
White Paper∗
Protecting e-Government Against Attacks

Gernot Heiser
NICTA† and University of New South Wales

Sydney, Australia
gernot@nicta.com.au

February 2013

1 Scope

E-Government services operate, by definition, across
the Internet: citizens use their own desktops or mobile
devices to access, via the Internet, government services
hosted on servers physically located in some govern-
ment agency, or even on a private or public cloud.

Attacks on e-government can such be broadly di-
vided into three categories: server-side attacks (i.e. on
the government servers), client-side attacks (i.e. on the
citizen’s computing/access device) and network attacks
(i.e. on the Internet connection, either by interfering
with existing connections/sessions or by an attacker
pretending to the server to be a valid client or to the
client to be a valid server). This analysis explicitly ig-
nores network attacks, as these are outside our exper-
tise.

2 Attack Surface

Almost all software is faulty. Software systems are in-
credibly complex, they are the most complex artefacts
built by humans by orders of magnitude! Such com-
plexity makes mistakes inevitable.

Typical defect rates in software that has gone
through industry-standard quality assurance are of the
order of several defects (bugs) per thousand lines of
code (kLOC). Real-world software systems consist of
many millions of lines of code, and hence have thou-
sands of bugs.

Not all bugs are threats to security: many are in-
nocuous in that they cannot be exploited by an attacker.
However, in a security-critical part of the system, we
have to estimate that of the order of 10 % of bugs con-
stitute security vulnerabilities which can be exploited
by an attacker, given the right circumstances.

∗ c© National ICT Australia Ltd (2013). Licensed under the Cre-
ative Commons Attribution-NonCommercial-NoDerivs 3.0 Australia
license available at: http://creativecommons.org/licenses/
by-nc-nd/3.0/au/.

†NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council through the ICT Cen-
tre of Excellence program.

Hence, if the critical system measures a million
lines, we have to assume that it has literally hundreds,
if not thousands, of vulnerabilities. This is the system’s
attack surface.

Figure 1: Traditional server software stack.

3 Server-Side Vulnerabilities

3.1 Operating system attacks
Modern computer systems consist of layers of soft-
ware: increasingly specialised software components
are “stacked” on top of the hardware (which forms the
bottom layer).

A (fairly course-grained) view of a traditional server
environment is shown in Figure 1: the bottom-most
(and most general) layer is the operating system (typ-
ically Windows or Linux), on which there runs a web
server and a database management system, the service-
specific application software. In reality, some of the
components may run on separate hardware platforms,
although there is always an operating system between
the hardware and the other software.

In general, the damage that can be caused by a se-
curity compromise (i.e. successful attack) is higher if
it happens on lower levels of the stack: usually, if a
particular layer is compromised, all layers above are
trivially compromised as well. Therefore, the operat-
ing system, as the lowest layer, is the primary target of
attacks.

1

mailto':gernot@nicta.com.au
http://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://creativecommons.org/licenses/by-nc-nd/3.0/au/


How is the operating system attacked? In theory,
the operating system is protected from higher soft-
ware level by a number of technical means, which are
all based in some simple hardware mechanisms. Of
course, the hardware can be faulty, but that is usually
a very low risk. The predominant vulnerabilities are
bugs in the operating system, which can be triggered
by a higher software layer when invoking an operating-
system service. Modern operating systems comprise
tens of millions of lines of code, which translates into
thousands of vulnerabilities – a big attack surface (see
Table 1).

Figure 2: Servers in virtual machines (VMs).

3.2 Hypervisor attacks
Modern servers typically have an additional layer be-
tween the operating system and the hardware: the
hypervisor (Microsoft Hyper-V, Citrix XenServer or
VMware ESX). This provides multiple virtual ma-
chines, each appearing like actual hardware and run-
ning a traditional software stack, from operating sys-
tem to application (see Figure 2). It allows consolidat-
ing multiple systems (complete, independent servers)
onto a single hardware platform.

Hypervisor-based virtualisation has revolutionised
the server world, enabling improved resource utilisa-
tion (and thus reduced capital and running cost), and
are the key enabler of cloud computing and “green
computing”. They are here to stay.

However, the hypervisor adds to the attack surface
of the system, as shown in Table 1. And, as the lowest
level of software, it is the biggest prize to claim: a suc-
cessful attack on the hypervisor constitutes a complete
compromise of the whole system, the hypervisor can
access everything.

In particular, the hypervisor enables a new class
of attacks: server-to-server. The threat scenario is
sketched in Figure 3. If one virtual machine is compro-
mised, and carries out a successful attack on the hyper-
visor, it will compromise all the other virtual machines
running on the same hypervisor. Plenty of hypervisor

Total Critical Vulnera-
Component size Part bilities
Management 1 MLOC 1 MLOC 100s
Web server,
database,
application 10 MLOC 1 MLOC 100s
Operating
System 10 MLOC 10 MLOC 1000s
Hypervisor 1 MLOC 1 MLOC 100s

Table 1: Typical code sizes and attack surface (conser-
vative ballpark figures).

compromises, across all major vendors, have been re-
ported recently, so this threat is real.

Figure 3: Attacking a virtual machine by compromis-
ing the hypervisor.

Hypervisor attacks are particularly dangerous, as the
whole point of the hypervisor is to provide isolation be-
tween servers: it creates the illusion that the servers run
on separate hardware (where they are strongly isolated
from each other), while in reality they run on the same
computer. For that reason, server-to-server attacks are
often not thoroughly considered in a threat analysis.

Furthermore, part of the resource management en-
abled by hypervisors is the migration of services be-
tween hardware platforms. Therefore it often cannot
be foreseen which services get co-located on the same
physical machine. This greatly complicates any threat
assessment.

Hypervisor attacks are usually launched from com-
promised operating systems. This seems to minimise
the risk, as two vulnerabilities need to be exploited (op-
erating system and hypervisor). However, vulnerabil-
ities in main-stream operating systems are so plentiful
that this is not much of a limitation in practice. Plenty
of hypervisor compromises, across all major vendors,
have been reported recently.

3.3 Side-channel attacks

As if this wasn’t scary enough, hypervisors enable
a particularly sneaky form of an attack, which goes
through the hypervisor without actually compromising
the hypervisor itself: so-called side channels. These

2



are communication channels which “should not exist”
in the sense that they are not part of the visible mech-
anisms provided by a system. They are, in a sense,
well-hidden loopholes.

For example, a program running within a virtual ma-
chine can observe its own progress compared to the
passing of real (wall clock) time, and from that learn
about other activities on the system.

Side-channels though the hypervisor have been suc-
cessfully employed to steal encryption keys from a co-
located virtual machine – they are real. Note that the
theft of an encryption key compromises more than a
single session or client: it has the potential to make all
clients’ data accessible.

Protection against side channels is particularly diffi-
cult, as they are not based on what’s commonly con-
sidered “bugs”, in particular, they are not violations of
functional specifications: A hypervisor could be func-
tionally perfect, in the sense that it always performs
exactly the correct operation in any circumstance, yet
still allow the theft of data. Discovering and closing
these channels requires highly sophisticated analysis of
all possible (unintended and unspecified) side effects of
hardware and software mechanisms. A complete anal-
ysis in totally unfeasible for systems of the complexity
of commercial hypervisors.

4 Client-Side Vulnerabilities

The citizen’s access device is also prone to attacks.
Typically, this is a desktop computer or a mobile
device, hereafter called terminal (because from the
server’s point of view, the connection terminates there).

Terminal vulnerabilities have the same fundamental
reasons as the server’s: software complexity and the
vulnerabilities inherently resulting from that. Further-
more, terminals are usually not professionally man-
aged, and a wealth of applications software, much of
it from completely untrusted sources, is installed. As
a result, a large fraction of terminals are already com-
promised (typically by viruses and worms).

Client-side vulnerabilities are in a sense worse than
server-side ones, as they are more plentiful, and harder
to control by administrative or policy means. Fortu-
nately, they are also more constrained in the damage
they can cause, as a compromised terminal will, in
general, only affect its owner’s use of e-Government
(involuntary participation in botnets notwithstanding).
However, e-Government is doomed if citizens cannot
have a reasonable degree of trust their terminals.

5 Possible Solutions

5.1 Microkernel architecture

As the core problem is the large attack surface of mod-
ern systems, any real solution must aim to reduce this.

Reducing the overall size of the software stack is unre-
alistic; to the contrary, this will continue to grow.

Reducing the defect density may be possible, but in
any case will take decades, if developments over the
last 30 years provide any guidance: software defect
densities have not decreased dramatically.

So, the only hope rest on reducing the size of the
critical components, especially of the lower layers. Re-
ducing the attack surface of the hypervisor must be the
primary aim.

The key is changing the architecture of the system,
so that the amount of critical code (that must be trusted
to operate correctly) is minimised. So, instead of a
“monolithic” design, the operating system or hypervi-
sor is constructed from a minimal “microkernel”, with
the actual system services provided by isolated compo-
nents running on top of the kernel.

Figure 4: Splitting virtualization functionality into a
microkernel and per-VM component reduces attack
surface.

This means that compromises can be contained in
individual components, as long as the kernel itself is
not compromised. In the case of a hypervisor, most of
its functionality is distributed with the individual vir-
tual machines, as shown in Figure 4. In this case only
the microkernel and some of the management com-
ponents are most critical in the sense hat compromis-
ing them will compromise all virtual machines. This
architecture is supported by NICTA’s seL4 microker-
nel [KEH+09] as well as the Nova microkernel from
TU Dresden [SK10].

5.2 Real-world microkernels

The author and his team at UNSW and NICTA have
a 15-year track record of building high-performance
microkernels, and are generally considered the lead-
ers in the field, particularly with respect to high as-
surance as well as practical deployment. The author’s
startup company Open Kernel Labs (recently acquired

3



by General Dynamics) has deployed billions of copies
of their OKL4 microkernel [OKL12], so this technol-
ogy is clearly ready for the real world.

A modern, well-designed microkernel comprises
only about 10,000 LOC. This means that, even with
traditional means, the number of defects (and vulner-
abilities) can be expected to be in the dozens or less.

Moreover, the small size makes it possible to employ
mathematical proof techniques to show that a micro-
kernel is free of implementation bugs, i.e. implements
the specified functionality correctly – the ultimate de-
pendability property. The author’s team has achieved
exactly that a few years ago with their seL4 micro-
kernel [KEH+09]. In the meantime, the team has ex-
tended these proofs to showing that seL4 has the re-
quired properties for building secure systems. To date,
seL4 is still the only operating system or hypervisor
with this degree of assurance.

A remaining issue is that of side channels, these
are not covered by the correctness proofs of seL4 (al-
though more recent NICTA work is making significant
progress). The argument here is that the small size of
the microkernel makes it feasible to perform a com-
plete analysis of side channels, eliminate most and un-
derstand the remaining ones and the threats they pose
in security.

5.3 Servers

Re-architecting large legacy systems is hard. For ad-
dressing server vulnerabilities, the hypervisor is the
most important piece which must be changed to a
microkernel-based structure. Fortunately, there is
hope, as shown by recent research results: Researchers
at the University of British Columbia, Citrix and the
NSA have recently shown that it is possible (albeit dif-
ficult) to break the Xen hypervisor into smaller pieces
[CNZ+11], although this is still a far cry for a small
microkernel.

Particularly interesting is work done by researchers
at Fudan University, China, who showed that it is pos-
sible to install a small microkernel underneath the
Xen hypervisor, so that a compromised Xen can no
longer compromise the virtual machines running on
top [ZCCZ11]. This is a perfect approach for elimi-
nating the hypervisor’s large attack surface by running
a microkernel like seL4 underneath.

5.4 Terminals

The key to protecting terminals is, maybe surprisingly,
also virtualization. Open Kernel Labs and Motorola
have shown as far back as four years ago that it is
possible to use a hypervisor, even on a mobile phone
[Hei09b]. While this was originally done for other rea-
sons, several companies are now using virtualization to
provide secure communication on essentially off-the-
shelf phones.

Figure 5: Smartphone virtualization.

These designs provide a secure virtual machine for
the critical communication software, while a separate
virtual machine runs the normal smartphone software
(see Figure 5). The owner can use this virtual machine
without restrictions, but its compromise is prevented to
spread to the secure side, provided that the hypervisor
is not compromised.

Note that such security advantages cannot obtained
by some of the commercial virtualization solutions tar-
geting smartphones, such as VMware’s Horizon Mo-
bile. This technology adds virtualization functionality
into the existing smartphone operating system, rather
than in a hypervisor running underneath the operat-
ing system. It is therefore just as suceptible to attacks
as the existing operating system (and possible more)
[Hei09a].

6 Recommendations

While we have outlined some approaches for address-
ing threats to e-government, these are not yet readily
deployable. Much exists as technology (as contrasted
to products), some is still in the research state. Produc-
tization of secure virtualization technology is not pro-
ceeding rapidly as there is no established market. Gov-
ernment policy can help by creating more certainty.

Recommendation 1: State a requirement for manda-
tory use of secure virtualization technology in e-
government servers within, say, 5 years. This will
provide industry with the incentive to deliver ap-
propriate products.

At present, seL4 is the only technology which is able
to provides truly trustworthy virtualization, and does
so without significant performance overhead. How-
ever, seL4 is privately owned (by General Dynamics,
through their acquisition of Open Kernel Labs). There
is the obvious danger of government policy creating a
private monopoly.

Recommendation 2: Fund a program aimed at pro-
ducing an open-source equivalent to seL4, with
the same strength of assurance resulting from

4



mathematical proof, and added side-channel miti-
gation. This is achievable with a two-year project
in which NICTA would be happy to participate.

The above initiatives should be the key to addressing
the server-side challenges. The technology for address-
ing client-side security exist, but the trend in the smart-
phone sector is presently towards low-security prod-
ucts, resulting from a perceived lack of a market for
secure solutions.

Recommendation 3: Require that after, say, 5 years,
e-government services will only be accessible
from terminals with certified secure communi-
cation components (as can be achieved with
microkernel-based virtualization technology).

Acknowledgements

NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communi-
cations and the Digital Economy and the Australian
Research Council through the ICT Centre of Excel-
lence program.

References
[CNZ+11] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker,

T. Deegan, P. Loscocco, and A. Warfield. Breaking up
is hard to do: Security and functionality in a commodity
hypervisor. In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles, Cascais, Portugal, Oc-
tober 2011.

[Hei09a] G. Heiser. Hey VMware: Secure it ain’t!
http://microkerneldude.wordpress.com/

2011/09/09/hey-vmware-secure-it-aint/,
September 2009. Author’s blog.

[Hei09b] G. Heiser. The Motorola Evoke QA4: A case study in
mobile virtualization. White paper, Open Kernel Labs,
July 2009. http://www.ok-labs.com/_assets/

image_library/evoke.pdf.

[KEH+09] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood. seL4: Formal verification of an OS ker-
nel. In ACM Symposium on Operating Systems Princi-
ples, pages 207–220, Big Sky, MT, USA, October 2009.
ACM.

[OKL12] Open Kernel Labs software surpasses mile-
stone of 1.5 billion mobile device shipments.
http://www.ok-labs.com/releases/release/

ok-labs-software-surpasses-milestone-of-1.

5-billion-mobile-device-shipments, January
2012. Media Release.

[SK10] U. Steinberg and B. Kauer. NOVA: A microhypervisor-
based secure virtualization architecture. In Proceedings
of the 5th EuroSys Conference, pages 209–222, Paris,
France, April 2010.

[ZCCZ11] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVi-
sor: retrofitting protection of virtual machines in multi-
tenant cloud with nested virtualization. In Proceed-
ings of the 23rd ACM Symposium on Operating Systems
Principles, pages 203–216, Cascais, Portugal, 2011.

5

http://microkerneldude.wordpress.com/2011/09/09/hey-vmware-secure-it-aint/
http://microkerneldude.wordpress.com/2011/09/09/hey-vmware-secure-it-aint/
http://www.ok-labs.com/_assets/image_library/evoke.pdf
http://www.ok-labs.com/_assets/image_library/evoke.pdf
http://www.ok-labs.com/releases/release/ok-labs-software-surpasses-milestone-of-1.5-billion-mobile-device-shipments
http://www.ok-labs.com/releases/release/ok-labs-software-surpasses-milestone-of-1.5-billion-mobile-device-shipments
http://www.ok-labs.com/releases/release/ok-labs-software-surpasses-milestone-of-1.5-billion-mobile-device-shipments

	Scope
	Attack Surface
	Server-Side Vulnerabilities
	Operating system attacks
	Hypervisor attacks
	Side-channel attacks

	Client-Side Vulnerabilities
	Possible Solutions
	Microkernel architecture
	Real-world microkernels
	Servers
	Terminals

	Recommendations

