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Abstract

Modern smartphones are increasingly performant and
feature-rich but remain highly power-constrained. Effec-
tive energy management demands an informed policy,
and to that end we present a detailed power analysis
of the Samsung Galaxy S III smartphone. We measure
power consumption by instrumentation at the circuit
level, and present a breakdown by the major compo-
nents including CPU, RAM, display, GPU, wireless ra-
dios, camera, GPS and environmental sensors.

1 Introduction

In 2010, we published a power analysis of the Openmoko
FreeRunner mobile phone [2]. While perhaps not a typi-
cal example of the mass-market smartphone, this device
had the advantage of documentation and hardware sup-
port that made a fine-grained power analysis reasonably
straightforward. We claimed that such an analysis nec-
essarily required both access to circuit schematics, and
hardware support. To overcome the limitation of an atyp-
ical device, we compared the measurements with full-
system power data from two additional devices which are
considered more representative of the commodity smart-
phone.

We now show that module-level power instrumenta-
tion on an off-the-shelf mass-market smartphone is feasi-
ble after all, as we demonstrate with the Samsung Galaxy
S III. We are able to measure CPU, RAM, GPU, SoC,
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display, WiFi and cellular wireless, audio, camera, GPS
and environmental sensors; some directly and others in-
directly. This enables us to analyse smartphone features
which were not available on the FreeRunner, including
GPU 3D acceleration, an OLED display, 3G cellular net-
work connectivity, a multi-core CPU, and a camera.

We measure the power consumption of these compo-
nents under a number of real-world benchmarks, includ-
ing: sleep, gaming, video and audio playback, phone
calling, SMS messaging, emailing, web browsing and
photography. We then compare the results with the pre-
viously published measurements of earlier generation
smartphones.

In summary, our contributions are threefold:

• We demonstrate that fine-grained power measure-
ment is feasible on an off-the-shelf mass-market
smartphone (Section 2.2).

• We analyse the energy consumption of smartphone
components not covered in prior work, including
the GPU, hardware video codec, 3G network, cam-
era, and environmental sensors (Section 3).

• We update the literature with data for a popular,
latest-generation smartphone featuring multi-core
CPUs and highly-capable GPUs. We compare this
with analyses of previous-generation devices and
examine the trend in smartphone power consump-
tion (Section 5).

2 Methodology

2.1 Device under test
We conduct our tests on the Samsung Galaxy S III GT-
I9300 (S3) smartphone. This is a high-end device, re-
leased in mid 2012. Its main components are sum-
marised in Table 1, and the software is listed in Table 2.
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Figure 1: Instrumentation setup for one of the power sup-
plies. The SMPS inductor is on the left, partially lifted
off the board and soldered to a sense resistor on the right.
Connected to the resistor is a twisted-pair wire leading to
the data acquisition system.

Component Specification
SoC Samsung Exynos 4412
CPU ARM Cortex-A9 quad-core, 1.4 GHz
RAM 1 GiB LP-DDR2
GPU ARM Mali-400 MP
Display Super AMOLED, 4.8”, 720×1280
Battery 2100 mAh

Table 1: S3 hardware technical specifications.

2.2 Instrumentation

Modern consumer devices such as smartphones have
a large number of power supplies for various compo-
nents, which, in theory, enable per-component analysis
of power consumptions. However, there are generally no
schematics available which would help identify the sup-
plies powering each component, nor are they equipped
with measurement capability.

Fortunately, a common design feature helps. Smart-
phone designs utilise switch-mode power supplies
(SMPS) to achieve good energy efficiency in converting
the battery voltage to the various required supply volt-
ages. Inherent to an SMPS is an output inductor, which is
typically large and discrete (i.e. not integrated with other
packages). This not only helps identifying power rails,
but the inductor provides a convenient point at which the
circuit can be opened and a series current-sense resistor
inserted for power measurement. An example of such an
instrumentation is shown in Figure 1.

We identified the relevant components on the circuit
board by observing changes in the SMPS output wave-

Software Version
Android OS 4.0.4
Linux kernel 3.0.15
Baseband I9300XXLEF
Build IMM76D

Table 2: S3 software.

forms while executing different subsystems from soft-
ware. We also discovered some useful information by
correlating measurements with data in the Linux source
code and sysfs files. We discovered a partial OLED sup-
ply by searching for voltages above the battery supply,
with the knowledge that OLED requires a higher volt-
age.

We apply this methodology to the S3, which allows us
to directly measure: the CPU cores, RAM, GPU and sev-
eral general system-on-chip (SoC) supplies. For the SoC,
we distinguish three supplies: MIF (memory interface),
INT (internal), and remaining miscellany SoC. Measur-
ing power supplies to the radios is less straightforward.
Radios are very sensitive to noise in the power supply,
and therefore, some of their power is supplied from lin-
ear regulators, which are typically less energy efficient
but show superior noise performance [6]. As these have
no discrete components, we cannot insert a sense resis-
tor. We therefore determine WiFi and cellular power by
subtracting the sum of measured components from total
power. We also use this approach to determine camera
and audio power, which we were unable to measure at
all.1 Furthermore, we were only able to measure one of
several power supplies for the OLED display. However,
we found that

Pdisplay = 223 mW+PO×1.57

is a fairly accurate model of the overall display power
Pdisplay, where PO is the part we could measure directly.
This model exhibits less than 3% error when validated
against several images at varying brightness levels.

Similarly, we could only measure part of the power
drawn by flash storage, but in this case we were not
able to determine an accurate model. Instead we use
the partial measured value to predict the worst-case flash
power consumption under a number of different access
patterns. This becomes relevant only for the camera sce-
narios; in all others, flash power consumption is negligi-
ble (< 8 mW).

Full instrumentation of the smartphone, including cir-
cuit analysis, took about 2 person-weeks of work.

In all cases, the power values we report are what we
measure for a relevant subsystem, multiplied by a fixed
scaling factor to account for the energy loss in voltage
regulation. We determined experimentally the efficiency



to be approximately 83%, resulting in a scaling factor
of 1.2. We also report total power consumption of the
device, Pt, as measured at the battery connector.

3 Results

In this section we present the results of a series of bench-
marking scenarios, each of which is averaged from a
minimum of three iterations. Where appropriate, the de-
vice is run in airplane mode to eliminate external sources
of noise. The additional energy cost of an active network
connection can be inferred from the data presented below
under idle and suspend.

Furthermore, all results are reported at 50% display
brightness. However, power at other brightness levels
can be determined my multiplying the OLED component
of display power (see Section 2.2) by between 0.16 (for
minimum brightness) and 2.0 (for maximum brightness).

For scenarios based on interactive applications (such
as gaming, web browsing etc.) we used a trace of touch-
screen input events to drive the benchmark. This ap-
proach yields good repeatability across iterations.

3.1 Usage scenarios
Idle and suspend Figure 2 shows power consumption
in the suspend state—the device’s deepest sleep state—
for four configurations: airplane mode (no radios en-
abled), with a 2G (i.e. GSM) and 3G (UMTS) cellular
network connection, and with a WiFi connection only.
Data transfer is disabled in the cellular case, and for
WiFi, we discarded any iteration where a data transfer
occurred. This yields the power required to maintain the
connection, but does not include any background data
traffic, which is highly user-dependent.
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Figure 2: Suspend power in airplane mode, with a 2G
and 3G cellular network connection, and a WiFi connec-
tion.

Misc is a small (< 10mW) static power component

(determined by subtractive analysis) which we could not
attribute, as it is not provided by any of the instrumented
supplies. It seems essentially usage-independent and we
therefore ignore it for the remainder of the paper. Radio
is the respective WiFi or 3G subsystem.

Figure 3 shows a breakdown of the device power in
the idle state; that is, fully powered up but not execut-
ing any applications. We present the airplane-mode data,
but note that the cost of maintaining a 2G/3G network
connection is similar to the suspend case (5–10 mW),
and that WiFi costs an additional 50 mW above airplane
mode.

RAM SoC GPU INT Core MIF Display
0

100

200

300

400

Po
w

e
r 

(m
W

)

Figure 3: Idle power in airplane mode. Pt = 805mW.

Gaming Two gaming scenarios are shown in Figure 4.
The first is the 2D game Angry Birds. The workload con-
sists of loading the application and playing through two
levels, for a total time of 90 s. The second is the graphics-
intensive 3D game Need for Speed Most Wanted. Data is
collected during a game for a period of 110 s.
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(a) Angry Birds

RA
M

So
C

G
PU IN
T

Co
re M
IF

D
is
pl

ay

0

100

200

300

400

500

600

700

800

(b) Need for Speed

Figure 4: Gaming power consumption for: (a) Angry
Birds (2D), Pt = 1516mW; and (b) Need for Speed (3D)
Pt = 2425mW.



Video In Figure 5 we plot video playback of two
1280x720 (720p) H.264 videos; one at low quality
(1013 kbps) and one at high quality (9084 kbps), played
with the Android application MX Player, v1.6j. For each
video we measured playback with the hardware video
codec, and with a software decoder. Comparing soft-
ware to hardware playback we note a decrease in all
power supplies except INT, suggesting that this powers
the hardware decode unit.
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Figure 5: Video playback power consumption at two
quality levels with hardware-acceleration and software
decoding (a) high quality Pt,hw = 1270mW, Pt,sw =
2329mW; and (b) low quality Pt,hw = 1084mW, Pt,sw =
1571mW.

Audio Figure 6 shows the MP3 playback scenario
through headphones at minimum volume. We see a
5 mW increase of total power for maximum volume,
which is distributed across several supplies. The display
is disabled throughout.
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Figure 6: Audio playback Pt = 226mW.

Phone call and SMS In Figure 7 we show the power
usage for placing a phone call and sending an SMS. The
phone call consists of opening the dialer, a 10 s ring time,
40 s of talk time, then returning to the home screen. For
SMS we include 45 s to load the messaging application
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Figure 7: (a) phone call Pt,call = 865mW; and (b) SMS
message Pt,sms = 1140mW, over 3G network.

and type a short message, plus additional time to transmit
the message via the 3G cellular network.

Web browsing Our web browsing workload consists
of loading the BBC news mobile website, browsing the
front page headlines, and reading three articles, for a total
of 180 seconds. Figure 8 shows the results for both WiFi
and 3G data networks.
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Figure 8: Web browsing over WiFi and 3G network.
Pt,wifi = 1275mW, Pt,3g = 1479mW.

Email Figure 9 shows the results for our email bench-
mark. In this scenario we use Android’s built-in email
application to fetch and read five emails, one of which
contains a 60 KiB image, and replying to two messages.
The total run-time is 140 s, and we repeat the scenario
for both 3G and WiFi networks.

Camera In Figure 10 we plot the power consumption
under two camera workloads: still and video. The still
image scenario consists of loading the camera applica-
tion, focusing on the near-ground object, taking the pho-
tograph (no camera flash), and finally viewing the image.
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Figure 9: Email over WiFi and 3G network. Pt,wifi =
1264mW, Pt,3g = 1543mW.
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Figure 10: Camera still and video. Pt,still = 2256mW,
Pt,video = 2614mW.

For the video capture scenario, we load the camera appli-
cation and take a 20 s video.

3.2 Network

In Table 3 we show the throughput and power perfor-
mance of the 3G subsystem under a microbenchmark—
the speedtest.net Android application. Since controlling
for environmental factors such as network operator load
or signal strength is difficult, we ran this benchmark 16
times spread over a period of 24 hours.

Upload Download
Throughput (kbps) 547±149 1317±814
Cell power (mW) 1137±372 768±64
Efficiency (kb/J) 481 1715

Table 3: 3G network performance (average ± std. dev.)

3.3 Sensors

We measured the energy consumption of most of the
device’s environmental sensors, including: accelerom-
eter, gyroscope, light meter, magnetometer, barometer
and proximity sensor. We used a modified version of
the Data Monitor application to sample each sensor at
50 Hz. We then compared the total power consumption
against the same application running with a “dummy”
sensor, which delivers software events to the application
at a rate of 50 Hz, but involves no hardware. In Table 4,
we tabulate the increase in power consumption for each
sensor, compared with the dummy, averaged across 3
runs of 60 seconds each.

Sensor Power (mW)
Accelerometer 5±2.3
Gyroscope 30±1.3
Light 3±1.7
Magnetometer 12±0.6
Barometer 1±0.7
Proximity 7±2.2

Table 4: Sensor power consumption (average± std. dev.)
above the “dummy” sensor. Pdummy = 573mW.

3.4 GPS

We were unable to measure GPS power consumption
on our instrumented device, since an open case discon-
nects the antenna. Instead, we estimate GPS power by
measuring the total power consumption on a different
Galaxy S3 (this time a GT-I9305 model). Again, the
Data Monitor application is used.

In Table 5 we report the power consumption above the
idle power of 573mW, separated into two parts: “acqui-
sition” is the time until a position is reported (fix), “track-
ing” is the time thereafter. We experimented with both
hot and cold GPS state, but found no significant differ-
ence in average power consumption. However, with cold
GPS state, the device took approximately 400 seconds
to acquire a fix, consuming 154 J of energy. For warm
state (5–10 minutes old), this reduced to approximately
30 seconds.

Mode Power (mW)
Acquisition 386±19.5
Tracking 433±21.5

Table 5: GPS power consumption (average ± std. dev.)
above idle (Pidle = 573mW).



3.5 Maximum power

In addition to the realistic usage scenarios, we ran a se-
ries of tests to determine the maximum power consump-
tion for some of the interesting components. The results
of this, and the workload that evoked that behaviour, are
summarised in Table 6.

Component Power (mW) Workload
Core 2845 AnTuTu Benchmark
RAM 208 Need for Speed
GPU 1415 AnTuTu 3DRating
3G 1137 Speedtest.net (upload)
Display 1124 White screen, bright

Table 6: Maximum power.

4 Analysis

Display power is a significant contributor in every sce-
nario where the display is active. Even at the 50% bright-
ness level it contributes 300–600 mW, highly dependent
on the image content—an inherent property of OLED
technology. Just varying the colour scheme can save up
to 300 mW at medium brightness, or 600 mW at maxi-
mum brightness. In scenarios where a data network is
used, namely web browsing and email, WiFi networking
is approximately four times more efficient than 3G. This
corresponds to a 20% reduction in total energy. However,
the cost to maintain an unused data connection is less in
the 3G case (≈ 10mW) than the WiFi case (50 mW).

Our video results demonstrate the efficacy of using the
hardware video decode unit, rather than a software de-
coder. For a high-quality video, a saving of more than
1 W (45%) can be achieved, which translates to 2.6 hours
of additional playback time.

The camera workloads show particularly high power
consumption in the camera subsystem, but also across
the various SoC supplies, the CPU core, and RAM. Sur-
prisingly, these two scenarios are among the highest en-
ergy consumers across all our benchmarks.

While RAM power can be quite high (> 100 mW in
some scenarios), this always correlates with high CPU
or GPU power consumption. Therefore as a percentage,
RAM contributes on average only 6% of total power. In
suspend mode however, this is up to 20%, since RAM
must retain significant system state.

In every scenario, flash memory is a negligible contri-
bution to power consumption. It peaks at 30 mW in the
camera video recording benchmark (1.5% of total), and
for all others is less than 0.5% of total.

Environmental sensors contribute little to overall
power consumption, even at very high sampling rates.

GPS however consumes significant power: around 40%
of total. Moreover, our data demonstrate that the relative
magnitude of network and GPS power consumption (ap-
proximately 2:1 for 3G) is such that the use of network-
assisted GPS (such as A-GPS) is clearly a win in total
system energy consumption.

The maximum power data demonstrate that, in prin-
ciple, the S3 can consume in excess of 7 W. However,
in realistic scenarios most, if not all components, are
highly under-utilised. Consequently, efficient intermedi-
ate power states should be considered equally important
to energy consumption as deep low-power states, as this
disparity will likely continue.

5 Trends in Smartphone Power Use

How do the results for the latest-generation phone com-
pare with the findings from three years ago [2]? There we
analysed the then new Google Nexus One (N1) and the
roughly one year older HTC Dream (G1). We also had
the more detailed analysis of the Openmoko FreeRunner,
but comparing to that device is less meaningful, since it
was not a mass-market high-end smartphone.

In Table 7 we compare the total system energy con-
sumption across the three generations of smartphone; the
G1 and N1 data is reproduced from our earlier paper, and
the S3 data is from the present work. In all three cases,
the brightness-dependent component of display power
has been subtracted out.

We observe very similar suspend power for the G1,
N1 and S3 (≈ 25 mW), suggesting that this may be an
intrinsic lower bound. Idle power, however, appears to
increase over time. We speculate that this may be due to
increasing display resolution—the relationship between
pixel count and idle power is approximately linear across
these three devices. Moreover, in scenarios where the
display is not active, we see either a reduction or no sig-
nificant change in total power consumption, further sup-
porting this conclusion. The power consumption for a
voice call has not appreciably changed across the three
devices; the G1, N1 and S3 are within 15% of each
other, with the latest device consuming the highest power
in this scenario. Audio playback power consumption
has dropped steadily across the three generations, from
460 mW on the G1 to 226 mW on the S3. Since the dis-
play is disabled and audio levels unchanged, this shows
a substantial increase in energy efficiency in the newer
devices.

While average power consumption in typical working
scenarios is not increasing substantially through gener-
ations of smartphones, maximum power is. This sug-
gests that thermal management will increasingly become
an important aspect of smartphone power management.



Average System Power (mW)
Benchmark G1 N1 S3
Suspend 27 25 24
Idle 161 334 666
Phone call 822 747 854
Email (cell) 599 - 1299
Email (WiFi) 349 - 1020
Web (cell) 430 538 1080
Web (WiFi) 271 412 874
Audio 460 322 226

Table 7: Average system power for a range of usage sce-
narios across three smartphone generations.

6 Related work

Perrucci et al. [5] presents power and energy measure-
ments for a range of microbenchmarks on a Nokia N95
smartphone, focusing on wireless interfaces. They use
only total input power, and exercise subsystems in iso-
lation with subsystem-oriented workloads to determine
their power consumption. Such an approach is inher-
ently limited for composite workloads, where multiple
subsystems work in tandem for a single purpose. For in-
stance, downloading a file via 3G exercises not only the
wireless module, but requires the CPU to issue the com-
mands and manage the network stack, and RAM to store
the data. However, the micro-behavioural detail they pro-
vide, such as idle power for various radio technologies,
can be easily applied to our full-system data.

There is significant work in the literature on modeling
of power consumption. Recently for example, Pathak et
al. [4] use an approach based on system call tracing to
drive a state-machine model of devices. Our approach
provides ground truth for such work. Moreover, McCul-
lough et al. [3] argue that modeling of power consump-
tion is becoming more error prone, due in part to hidden
power states of devices, motivating a direct measurement
approach. We describe a methodology for direct mea-
surements on a smartphone, and provide concrete data
from a real device.

7 Conclusions

We have shown that fine-grained power measurement is
feasible on an off-the-shelf smartphone which is not de-
signed for that purpose, even without hardware docu-
mentation. With the described methodology, we were
able to measure or infer power consumption for all the
major components of the Galaxy S III.

We have presented the power consumption of this
device under a range of realistic workloads, and com-
pared these data with previously reported measurements

on earlier generations of smartphones. We found that
idle power seems to be mostly determined by screen
size, while the power draw of an idle application pro-
cessor is negligible. This indicates that static power,
which is becoming an increasing problem in servers [1]
is still mostly a non-issue in phones. However, maxi-
mum power is steadily increasing. Hence, while compute
power of smartphones continues to grow, it is becoming
less affordable to use it for more than brief periods.

The raw data and information on instrumentation
points is available at http://ssrg.nicta.com.au/

projects/energy-management.
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