine (Sec-
tion 5.2).

e We propose a design for the lock manager in which
much less latching is needed, and we describe its im-
plementation in MySQL (Section 3).

e A key idea that enables our design is bulk allocation
and de-allocation of locks, asynchronous to transaction
processing (Section 4);

e we evaluate our implementation, demonstrating that
staged lock handling avoids the throughput collapse
and also leads to improved peak throughput (Sec-
tion 5.2).

2. BACKGROUND AND RELATED WORK

This paper is related to an extensive literature on manag-
ing concurrency, both in database systems and more general
programs. Here we point to a few essential concepts needed
for understanding our contribution.

2.1 The Lock Manager

Database management platforms are expected to provide
the application programmers with an abstraction of ACID
transactions, freeing the programmer from worrying about
anomalies that might arise from concurrency or failure.
This enables independent development of multiple database
clients. Authoritative coverage on the field of transaction
management, and its subfield of concurrency control can be
found in the textbooks by Bernstein et al. [2] and Weikum
and Vossen [20]. The internal design of a DBMS is described
by Hellerstein et al. [9]. The usual approach is for the lower,
storage-focused parts of the DBMS to contain a component
called a lock manager. Code that fetches or updates a record
obtains an appropriate lock in the lock manager; this lock is
then held until the transaction completes (“strict two phase
locking”). Locks are taken in various modes, such as shared
mode for a read, or exclusive mode for a write; other modes
are important for preventing phantoms and allowing lock-
ing on different granularities of item (such as records, pages
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Figure 2: Unsafe vs. safe RAW execution.

and tables). The lock manager arbitrates access by putting
a transaction, which attempts to acquire an incompatible
lock, into a wait state, and wakes it up when the lock be-
comes available. Design principles for a lock manager are
presented by Gray and Reuter [8].

While the lock manager prevents logical interference be-
tween concurrent transactions, there is also a need to pre-
vent interference between DBMS threads as they manipulate
the shared physical structures within the DBMS, including
within the lock manager. This is typical of the problems of
concurrent programming, and is traditionally addressed by
what the DB community calls latches (or mutexes) that sur-
round any DBMS internal code that deals with shared data
structures. The distinctions between locks and latches are
clarified by Graefe [6]. Early open-source DBMS code used
a coarse-grained latch on the whole of the kernel internals,
but more recent releases (e.g., the InnoDB system we used
as the baseline for our evaluation) have moved to a more
sophisticated design with separate latches for different parts
of the kernel, such as the lock manager, the buffer pool, etc.

Recent research has addressed some bottlenecks in trans-
action processing on multi-core platforms [11,17], proposing
some radical changes to the system architecture or access
structures [7,12,14,15,19]. In contrast, we here consider
a localized change to the lock manager, without requiring
other parts of the platform to be recoded.

2.2 Synchronising Multithread Programs

Concurrent programs are notoriously hard to code cor-
rectly. The simplest approach relies on an ability to make
a segment of code execute without interleaving, allowing
repeated use of a variable, as in the synchronisation pat-
tern called atomic write after read (AWAR) where a thread
or process atomically reads and then writes a shared vari-
able. The atomicity of AWAR is typically achieved through
latches (such as spin locks) using atomic machine instruc-
tions, such as Compare-and-Swap or Test-and-Set. On mul-
tiprocessor architectures with a snoop-based cache coher-
ence protocol, this can lead to expensive cache invalidation
storms.

An alternative coding style is read after write (RAW)
where a process writes to some shared variable A, followed
by the process reading a different shared variable B, without
process writing to B in between [1]. Use of the RAW pattern
must ensure that concurrent processes only see a compati-
ble (linearizable or sequentially consistent) state of shared
variable. The problem is illustrated in Figure 2(a), where
concurrent processes P and Q access shared variables A and
B according to the RAW pattern. Executing unconstrained,
the data race could result in P seeing the value of B = 0
and Q seeing the value A = 0, which violates serialisability.
Figure 2(b) shows how correctness can be enforced though



the introduction of memory barriers, making the data race
benign.

While memory barriers can be expensive, the advantage of
the RAW pattern over AWAR is that the hardware overhead
is paid at most once per thread. This is in contrast to cache
lines potentially bouncing repeatedly between processes in
AWAR. Hence the RAW pattern tends to scale better with
increasing number of cores and processes.

The textbook by Herlihy and Shavit [10] provides exten-
sive coverage on multiprocessor programming, for a wide
range of interesting data structures.

3. LOCKING WITH LESS LATCHING

We now describe the approach we take to make the lock
manager (mostly) latch-free. As explained earlier, the core
idea is to separate the allocation and de-allocation of the
lock data structures from lock acquisition and release, and
perform the allocation and de-allocation in bulk and asyn-
chronous to transaction processing.

In this section we describe the algorithms for lock acquisi-
tion and release, while the bulk allocation and de-allocation
of the lock hash table is presented in Section 4.

The LHS of Figure 3 shows high-level pseudo-code of the
implementation of the lock acquisition (top) and release
(bottom) operations in MySQL; other database engines use
a similar approach. Most of the acquisition and all of the
release are protected by a mutex on the lock data structure.
This ensures the consistency of the lock table and correct
synchronisation of transactions.

3.1 Lock Acquisition

The fundamental observation which allows us to reduce
latching is that some of the data races in the code are benign:
when obtaining a slot in the hash table, it does not matter
which slot goes to a particular transaction, as long as all
transactions obtain different slots.

Looking at the acquire code in the LHS column of Fig-
ure 3, we can see that the transaction first creates a lock
on the data item and inserts it into its list of held locks.*
It then checks whether other transactions hold incompatible
locks on the same data, in which case it marks the new lock
as being in waiting state, followed by checking for deadlocks.
The complete sequence is protected by a latch on the hash
table.

The second part makes the transaction wait until all pre-
ceding incompatible locks are released, as required for the
usual database locking protocols. It does this by calling the
operating system to suspend the process, until the holder
of the incompatible lock signals its release. This code is
protected by the transaction latch.?

Re-writing this operation in the RAW pattern allows us
to eliminate the hash-table latch, as shown on the RHS
of Figure 3. Inserting the lock into the hash table is now
performed by a latch-free implementation of the insertion
function (S1), discussed below. Each occurrence of writ-

1Since InnoDB uses a small bitmap in a lock to represent
other record locks of the same transaction in the same page,
and the use of the bitmap can only be decided by seeing all
locks in the hash list, lock_create() occurs while the hash
table mutex is held.

2In InnoDB, when a MySQL thread is suspended, it should
release the mutex it holds, and after being woken up, the
thread must regain the mutex and do the post-processing.

-
Traditional Lock Manager Our Lock Manager

Lock Acquire in Growing Phase
Al: n_lock =lock_create();
A2: n_lock->state = ACTIVE;
A3: atomic_lock_insert(n_lock);
mutex_enter(lock_table->mutex); | 5 4. for a1l locks (lock) in hash_bucket
n_lock = lock_create(); . .. . —.
n_lock->state = ACTIVE; A5:  if (lock is incompatible with n_lock)
lock_insert(n_lock); A6: n_lock->state = WAIT; S2
for all locks (lock) in hash_bucket AT: atomic_synchronize();

if (lock is incompatible with n_ lock)| A8: if (lock->state==OBSOLETE)

S1

n_lock->state = WAIT; A9: n_lock->state=ACTIVE; S3
if (deadlock_check() ==TRUE) | A10: atomic_synchronize();
abort Tx; All: continue;
break; Al12:  if (new_deadlock()==TRUE)
clse . Al3: abort Tx;
continue;
end if Al4: break;
end for A15:  end if
mutex_exit(lock_table->mutex); A16: end for
if (n_lock->state==WAIT) A17:if (n_lock->state == WAIT)
mutex_enter(Tx->mutex); A18: mutex_enter(Tx->mutex);
Tx->state = WAIT; A19: atomic_synchronize(); S4
os_cond_wait(Tx->mutex); A20: if (n_lock has to wait )
m}ltex_exit(Tx->mutex); A21: Tx->state = WAIT;
end if A22: os_cond_wait(Tx->mutex);
A23: else
A24: n_lock->state = ACTIVE;
A25: atomic_synchronize(); 85
A26: endif
A27: mutex_exit(Tx->mutex);
A28:end if

Lock Release in Shrinking Phase

R1: for all locks (lockl) in Tx

R2: lockl->state = OBSOLETE; S6

mutex_enter(lock_table->mutex); |R3: atomic_synchronize();

for all locks (lock1) in Tx R4: for all locks (lock2) that follow lock1
lock_release(lock1); R5: mutex_enter(lock2->Tx->mutex);

for all locks (lock2) following lock1 R6: if ( lock2->Tx->state=—WAIT &&
if (lock2 doesn't have to wait ) .

lock_grant( lock2 ); R7: lock2 does not have to wait )
lock2->state=ACTIVE; R8: lock2->Tx->state=ACTIVE;
end if R9: lock2->state=ACTIVE; S7
end for R10: atomic_synchronize();
end for R11: os_cond_signal(lock2->Tx);
mutex_exit(lock_table->mutex); R12: end if
R13:  mutex_exit(lock2->Tx->mutex);
R14: end for
_ R15:end for )

Figure 3: Implementation of lock acquisition and re-
lease in MySQL. The left column shows the existing
lock manager code, while the right column shows our
reduced-latch implementation. S1, ..., S7 represent
RAW synchronisation points.

ing a shared variable followed by reading a different one
(S2, S3) is protected by a barrier (represented by the
atomic_synchronize () function), in line with the safe RAW
pattern of Figure 2(b) . The new lock state 0BSOLETE is a re-
sult of the staged de-allocation, and indicates that the lock
is no longer in use. The deadlock-checking function (line
A12) must be replaced by a race-tolerant implementation
new_deadlock().

Operation of atomic_lock_insert() is shown in Fig-
ure 4. The function inserts a new lock into the hash ta-
ble by using atomic_fetch_and_store() on the tail pointer
of the hash chain, returning the old tail pointer. The old
tail is then made to point to the new lock. The function
next_pointer_update() implements a compare-and-swap-



list = getBucketList( hash_code );

old_tail = atomic_fetch_and_store(list->tail, new_lock); //(1)
old_tail->next =new_lock; // (2)

atomic_synchronize() ;

next_pointer_update() ; // (3)

Tx C

atomic_synchronize() ;

OBSOLETE |(2)[ ‘
Tuple 2 —»[\OBSOLﬁ Slockk[ (ol d—taiﬁkxmk !
3 3
Ltai! © & T

(1)
\]I

Figure 4: Operation of atomic_lock_insert() on a
lock hash chain.

based concurrent update [10] of the next pointers of all ac-
tive locks in the list. Barriers are again used to ensure safe
RAW execution. Since the next pointer update follows the
atomic update of the tail pointer, we have to guarantee that
other concurrent transactions accessing this list see a con-
sistent view of this list.

View of Tx A

OBSOLETE 3] S lock |»{ OBSOLETE |j + | ok
(old tail)
head

next
Concurrent

Tuple n

View of Tx B

Tuple n OBSOLETE S lock OBSOLETE X lock
(old tail)
next
=

head next next

*** Tx B waits until the next pointer is properly updated ***
while( lock obj->next == NULL && lock obj != list->tail )
atomic_synchronize(); / wait for memory barrier

return lock_obj->next;

Figure 5: Pseudo-code of latch-free list iteration.

The traversal of the lock list (line A4 of Figure 3) must
preserve the invariant that all locks inserted before the
present one are examined. The implementation of the it-
erator is explained in Figure 5. The original iterator in LHS
of Figure 3 simply traverses the list by using the next pointer
of a lock until the end of the list. Our iterator is augmented
with the while loop, and this ensures that any locks previ-
ously inserted into the list become visible by waiting until
the next pointer of a lock points to a newly inserted lock.
As shown in Figure 4, since the next pointer update is done
after the atomic update of a tail pointer, concurrent list
traversal should see either the new lock or the old tail. This
is why we need the while loop.

The second part of the acquire function retains the trans-
action latch, which is fine, as this latch is not contented
by multiple processes. Barriers must again be inserted to
ensure safe RAW execution.

3.2 Lock Release

The release code is shown in the bottom part of Figure 3.
Our implementation again removes the lock-table latch, and
inserts barriers according to the RAW pattern. Note that,
rather than de-allocating the lock, its status is set to 0BSO-

LETE, so that no dangling pointers are generated. The actual
de-allocation is performed asynchronously and in bulk.

Importantly, the release code must examine locks which
were allocated after the present lock, to detect any sleeping
transactions trying to acquire an incompatible lock on the
same data. These are signaled via a system call which wakes
up the sleeping process.

3.3 Deadlock Detection

The deadlock checking function is to find any cycle in
the wait-for graph by traversing a lock hash table. The
traditional approach does this traversal while holding the
lock-table latch. We avoid this by keeping any released lock
and transaction data structures until they are guaranteed
to be no longer required, thus avoiding dangling-pointer de-
references in the deadlock checker. By making any other
data structures required for deadlock detection transaction-
local, we enable a latch-free implementation.

When a deadlock is detected in the traditional, latch-
based implementation, the lock manager can use a num-
ber of different policies for selecting a victim transaction to
abort. For example, it can choose the transaction which
(1) holds the smallest number of (write) locks, (2) generates
the fewest log records, or (3) actually causes the deadlock
(joining lock).

In our latch-free implementation, safety prevents a thread
from changing the transaction state while other threads may
access the state. Hence, the thread must abort its own trans-
action when detecting a deadlock, i.e., we can only imple-
ment the above policy (3).

3.4 Correctness

The main correctness concern is that concurrent acquisi-
tion and release operations operate correctly, and that dead-
lock detection is correct.

Figure 6(a) illustrates the scenario where a transaction
Tx A executes COMMIT and is about to release lockl. Con-
currently, transaction Tx B tries to insert an exclusive lock
(lock2) into the same lock hash list (and is sent to sleep).
We must guarantee that the commit of Tx A will wake up
Tx B.

Figure 6(b) shows possible schedules resulting from the
interleaving of the two transactions. The critical point is the
change of the state of the lock by Tx A (S6), we must ensure
that Tx B will be woken, no matter how the execution of S6
is interleaved with its own execution. Depending on where
S6 occurs during Tx B’s execution, we have five different
interesting cases, as indicated in Figure 6(b).

The correctness argument is summarised in Figure 6(c).
In the first three schedules, (1)—(3), S6 happens before Tx B
examines the state of lockl, and the barriers ensure that
Tx B sees the correct lock state. For schedule (4), Tx B
may or may not see the updated lock state. If it does, (4)(ii)
then this is the same as schedules (1)—(3), and thus executes
correctly. Else the checking routine R6-7 of Tx A, which
follows Tx B’s wait execution due to Tx B’s transaction
mutex, correctly captures Tx B’s “WAIT” state and wakes
up Tx B correctly. In schedule (5), Tx B cannot detect
S6 and waits until Tx A correctly finds Tx B’s state, as in
schedule (4)(i).

To reason about the correctness of concurrent deadlock
checking, suppose we have multiple transactions, all execut-
ing S2, changing their lock state to WAIT. Assuming that
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Lock Release (Tx A) Lock Acquire (Tx B)

0,
S1: lock2->state = ACTIVE;
Ad4-5:check lock1->state;

3) S2: lock2->state = WAIT;

S6: lockl->state = OBSOLETE; W
> A8: check lock1->state after S2;

R4: hash list iteration;

R5: mutex_enter(lock2->Tx->mutex);
R6-7:check lock2->Tx->state; @)
S7: lock2->state = ACTIVE;
R13: mutex_exit(lock2->Tx->mutex);

S4: mutex_enter(lock2->Tx->mutex);
A20: confirm lock2 has to wait;
A21: Tx->state = WAIT;

5) S5: lock2->ACTIVE;

> A27: mutex_exit(lock2->Tx->mutex);

(b) All possible schedules

Schedule Result

(A4-5), (A8), and (A20) correctly detect lock1's
OBSOLETE state. (correct)

(1)S6<S1..87

(2)S1<S6<82..87

(3)S1<S2<S6<S4..57

(4)S1..84<86<S5..87 (i) If (A21) excutes, then (R4) detects; and (R6-7)
implies (A27 <R5) and (S7) wake up Tx B. (correct)

(ii) If (A20) detects lock1's OBSOLETE, then it
is the same as schedule (3).(correct)

(R6-7) detects Tx B's WAIT, and (S7) correctly

wakes up Tx B. (correct)

(5)S1..S5<S6<8S7
implies (A27 <RS5)

(c) Correctness

Figure 6: Concurrent execution of Lock Acquire and
Lock Release.

these transactions create a real deadlock, then all interleav-
ing schedules of concurrent deadlock checking must guaran-
tee that at least one of the checks must see the WAIT state
of all other locks. This is ensured by the RAW pattern.
Note that, unlike the traditional approach, latch-free dead-
lock checking may abort more than one transaction, if mul-
tiple deadlock checking invocations find the same deadlock
simultaneously. This is correctness-neutral (but may result
in performance degradation).

4. LOCK MANAGEMENT

The RAW-style algorithms for acquisition and release of
locks described in the previous section can only work because
we do not de-allocate a lock as soon as it has been released—
this is the essential idea of staged lock release. It means
that we can tolerate dangling references to a released lock,
as long as its obsolete status is visible to any transaction
still holding such a reference.

4.1 Safe Lock De-allocation

Locks must be de-allocated eventually, else we would be
creating a memory leak. Given that de-allocation is delayed,

Tail  Index I.Arrayo
Entry : 0 2s_[
V| Addret——pf ceeees TTTTTTTT] #oeeer]
: s
: 0 ' 2-1
Working Set
of an Array V][ Addr e——> Segm(.ant Array |
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Head : i 11l

Entry
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Figure 7: Lock index data structure.

the time when it happens is flexible, as long as we ensure
that no dangling references are left, and that de-allocation
happens eventually—a classical garbage-collection problem.

The timing flexibility means that we can reduce overheads
by cleaning up locks in bulk. The same is true for alloca-
tion: by pre-allocating locks, we can also reduce overheads
through bulk operations.

When is it safe to de-allocate a lock? As each lock belongs
to a unique transaction which created it, and transactions do
not pass to other transactions references to locks, a sufficient
condition is the following: A lock L can be safely de-allocated
if the oldest transaction in the system has started after L’s
transaction terminated.

For bulk de-allocation of a group of locks, this means that
we need to keep track of the highest transaction commit ID
for the group, and check that this ID is less than the oldest
active transaction ID in the transaction table. A simple way
to achieve this is to record the highest commit ID, T, for
each group whenever one of the group’s transaction termi-
nates, and maintain the ID, T, of the oldest still active
transaction. The group can then be cleaned up when (i) all
of its transactions have terminated and (ii) Ta < Tmin for
the group.

4.2 Lock Pool Implementation

To support bulk allocation and de-allocation of locks, we
use a data structure which can grow and shrink on demand
and naturally groups locks of similar age, and allows us to
locate locks quickly. Specifically, we use a page-table-like
index structure to locate a lock from its ID, as shown in
Figure 7.

The data structure consists of a top-level index array of
2¢ entries. Each entry has a valid flag and a pointer to a
second-level segment array of size 2°, and both fields are
packed into a single 8-byte word together. A segment array
contains pointers to lock objects, as well as other meta data,
such as an index number that is assigned to a lock when
it is allocated to a transaction. The index array has two
associated pointers, the head entry and the tail entry. Index-
array entries between the head and the tail may point to
segment arrays (if their valid flag is set), entries outside do
not point to segment arrays (irrespective of the valid flag).
The array is accessed in a circular fashion, meaning that
if head<tail then the potentially valid entries are the ones
<head as well as those >tail. A third pointer (not shown)
points to the highest (newest) used segment, all segments
between that pointer and the head are unused.
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* C-like pseudo-code for Flip-and-Test with a byte-vector of level k.

* BVector : char * /* a bytevector array */

* index :int /* index for s-array */

* BVector_size : int /* the size of byte vector */
&

intj = k-1;

inti = BVector size - (0x8 << (3%j));

intpos = index;

for( ; i>=0; i =(0x8 <<(3*(--)))) {
BVector[itpos] = 0x0 ;
__sync_synchronize() ; /* memory barrier */
if( * (long *) ( BVector + i + (pos&OxFFFFFFF8 ) ) = 0)
return;
pos>>=3; /*position for a next level vector*/
(b) Latch-free pseudo code for Flip-and-Test

Figure 8: Hierarchical free-list maintenance.

4.3 Pre-allocation of Locks

A background pre-allocator will allocate additional seg-
ment arrays if the number of unused segments falls below a
low-water mark (i.e. the highest used segment is close to the
head). This is done by finding an index-array entry whose
valid flag is FALSE, starting from the tail pointer. This ar-
ray is then moved to the head, its valid flag set to TRUE, and
the head and possibly tail pointers are incremented (modulo
array size). If no invalid segment is found, a new one must
be allocated and initialised. As long as lock consumption
does not outrun the pre-allocator, pre-allocation and lock
consumption never overlaps, avoiding contention. However,
a dangerous race condition in this producer-consumer loop
occurs if lock_create() finds no free locks. We use the
CAS instruction to make lock_create() (consumer) wait
until the pre-allocator (producer) creates (or recycles) and
initializes a new free segment array.

4.4 Lazy De-allocation of Locks

Bulk cleanup of locks happens at the granularity of seg-
ment arrays, once the whole array is invalidated (and the
safety condition is satisfied). Simple approaches to detect-
ing the invalidated state of the whole segment array would
be (1) scanning the entire segment array frequently, or (2)
keeping a single reference counter, which should be atomi-
cally incremented/decremented by concurrent transactions.
The first approach needs a dedicated scanning process (not
efficient), and the second one has a shortcoming of serial-

izing atomic instructions on a single shared variable, which
we aim to avoid. For efficient detection of invalid arrays, we
associate each segment array with a hierarchical free list, as
shown in Figure 8.

The list uses hierarchical byte-vector compression. At the
leaf level, each byte represents a valid flag for an individual
lock. Each byte of a non-leaf level compresses 8 bytes of the
level below, and maintains the invariant that if the byte is
zero, all the lower-order bytes mapped by it are zero as well.
The top-level byte is the valid flag for the whole segment
array.

The free list is updated latch-free (using hierarchical byte
flipping implemented in the RAW pattern) whenever the
state of a lock is changed to “OBSOLETE” (R2 in Figure 3).
The transaction first clears the valid flag of the lock, and in-
vokes a memory barrier. Then it reads the complete 8-byte
word containing the valid flag just cleared. If the word is
zero, the transaction clears the next byte up the hierarchy.
This is repeated until either a non-zero word is found, or
the top-level valid flag is cleared (red line in Figure 8(a)).
Flags are encoded as bytes (rather than bits) as the x86
architecture supports atomic updates of bytes but not of
individual bits. Figure 8(b) is the C-like pseudo-code for
the implementation of latch-free Flip-and-Test. This pseudo
code depends on the assumption that, before executing Flip-
and-Test, next_pointer_update () is performed to correctly
adjust pointer values (Figure 4). This ensures that transac-
tions started after the release of a lock can never see the
obsolete lock.

Once the top-level valid flag is cleared, the complete seg-
ment array and the locks it references can be cleaned up
(recycled) as soon as the safety condition holds. As indi-
cated in Section 4.1, we do this by keeping for each segment
track of the highest commit ID, Tas, whenever a lock is
freed. The nontrivial part is to keep a system-wide oldest
active transaction ID, Tin. This bookkeeping can be done
rather easily by using an existing global transaction table (or
list) in database systems. For example, MySQL maintains
a global shared transaction list, and it adds a newly started
transaction to the end of the list, while removal can happen
anywhere. This global list meets two important invariants;
(1) the youngest live transaction is placed at the end of the
list and (2) the oldest live transaction is always at the be-
ginning of the list. The ID of the first transaction in the
list is the one that we look for. By comparing that oldest
live transaction ID with Ty for a given segment array, we
can decide whether or not the segment array can be safely
recycled.

4.5 Lock Manager Architecture

The resulting lock manager architecture is shown in Fig-
ure 9. The traditional hash-based lock manager architec-
ture [8], prevalent in contemporary database engines, is aug-
mented by the lock index data structure.

A new lock is obtained by using an atomic fetch_and_add
on a shared pointer into the segment array; something like
a sloppy counter [3], could be used should this atomic in-
crement turn into a bottleneck. Once a transaction has ob-
tained a unique lock ID, it can access the lock data structure
directly. Locks released by committed transactions are not
safe to be cleaned, since some old active transactions can
still hold the references to these locks. Advancing the head
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pointer of a lock list eventually makes obsolete locks ready
for clean-up, and we then physically de-allocate those locks.

MySQL recycles TRANSACTION objects. We therefore
have locks point not at the TRANSACTION object of its
owner, but a small shadow transaction data structure, which
is also indexed by transaction ID. These shadow objects can
be cleaned up safely when the segment array is cleaned, as
the safety criterion on locks ensures that the transactions
are no longer active.

S. EVALUATION

We measured multicore scalability on two open-source and
one commercial database: MySQL-5.6.10-GA with InnoDB
storage engine-1.2.10, Shore-MT-6.0 (the official Wisconsin
branch), and a commercial DBMS X.?> We also measured an
implementation of our design (Section 3 and Section 4) for a
reduced-latching lock manager using staged allocation and
de-allocation; this was coded as modifications to the InnoDB
storage engine as back-end for the same MySQL code, and
we refer to it below as “Our System.”

5.1 Evaluation Setup

5.1.1 System Setup

All databases are running on a 32-core Dell PowerEdge
server whose hardware characteristics are listed in Table 1.
The operating system is Linux 3.1.5, which incorporates the
scalability improvement patch by Boyd-Wickizer et al. [3].

We run MySQL with the default configuration, except for
the following parameters:

max-connections 1000

innodb_buffer_pool_size 20 GiB
innodb_log_file_size 256 MiB
innodb_log_buffer_size 16 MiB

innodb_flush_method fsync
innodb_flush_log_at_trx_commit 2
The last setting (2) means the log flushing policy of “writ-

3The commercial system’s license prohibits us from identi-
fying it.

Component Specification
Processors 8-Core Intel Xeon CPU E7-8837
Processor Sockets | 4 Sockets

Hardware Threads | 32 (No HyperThreading Support)
Clock Speed 2.66 GHz

L1 D-Cache 32 KiB (per core)

L1 I-Cache 32 KiB (per core)

L2 Cache 256 KiB (per core)

L3 Cache 24 MiB (per socket)
Memory 128 GiB DDR3 1066 MHz
Network Ethernet 1 Gbps

Table 1: Dell PowerEdge R810 hardware specifica-
tions.

ing at commit, flushing once per second.” Shore-MT is also
configured with 20 GiB of buffer pool (sm_bufpoolsize),
256 MiB of log file (sm_logsize), and 16 MiB of log buffer
(sm_logbufsize). All transactions in Shore-MT experi-
ments are committed enabling the “lazy” option to enable
the lazy log-flushing policy. Shore-MT provides the “group
commit” function that enables multiple transactions to com-
mit together with a single log record, and this leads to mod-
ification of the benchmark program. Thus, we do not use
the “group commit” function in all Shore-MT experiments.
DBMS X is configured with similar parameters: the same
size of buffer pool, log file, and log buffer, and the group
commit policy.

We use the isolation level SERTALIZABLE in all databases,
and in addition we have run MySQL with REPEATABLE READ
(RR) isolation for comparison. For Shore-MT, we use key-
value locking for the B-tree index and the record-level lock-
ing iterator in accessing data records.

All experiments have a single database instance running
on the server. A varying number of clients is emulated on a
separate client computer (also multi-core, 128 GiB of RAM,
running Linux 3.0.0). To expose performance bottlenecks in
the lock manager, we configure all databases to have plenty
of buffer pool space (i.e., 20 GiB). We store all data to tmpfs,
an in-memory file system, to avoid disk bottlenecks.

Client and server machines are connected with a 1 Gbps
Ethernet network. The benchmark client runs the OpenJDK
64-Bit Server Java VM (build 19.0-b09, mixed mode) with
the MySQL connector JDBC driver version 5.1.1. The only
exception is that in the Shore-MT experiments, all clients
are running on the server machine and directly call API
functions of Shore-MT to access data, eliminating commu-
nication overhead. This is the setup used by Johnson et
al. [11], which we retain to make our results comparable to
theirs. This gives Shore-MT a potential performance advan-
tage over the other systems, but the purpose of our evalu-
ation is to examine scalability, not to compare performance
across databases.

5.1.2 Microbenchmark

Our microbenchmark schema uses three tables called
txbench-{1, 2, 3} with two non-null integer and ten vari-
able sized character columns (b_value-{1, 2, ., 103});
one of the integer columns (b_int_key) is a primary key.
Each table is populated with 100k randomly chosen items.

We use two types of queries: query transactions (read-
only) and update-after-read transactions (read-update). A
transaction reads S data items, either S = 10 or S = 100.
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To create rw-conflicts, we configure the read-update transac-
tions to use the following access rules: a transaction reading
data items from txbench-i updates rows from txbench-j,
where j=i + 1 mod 3.

The read-only transaction consists of a single Select-
From-Where query:

SELECT sum(b_int_value)*rand_number FROM txbench-i
WHERE b_int_key > :id and b_int_key <= :id+S

This means that the DBMS scans S rows in the table and
aggregates their integer column. This keeps the size of the
result small (a single integer), to minimise network traffic.

The read-update transaction first reads S rows
from txbench-i and updates 0.2 X S rows from txbench
-((i+1)%3). The reading part of this transaction uses the
same range query as the read-only transaction, and the up-
date part consists of just a single SQL statement (again to
minimize network cost):

UPDATE txbench-((i+1)%3) SET b_value-k = rand_str
WHERE b_int_key = :idl
OR b_int_key = :id2

Note that the read-update transactions are not serializ-
able in REPEATABLE READ isolation due to cyclic dependency
among these transactions. Our measurements are done with
a limited implementation, to read and write records (but not
to insert or delete).

We vary the multiprogramming level (MPL) from 1 to
500, with all clients trying to execute transactions as fast as
possible without think time. Each experiment was repeated
five times, with each run consisting of one minute ramp-
up period and one minute measurement period. All plotted
points in the figures of Section 5 are the average of these five
test runs.

5.1.3  System configuration and profiling

To profile various system activities, we used OProfile, a
system-wide, statistical, continuous profiler for Linux sys-
tems. We also used Intel VTune to verify function call traces.
We use profiling to break total execution time into four cat-
egories: ldle for the idle state, Kernel for Linux kernel func-
tions, Database for non-mutex related database functions,

and Mutex for all mutex related functions in the DBMS. For
DBMS X we cannot break down the time spent inside the
database, so we use DBMS X for the total time spent inside
the database code (corresponding to the sum of Database
and Mutex).

To evaluate the impact of various CPU configurations, we
use the CPU hotplug feature of modern processors. The
hotplug function can make CPUs (or cores) available or un-
available to the Linux kernel. For a given number of cores,
we use the minimum number of sockets (i.e., 1 socket for
< 8 cores and 2 sockets for 9---16 cores). This minimises
cache coherence costs and thus represents a best case for
latch-based approaches.

5.2 Experimental Results

5.2.1 Performance under load

We evaluate the scalability of the various database sys-
tems with respect to the number of cores utilized, and to
the workload. A partial result was shown in Figure 1, which
motivated our reduced-latch approach to lock management.
Our purpose here is to confirm that the collapse is not an
artefact of a poor implementation of one system, but rather
applies to a diversity of platforms, and also to show that our
design eliminates the collapse.

Figure 10 shows the complete results for read-only trans-
actions. The leftmost graphs (Our system) show MySQL
with the implementation of our reduced-latch, staged lock
manager, while the other graphs show unmodified existing
systems. Note that the scales on the y-axis differ, as at-
tempting to display all graphs on the same scale would make
the results of the less-performing systems unreadable. In
any case, our purpose is not to compare performance across
platforms (except between MySQL and Our System), but
to show which systems experience performance collapse, at
high (but not logically contending) load and on many cores.

We can see that even with 4 cores, all the vanilla configura-
tions show a throughput peak, with performance degrading
when load increases further.

At 16 cores (2 sockets) the performance degradation turns
into an outright collapse for both open-source systems. In-
terestingly, DBMS X roughly maintains peak performance,
but its peak is about an order of magnitude less than that
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Figure 11: Read-only throughput normalised to single-core performance.

of the open-source systems, and throughput remains below
that of the open-source systems even at the highest loads we
applied.

At 32 cores (4 sockets), the performance collapse can be
observed for all vanilla configurations, including DBMS X.
For MySQL, even the peak performance is degraded below
that of configurations with fewer cores. The best scalability
is exhibited by MySQL in the RR configuration with the
larger (S=100) transactions.

In contrast, our system never shows a performance col-
lapse, at worst there is a small degradation from the peak
at increasing load. Furthermore, adding cores increases the
peak throughput in all cases. The throughput of our sys-
tems is also always at least as high as that of the vanilla
MySQL(2PL) system it is based on. For the smaller trans-
actions it even matches or exceeds the performance of the
RR configuration. The reason why our system outperforms
MySQL(RR) is because MySQL(RR) uses the transaction-
system mutex whenever it opens a consistent read-view,
when a transaction begins or commits. As MPL grows, the
mutex duration also increases and incurs high contention
among transactions. This leads to the unexpected perfor-
mance behavior under high load of smaller transactions.

5.2.2  Core scalability

For a more detailed analysis of the scalability of the differ-
ent core configurations with increasing core count, we zoom
in on three “interesting” values of MPL: 32, 200 and 500.

We choose MPL 32 as a good proxy for peak throughput
of the vanilla databases, as all of them, except MySQL(RR),
peaked in the vicinity of that load. Furthermore, 32 is the
maximum core count, so in the full hardware configuration
there would be one transaction per core, representing some-
thing of an ideal case. MPL 200 is interesting as our system
is at or near peak performance there. MPL 500 is the most
extreme load we ran, and the one which triggered the most
serious performance collapses.

The results are shown in Figure 11. MPL 32, subfigures
(a) and (d), is fairly benign, all systems exhibit at worst a
small degradation of throughput with increasing core count

(although MySQL(2PL) with S=100 degrades starting with
as few as 8 cores).

At MPL 200, MySQL shows a significant degradation,
and Shore-MT performance plateaus for small transactions
(b), while the system degrades for the large transactions
(e). DBMS X shows a somewhat strange behaviour, with
flat performance at intermediate core counts but roughly
doubling from 16 to 32 cores. Our system is well behaved,
scaling well with small transactions and saturating but not
degrading for the large transactions.

At the highest load, our system scales almost perfectly
with the small transactions until 16 cores and then satu-
rates, with the large transactions the saturation starts ear-
lier. DBMS X scales similar to or system for large transac-
tions, but much worse for small ones. Shore-MT scales to
4 cores but then saturates (but remember that this system
shows performance degradation under high load even on a
single core). MySQL shows performance degradation with
increasing core numbers.

5.2.3 Where does the time go?

Profiling allows us to peek inside the systems, as shown
in Figure 12. The leftmost column stands out for its virtual
absence of the (yellow) mutex times, thanks to latch-free im-
plementation of lock management. This is in stark contrast
to the second column, showing the MySQL system ours was
derived from, which has in excess of 50 % of time spent spin-
ning on mutexes. The lowest fraction of spinning is in the
8-core configuration with small transactions. As Figure 10
shows, this is the configuration where MySQL performs best.
It is obvious that the performance degradation of MySQL
results from high mutex contention.

Surprisingly, at 32 cores the overloaded MySQL system
actually has significant idle time! MySQL implements all
mutexes using the atomic Test-and-Set instruction, with an
additional random backoff mechanism. After a failed at-
tempt to acquire a mutex it busy-waits. After the pre-
defined (but configurable) number of failures, the mutex
routine puts the calling thread to sleep until the mutex is
released. This explains the idle time at times of high mutex
contention.
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Figure 12: Breakdown of profiled results of our system, MySQL (2PL), MySQL (RR), DBMS X, and Shore-
MT (from left to right) with different core/socket configurations (from top to bottom) and 100% read-only

workloads.

Also noticeable is that for small transactions,
MySQL(RR) also shows significant mutex overhead
(as well as idle time), despite the lower isolation level.
The explanation is that in RR isolation, when a read
view is to be opened, MySQL uses the transaction-system
mutex to find a serialisable point. Consequently, for the
larger transaction size the relative mutex overhead is much
reduced.

DBMS X, where we could not break down the in-database
time due to lack of access to internals, also exhibits a large
amount of idle time in overload situations.

Shore-MT does not show much mutex time, but large
amounts of OS time. At early stages of MPL, Shore-
MT spends most time in the operating system. At very
high load, the system is mostly idle. Further analysis
can explain these two phenomena. Shore-MT uses the
pthread_mutex_lock/unlock routines as default latch func-
tions, and those pthread functions are based on the futex
system call. If the latch is uncontended, futex can acquire
the latch with simply calling atomic_swap and memory bar-
rier functions and return the locked latch without context
switch. This explains why Shore-MT spends most of time in
Kernel, especially in the kernel function cpu_relax(), which
keeps invoking a memory barrier until it gets to hold a mu-

tex. However, if latch contention is detected during the fu-
tex call, the calling process or thread sleeps until the latch
is released. This explains the huge idle time in high load
conditions. If Shore-MT is configured to use MCS locks [13]
instead of pthread mutex functions, the throughput at MPL
500 on 32 cores drops dramatically to about 5,000 tpm, with
>95% of time spent in the idle state.

5.2.4 Read-update workload

Our previous experiments included no updates, so that
there was no logical contention at all between locks, in order
to focus attention on the contention between latches. How-
ever, all OLTP workloads do include some updates, which
are the reason even read-only queries need to set locks at
all. Figure 13 shows a direct comparison of our system with
MySQL(2PL). Figure 13(a) repeats the throughput data for
read-only workloads (32-core lines of the two leftmost graphs
in the bottom row of Figure 10). Figure 13(b) shows the
same configuration, except that we now use a read-update
workload with 20 % update transactions. Update transac-
tions acquire locks which are incompatible with those of both
read-only and update transactions, and this leads to block-
ing and deadlocks. Figure 13(c) shows the abort rates for
the workload with 20% update transactions; these aborts in-
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Figure 13: Our system vs. MySQL(2PL) on 32 cores, S=100.

crease dramatically at high loads, with up to 46 % of MySQL
transactions aborted at top load. Our system has similar
overall abort rates, but due to the higher throughput, the
fraction of aborts is much lower; at worst about 6.7 % of
transactions are aborted with our system. This shows the
benefit of concurrent deadlock checking. Our system shows
performance degradation in high workload due to lock con-
flicts, not because of latch contention.
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Figure 14: Transaction lifetimes for configuration of
Figure 13(b).

An examination of transaction lifetimes, shown in Fig-
ure 14, provides additional insight. The duration of read-
only as well as update transactions increases dramatically
with load in MySQL, indicating long periods of spinning on
mutexes. In contrast, in our system the durations of R/O
transactions do not show unexpected increase by load, and
even the duration of update transactions increases only mod-
erately with load, as one would expect in an ideal system.

5.2.5 Lock hash chain

A potential bottleneck of our staged lock management is
the lock hash list, which needs to be scanned during lock ac-
quisition (lines A4...A15 of Figure 3). In our implemen-
tation, this list is potentially much longer than in vanilla
MySQL, as it may contain many obsolete locks. We there-

fore devised a benchmark which stresses this part of the
code, by increasing contention for data items.

Our hotspot benchmark is a variant of our standard S =
10 benchmark with 20 % update transactions. In this case
we restrict transactions to access only 5% of all table rows,
thus increasing logical contention twentyfold. Figure 15(b)
shows the results for throughput and Figure 15(c) shows
abort rates. The standard S = 10, R/O benchmark through-
put is shown in Figure 15(a) for comparison. We can see
from Figure 15 that the hotspot load degrades throughput
of our system moderately again due to lock conflicts, the
degradation is actually more pronounced in MySQL(2PL).
Under the read-only workload (Figure 15(a)), the through-
put of our system hits the peak of 8 million tpm (at MPL
200) and decreases to 6.8 million tpm (at MPL 500), while
that of MySQL(2PL) reaches the peak of 1.8 million tpm
(at MPL 20) and collapses to 0.7 million tpm (at MPL 500).
With the read-update workload (Figure 15(b)), the through-
put of our system has the peak of 6.1 million (at MPL 200,
75 % of that of the R/O workload) and then decreases to 3.3
million tpm (at MPL 500, again 48 % of R/O). In contrast,
MySQL(2PL) achieves a peak of 1.6 million tpm (at MPL
20, 90 % of R/0O) and collapses to 0.2 million tpm (at MPL
500, 30 % of R/O). This is also reflected in the abort rates,
which for our system are a tiny 0.19 %, while MySQL(2PL)
suffers 44 % aborted transactions. In other words, there is
no indication that the increased length of our hash chains is
becoming a bottleneck.

6. CONCLUSION

We have found that contemporary database systems are
not yet ready for the multicore age. Our evaluation has
demonstrated a collapse of transaction throughput under
high load, even read-only load, for all the database systems
we analysed. In the case of the open-source systems, MySQL
and Shore-MT, we could identify latch contention in the lock
manager as the bottleneck. While we could not perform
the same in-depth analysis on the commercial DMBS X, its
observable behaviour is similar enough to the open-source
systems to suspect that the cause is similar.

We proposed to address this problem by an improved im-
plementation of the lock manager, which adopts the RAW
pattern and barrier synchronization to greatly reduce the
use of latches. We have described the design for such a
lock manager which is based on staged lock management,
where locks are pre-allocated and lazily de-allocated in bulk,
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Figure 15: Exploring hotspot behaviour, 32 cores, S=10.

and deadlock checking can be done concurrently. We coded
this design as a variant of the backend storage of MySQL.
Our experiments show that this approach (i) eliminates the
performance collapse by essentially eliminating latch con-
tention, and (ii) always achieves at least the same perfor-
mance as the baseline system.

The potential weak point of our staged approach is the
longer hash chains, resulting from obsolete locks which have
not yet been cleaned up. Our attempts to stress this part of
the system by forcing a high rate of contention on individual
data items did not indicate that this causes any performance
problems. We conclude that the staged, reduced-latch ap-
proach to lock management looks promising.
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