Code Optimizations Using Formally Verified Properties

Yao Shi

NICTA and
University of New South Wales

yao.shi@nicta.com.au

Abstract

Formal program verification offers strong assurance of cor-
rectness, backed by the strength of mathematical proof. Con-
structing these proofs requires humans to identify program
invariants, and show that they are always maintained. These
invariants are then used to prove that the code adheres to its
specification.

In this paper, we explore the overlap between formal ver-
ification and code optimization. We propose two approaches
to reuse the invariants derived in formal proofs and integrate
them into compilation. The first applies invariants extracted
from the proof, while the second leverages the property of
program safety (i.e., the absence of bugs). We reuse this in-
formation to improve the performance of generated object
code.

We evaluated these methods on sel4, a real-world
formally-verified microkernel, and obtained improvements
in average runtime performance (up to 28%) and in worst-
case execution time (up to 25%). In macro-benchmarks, we
found the performance of para-virtualized Linux running on
the microkernel improved by 6-16%.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification; D.3.4 [Program-
ming Languages]: Processors; D.4.8 [Operating Systems]:
Performance

Keywords formal verification; micro-kernel; optimization

1. Introduction

Formal verification is the only way to ensure that the im-
plementation of a software system of non-trivial size meets
its specification. In the field of operating systems, formal
verification has been advocated and attempted since the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

OOPSLA ’13, October 29-31, 2013, Indianapolis, Indiana, USA.

Copyright © 2013 ACM 978-1-4503-2374-1/13/10... $15.00.
http://dx.doi.org/10.1145/2509136.2509513

Bernard Blackham

NICTA and
University of New South Wales

bernard.blackham@nicta.com.au

Gernot Heiser

NICTA and
University of New South Wales

gernot@nicta.com.au

1970s [9, 25]. The seL4 microkernel was the first general-
purpose operating system (OS) kernel to be successfully
verified by theorem proving. The expected cost of a new
formally verified kernel would be only twice the cost of
a traditional system with no assurance, and would be half
as expensive as the industry rules-of-thumb of $1k/LOC
for Common Criteria EAL 6 certification with less assur-
ance [13]. Hence, verification is already cost-competitive
for high-assurance software, and, with on-going improve-
ment in verification techniques, we can expect its use to be-
come more widespread. A number of other OS verification
projects are now underway [1, 10], and an argument has been
made for “pervasively” verifying applications [8].

While program correctness is obviously an important
goal, and the primary driver of formal verification efforts, in
this paper we explore another potential benefit — that of im-
proved code optimization. A program which has been ver-
ified by theorem proving has many precisely-known prop-
erties: about 150 invariants were proved about the models
which describe the ~9,000 lines of C code of sel.4 [13].
Most of these are quite deep and require significant insight,
and are therefore infeasible to find by static analysis, and are
therefore out of reach of the analysis performed by a com-
piler.

We propose the use of such properties in the optimization
phase of the compiler. Specifically, we leverage two kinds
of properties resulting from formal verification: (1) explicit
invariants which can be extracted from the verification arte-
facts and fed into the compiler, and (2) an overall program
safety property, which implies that a potentially unsafe op-
eration contained in the code can be trusted to be safe. Our
techniques can also be applied to unverified software, using
informal reasoning about a program’s behaviour.

We report our experience with a prototype framework
for verification-assisted compiler optimization built around
GCC. Our approach uses highly aggressive inlining to per-
form call-site-specific optimizations. We find performance
improvements of up to 28% on average in seL.4 micro-
benchmarks and 6%-16% for some /O intensive applica-
tions on a Linux system running virtualized on seL.4. We ob-
serve similar improvements in the worst-case execution time
of seL4 system calls.

This paper makes the following contributions:

e we demonstrate the extraction of useful properties from
formal verification and their insertion into the compila-
tion work flow;

* we show how these properties can be used to aid compiler
optimization without modifying the source code of the
program to be compiled;

e we show that, combined with inlining, this allows us
to perform optimizations specific to particular calling
contexts;

e we apply this approach to a real-world operating-system
kernel, and show significant improvements in average-
and worst-case execution times.

2. Background

Klein et. al. successfully demonstrated the first full func-
tional correctness proof of a complete real-world microker-
nel, called sel.4 [13]. They prove that the C implementa-
tion of seL4 adheres to an abstract high-level specification
of the kernel. We leverage their work and proof effort, using
knowledge obtained from the proof to create a compiler plu-
gin that performs code transformations and optimizations.
This section provides relevant background on sel.4.

2.1 selL4 Proof and Invariants

The abstract specification of sel.4 is written in the formal
theorem proving language Isabelle/HOL and is primarily
concerned with the user-visible behavior of the kernel —
i.e., what the kernel does. There is a large amount of non-
determinism at the abstract level, leaving the precise imple-
mentation details unspecified. However, several kernel-wide
invariants are specified at this level, and any correct imple-
mentation of the specification will not violate them. Invari-
ants here include statements about kernel integrity, from lo-
cal properties such as “every non-NULL pointer points to
an object of the correct type”, to broader ones such as “all
page directory objects have a consistent view of the kernel’s
mappings”.

Conversely, the C implementation precisely specifies the
details of how kernel operations are carried out. This in-
cludes the layout of data structures in memory and the al-
gorithms used to achieve a high-performance microkernel.
There is very little non-determinism in the C implementa-
tion. However, due to the immense detail and precision of
the C source, it is difficult to reason about high-level proper-
ties and system-wide invariants based on the C code alone.

The relationship between the abstract specification and
the C implementation is demonstrated in Figure 1. Over
200,000 lines of hand-written, machine-checked proof text
form the refinement proofs, which prove that the C imple-
mentation correctly implements the abstract specification.
These refinement proofs are a classic method of code ver-
ification.

[Abstract specification “

Refinement proofs

High-performance
C implementation

Figure 1. sel.4 uses refinement proofs to show that the C
implementation adheres to an abstract specification. Most
invariants are given on the abstract specification.

void deleteCallerCap(tcb_t x*receiver) {

callerSlot = TCB_PTR_CTE_PTR (receiver, 3);

deleteCap(callerSlot);

}
void deleteCap(slot_tx slot) {

ret = finalizeCap(slot->cap, ...);
}
int finalizeCap(cap_t cap, ...) {
switch (getCapType (cap)) {
case cap_null_cap:
case cap_reply_ cap:
return 0;
case cap_endpoint_cap:

case cap_async_endpoint_cap:

}

Figure 2. An example of C code which can be optimized
using program invariants. Note the shorter path for the two
bolded cases.

For our purposes, we seek to utilize the information avail-
able at the abstract and executable specifications, such as
kernel-wide invariants, and apply them to code transforma-
tions of the C implementation. It is difficult to automatically
transfer knowledge at the abstract level down to the C code,
so we instead create a database of relevant translation rules
that have been proven at the abstract level, represented in
terms of C expressions. A significant challenge is minimiz-
ing effort in creating this database, as there is a wealth of
knowledge available at the abstract level but not all of it is
relevant or useful for optimization. We will address this issue
in Section 4.1 when discussing demand-driven rule gener-
ation.

2.2 Motivating Examples

Let us consider the C code shown in Figure 2. The function
finalizeCap can be called from different contexts, and its

tcb_cnode_index 3 —
(A _ thread_state
case thread_state of

BlockedOnReceive e d — (op = NullCap)

| — (op € {ReplyCap, NullCap}))

Figure 3. Part of an abstract invariant which applies to the
program in Figure 2. The invariant specifies that the “cap at
index 3 of a TCB cnode” will be one of the types shown in
bold.

int setThreadPriority(...) {
return setThreadParams (..., NULL);
}
int setThreadParams (..., slot_t =*slot) {
if (...) |
cap = slot->cap;

}

Figure 4. An example of code where the program safety
invariant can be applied.

behavior is affected by the type of the “cap”, which is given
by the value of getCapType (cap).

The kernel invariant shown in Figure 3 tells us that the
“cap at index 3 of a TCB cnode” (the precise meaning
of this expression is unimportant) will be either of type
“NullCap” or “ReplyCap”, depending on some state. Under
the calling context of deleteCallerCap — deleteCap —
finalizeCap, we know that we are looking specifically at
the “cap at index 3 of a TCB cnode”, as this is exactly the
object being accessed in the first line of deleteCallerCap.

In this context, only the first case of the switch
in finalizeCap is relevant, as our invariant tells us
the only two cap types possible are cap_null cap and
cap_reply_cap (as represented in C). By generating a spe-
cialized version of the function for this context, we can im-
prove the performance of this code path by eliminating the
invocation of getCapType (), the branching of the switch
statement, and the unused remainder of the function. Fur-
thermore, the specialized function is then small enough to
be inlined and may benefit from subsequent optimizations.
Our work seeks to apply invariants such as these to improve
performance.

A second method to improve performance of verified pro-
grams is to utilize knowledge of program safety. We lever-
age the proven guarantee that a program is free of errors
such as NULL-pointer dereferences, uninitialized memory
reads, memory leaks and buffer overflows, in order to per-
form much more aggressive code optimizations. Any code
path through a program that violates a safety guarantee of
the kernel is deemed infeasible and can be eliminated. We
note that compilers are already permitted to optimize away

Source code
In C language

Inter-procedural analysis

Use of program safety

GCC front end
GCC inter-procedural
infrastructures

GIMPLE

C questions

l Infeasible paths r i
C answers i C level i
Code * | translation database i
transformation ! 1
|
! 1
|
1GIMPLE ! Abstract/C i
! translation database 1
I
Other GCC i l Abstract questions
. . |
optimizations ! Abstract level i
! translation database i
1
{} i l Abstract answers
|
] Canswers ! Abstract/C i
Object code ! translation database i
\/_\ S !

Rule generation

Figure 5. Overview of the framework. The shaded blocks
are our implementation.

undefined behaviour, but in practice they are conservative in
what optimizations are performed. We discuss this further in
Section 7.

Such a case can be seen in Figure 4. The function
setThreadPriority calls setThreadParams with NULL
as the last argument slot. In setThreadParams, the
pointer slot is dereferenced within a conditional block. If
the condition was true, the code would dereference a NULL
pointer. However, the program is guaranteed to be free of
NULL-pointer dereferences, so we can infer that the path
from the call site of setThreadParams to the pointer deref-
erence is infeasible. In this case, the condition on the if state-
ment must be false and therefore the if statement and its en-
tire body can be removed under this context.

Note that in this scenario, the branch condition does not
decide if the pointer slot is NULL. So the conditional block
is not obvious dead code that traditional compilers can elim-
inate.

3. Architectural Overview

Our framework is implemented as a plugin for the GCC
compiler. We interpose our framework into the early stages
of GCC'’s inter-procedural analysis, immediately after the
creation of the call graph. At this critical point, we can
make best use of the inter-procedural analysis, and influence
subsequent inter- and intra-procedural optimizations — in
particular, inlining.

The architecture of the framework is shown in Fig-
ure 5. There are three key stages to our framework: inter-
procedural analysis, rule application and code transforma-
tion.

The inter-procedural analysis stage serves two purposes:
(1) it identifies “questions” about specific expressions in C
code, which may be later answered by proof invariants (de-
scribed further in Section 4.1); and (2) it detects NULL-

Question
Expression relative to finalizeCap():
getCapType (cap)

Expression relative to deleteCallerCap():
getCapType (TCB_PTR_CTE_PTR (
receiver,3)->cap)
C = [deleteCallerCapy, deleteCapy, finalizeCapy|

Answer

Possible values: {cap-null_cap, cap_reply_cap}
Impossible values: {}

Figure 6. An example of a question, its context (C) and
its answer. The subscripts following each function name
identify the specific invocation to disambiguate cases where
there are multiple such calls within a function.

pointer dereferences which could be eliminated by lever-
aging knowledge of program correctness (described further
in Section 4.3). The questions generated are passed to the
next stage, while the detected NULL-pointer dereferences
are used to determine infeasible paths which can be elimi-
nated.

In the second stage, proof invariants are identified to an-
swer as many questions as possible by creating translation
rules. Some difficult questions may generate proof obliga-
tions — these are possible invariants which a verification en-
gineer can either prove correct or reject as bogus. As most
invariants apply to higher-level abstractions than the C code,
we use translation rules to map high-level statements onto C
expressions, and accumulate this information in a database.
Our compiler plugin searches the database to find possi-
ble answers to the questions. The developer maintains the
database and creates the translation rules corresponding to
the questions offline. This keeps the entire compilation/opti-
mization sequence uninterrupted. Figure 6 shows an exam-
ple question and answer pair. We discuss this in further depth
in Section 4.2.

Finally, in the third stage, we have a set of answered ques-
tions (many questions may have gone unanswered), and a set
of infeasible paths derived from the NULL-pointer deref-
erence detection. Our GCC plugin clones functions called
under different contexts and applies inter-procedural code
transformations, before applying its existing optimizations.
We describe this further in Section 4.4.

4. Optimizations

In this section, we elaborate on the algorithms used to per-
form our code optimizations. First, we must introduce some
terminology and definitions, as follows.

e A context C denotes a call stack represented as an or-
dered list of call sites, which is NumLevels(C) lev-
els deep. C; is the ith call site in the list (1 < 7 <
NumLevels(C)).

F; is the callee function of C;. Fy is the root caller of the
context (but Cy is undefined).

Questions hold the full context from the root function
while answers and rules contain only partial contexts.

e An expression £ is derived from a branch condition.

¢ A set of values V specifies the range an expression may
evaluate to.

® A question Q = (C, &, &) asks “under the context C,
what are the possible (or impossible) values of the ex-
pression & 7" Here, & is the expression in FxumLevels(C)
while & is the equivalent expression in the root caller F.
Later, we will need to know the possible values of &.

e An answer A = (C,&, Vo, V1) denotes that, under the
context C, the expression £ (in FnumLevels(c)) May eval-
uate to a value in Vy and will never evaluate to a value in
V1. As it is impossible for Vy to enumerate all possible
values, we use the empty set to denote the universal set.
Thus, an empty V, means that £ can be anything except
for the values in V, and vice versa for an empty V.

¢ A basic block B represents a branch-free sequence of in-
structions with only one entry point and one exit point.
BasicBlock(S) refers to the basic block that the state-
ment S belongs to. The statement S may be a call site or
an expression.
FunctionEntry(F) is the basic block containing the en-
try point of the function F.

e A path Z = (C, B) denotes a specific basic block in the
function Fymevels(c)» under the calling context C.

e The function Unmodified(&, F,B) is true iff the
value of the expression &£ is not modified between
FunctionEntry(F) and B (where B must be contained
in F).

4.1 Applying Invariants

Formally applying invariants from the abstract level to C
source code requires a substantial effort by a verification
engineer — although there is nothing inherently difficult in
doing so, it is something that is not yet automated in the
verification of seL4. We instead use translation rules to apply
the invariants onto the C code. These rules are presently
constructed by hand, but can be proved correct to ensure a
total proof of correctness.

The abstract level contains a large number of invariants,
yet only a small handful of these are useful for code opti-
mization. Our challenge is to find the useful invariants au-
tomatically and represent them at the C level. We propose a
solution we call demand-driven rule generation.

As shown in Figure 5, the inter-procedural analysis stage
generates questions about the C source. These questions pro-
vide hints about what would assist code optimizations and
are used to manually create translation rules. A question Q
consists of the calling context, the original expression in the

leaf callee, and the equivalent expression in the root caller.
A question is derived from branch conditions on conditional
branches.

The equivalent expression in the root caller is computed
by a bottom-up traversal of the call graph: given an expres-
sion, if all variables in the expression are parameters to the
function and are not modified between function entry and
where it is used in the branch condition or call site, we can
represent the expression as the equivalent form in the caller
function.

Function Expression

finalizeCap getCapType (cap)

deleteCap getCapType (slot->cap)
deleteCallerCap getCapType (TCB_PTR_CTE_PTR(

receiver, 3)->cap)

Table 1. Forms of the same expression in different func-
tions.

Consider our motivating example program in Figure
2. Table 1 shows the different forms of the expression
getCapType(cap) in function finalizeCap at different
levels of the call stack. If we can apply proof invariants to
compute the possible (or impossible) values of any one of
these expressions, then this knowledge can be applied to all
expressions, as they are equivalent. In this case, we can use
invariants of the expression in deleteCallerCap to com-
pute getCapType (cap) in finalizeCap, and use it to per-
form code transformation.

The algorithm used to find questions which can possibly
be answered by invariants is shown in Algorithm 1. In sum-
mary, an expression may be represented in different forms
at many levels of the call stack, which are all equivalent. At
this stage, we do not know which one may be solved, so we
pass all forms with their contexts as questions to the rule
generation stage. A question can be answered if any one of
its equivalent questions is answered.

4.2 Rule Generation

A translation rule consists of a question and its answer. We
use three rule databases, which accumulate translation rules
as they are added by the developer. These databases are the C
rule database, the abstract rule database, and the abstract/C
translation rule database.

There will be simple questions that the developer can
confidently answer directly in the C language, which can be
immediately added to the C rule database as a translation
rule. More difficult questions may require the developer to
use the abstract specification to find the answer. In these
cases, the question should be converted to the abstract level
according to rules in the abstract/C translation rule database.
The developer can then prove the answer at the abstract
level and add the question and answer to the abstract rule
database. Finally, the answer at the abstract level is translated
back to C using the abstract/C translation rule database.

Algorithm 1: Finds candidate questions to apply invari-
ants to.
Output: Questions: Q = (C, &, &1)

1 function RaiseQuestion(C, &, &1, L) begin

2 | C' <+ (Cc,...,CNumLevels(C)):

3 Q(— (C/,g(),g1);

4 Output Q;

5 end

6 function Analyze(C, &, &1, L) begin

7 RaiseQuestion(C, &, &1, L);

8 if Unmodified(&;, Fr., BasicBlock(&;)) and all
variables in £, are parameters and L > 0 then

9 &’ + the corresponding form of &; at the upper

level F,_q;

10 Analyze(C, &, &', L — 1);

11 end

12 end

13 function FindCandidateQuestions() begin

14 foreach C do

15 foreach & in branch condition do

16 | Analyze(C, &, £, NumLevels(C));

17 end

18 end

19 end

Figure 7 shows some examples of translation rules. The
syntax of the rules is designed to be simple and familiar for
developers. A rule consists of a pattern to match C or ab-
stract expressions, and can optionally include arguments and
a context. In the first example of Figure 7, the C level macro
TCB_PTR_CTE_PTR has two arguments $1 and $2 and cor-
responds to the expression ($1, tcb_cnode_index($2))
in abstract level. If a translation rule applies over the whole
program, the context is unnecessary. Otherwise, the devel-
oper needs to specify the context in which it applies. This
is expressed as a list of functions denoting the call stack.
Consider the last example of Figure 7. Here, sendIPC; and
scheduleTCB; indicate a call stack where sendIPC calls
the first invocation of scheduleTCB, which in turn calls the
first invocation of isRunnable within it.

Note that the databases are searched automatically
for translation rules. Inserting translation rules into the
databases is done manually, offline.

The developer does not need to answer all questions.
They may not know the answer, or the question may be
impossible to answer. In fact, most of the questions do not
need to be answered. For example, consider the expressions
in Table 1. Each of these expressions, when taken in the
context of the given function, forms a question (“what are the
possible values of the expression under the given context?”).
The first two cannot be answered in general, so can be
ignored.

Translation database

C=>Abstract rules|

Question processing

Abstract question: value of
get_cap(receiver, tcb_cnode_index(3))

Abstract answer:
NullCap or ReplyCap

C answer:
cap_null_cap or cap_reply_cap

C question: value of
getCapType(TCB_PTR_CTE_PTR(receiver, 3)->cap)

(1) TCB_PTR_CTE_PTR($1,$2)=>
($1, tcb cnode index($2))
(2) getCapType($1->cap) => get_cap $1

‘ Abstract=>Abstract rulesT

(3) get_cap($1, tcb_cnode_index(3)) =>
NullCap or ReplyCap

Abstract=>C rules

(4) NullCap => cap_null_cap
(5) ReplyCap => cap_reply_cap

Figure 8. An example of question processing.

C — Abstract
TCB_PTR_CTE_PTR($1,$2) =
($1,tcb_cnode_index($2))
Abstract — Abstract
get_cap($1, tcb_cnode_index(3)) =
NullCap or ReplyCap
Abstract — C
NullCap = cap-null_cap
ReplyCap = cap_reply_cap
C — C (including the context)

isRunnable(thread) = false
C = [sendIPCy, scheduleTCB;]

Figure 7. Examples of translation rules.

However, we have information at the abstract level shown
in Figure 3 which can provide an answer for the expression
getCapType (TCB_PTR_CTE_PTR(receiver, 3)—cap)
in the function deleteCallerCap. More importantly, we
can prove that this expression is either cap_reply_cap or
cap-null_cap at abstract level. That means the expression
getCapType (cap) in finalizeCap, which is specified in
the source code, is either cap_reply_cap or cap_null_cap
in this context. This information is passed to the code
transformation stage.

Figure 8 demonstrates the process of answering
the above question using the translation rules. The
compiler asks the C question “what is the value of
getCapType (TCB_PTR_CTE_PTR(receiver,3)—cap)?”’
Extracting rules (1) and (2) from the “C=-Abstract”
database and applying these to the C question,
it obtains the abstract question for the value of
get_cap(receiver, tcb_cnode_index(3)). Rule (3)
from “Abstract=-Abstract” database produces the abstract

answer NullCap or ReplyCap. Finally, applying rules (4)
and (5) from the “Abstract=-C” database yields the C
answer, cap-null_cap or cap._reply._cap.

4.3 Use of Program Safety

As mentioned in Section 2.2, we can leverage the verified
guarantee of program safety. If we detect an unsafe path
in the program, we can eliminate it because the program
is known to be safe. In this paper, we only use the safety
of pointer dereferences, allowing us to eliminate any path
which dereferences a NULL pointer. We could make use
of other verified safety properties, such as the absence of
uninitialized memory reads, buffer overflows and memory
leaks.

Our algorithm identifies code paths that will not be exe-
cuted under the program safety assumption (i.e., those paths
that dereference NULL pointers), and eliminates them from
the program. This alone does not achieve significant gains, as
such code paths are rare. However, there is much more scope
for optimization when considering infeasible paths across
function boundaries. We can create specialized versions of
callee functions that are optimized for their calling context.
Algorithm 2 identifies infeasible paths through a bottom-up
traversal of each context’s call stack. This can be applied to
our motivating example shown in Figure 4.

This demonstrates an easy way of leveraging program
safety. More precise and complex detection methods may
lead to larger optimization improvements. We do not discuss
this further as our focus is on leveraging formal verification
artefacts.

4.4 Code Transformation

We can apply the information obtained by the techniques in
the previous sections to perform code transformations.

deleteCallerCap

— lCaII site 1

deleteCap

— lCaII site 2

finalizeCap

deleteCallerCap

Call site 1’

0

A\

deleteCap deleteCap.clone
— lCaII site 2 Call site 2
finalizeCap -

deleteCallerCap

Call site 17

Y

A\

deleteCap deleteCap.clone
— loan site 2 lCaII site 27
finalizeCap finalizeCap.clone

(2) (b)

(©)

Figure 9. Context separation by function cloning, showing the call graph at each stage of the process.

Algorithm 2: NULL-pointer dereference detection.
Output: Infeasible paths Z = (C, B)

1 function ReportInfeasiblePath(C, B, £) begin

2 | C' <+ (Cc-..,CNumLevels(C))s

3 T+ (C',B),

4 Output Z;

5 end

6 function Backtrace(C, By, P, L, B1) begin

7 if Unmodified(P, F,B1) and £ > 0 then

/* P’ is the equivalent form of P

in the calling function Fy_; */

8 if P/ is NULL then

9 ‘ ReportInfeasiblePath(C, By, £);

10 else

11 Backtrace(C, By, P’, L — 1,
BasicBlock(Cr));

12 end

13 end

14 end

15 function NullPtrDetect () begin

16 foreach C do

17 foreach &, where & is the dereferencing of

parameter pointer P do

18 Backtrace(C, BasicBlock(E), P,
NumLevels(C), BasicBlock(£));

19 end

20 end

21 end

4.4.1 Context Separation

The information we obtain from the invariants is only cor-
rect under the relevant context. This means we cannot ap-
ply code transformations to existing functions which may
be called from anywhere. We solve this using an approach
called context separation, which creates clones of functions
to be called from different contexts.

Specifically, given a context C = (C1,Ca,...,Cy), We
clone the functions Fi, Fa,...,F, to generate the corre-

sponding functions F7, 75, ..., F,, and replace the respec-

tive call sites with calls to the newly cloned functions. Al-
gorithm 3 describes the details of this method. A concrete
example of context separation applied to the program from
Figure 4 is shown in Figure 9.

Algorithm 3: Context separation.
Input: Context C = (C1,Ca,...,Cp)
Output: New context C' = (C'1,C'o, . ..
function CloneFunction(C) begin
Flo < Fos
for i + 1tondo

Clone F; to F';;

LetC’; in F';_1 call F';;
end
C'+ (C'1,C,...
return C';

,C'n)

,C'h);

o X N AT R W N -

end

As context separation replicates many functions, it unsur-
prisingly increases total code size. Both intuition and past
research suggest that this may incur a performance penalty
due to the larger instruction cache footprint [15]. In practice,
we have not observed any negative performance impact in
our experiences. We discuss this aspect further in Section 5.

4.4.2 Applying Answers

We have used the questions and invariants to create a set of
answers which describe the possible or impossible values for
a given expression. The use of these answers for transform-
ing code depends on the type of answer:

® Only one possible value. In this case, we can directly
replace the expression with the value. Subsequent opti-
mizations propagate the information for this context.

® A set of possible values. This information can be prop-
agated to switch statements by removing labels that are
not members of the set. It can also be applied to branch
conditions by testing the condition against each of the
possible values of the expression. If all tests fail, the con-
dition is set to false. If all tests succeed, the condition is
set to true.

e A set of impossible values. As above, switch statements
can be modified by removing labels that are members of
the set. If a branch condition requires the expression to
evaluate to one of a set of possible values in order to be
true, and this is a subset of the impossible values, then
the condition is set to false. Similar logic can check if the
branch condition can be set to true.

4.4.3 Applying Infeasible Paths from Program Safety

The output of Algorithm 2 gives an infeasible path which is
represented by a context C = (Cy1,Cs,...,C,) and a basic
block B within the function F,, invoked by C,,.

If B is not executed on every path through F,,, i.e. B does
not post-dominate the entry of F,,, we can simply remove
B. Otherwise, the entire function F,, cannot be executed
under the given context. In this case, we recursively work
backwards through the calling context, removing the infea-
sible basic blocks and functions. Algorithm 4 describes the
method in detail.

Algorithm 4: Remove infeasible path.

Input: Context C = (C1,Ca,...,Cp)

Input: Basic block B

function RemovePath (C, £, BB) begin

if B post-dominates FunctionEntry(F) then
RemoveFunction(F);
RemovePath(C, £ — 1, BasicBlock(Cr));

else

‘ RemoveBasicBlock(13);
end

end

function RemovelInfeasiblePath(C, BB) begin
10 RemovePath(C, NumLevels(C), B);
11 end

D-T--REE N - Y N7 I S

4.5 Effects for Subsequent Optimizations

After our code transformations, the compiler continues its
normal analysis and optimization routines, ultimately gener-
ating executable objects. Many of our code transformations
provide performance gains only after subsequent optimiza-
tion passes in GCC. We describe the key steps below.

4.5.1 If-Switch Conversion and If-Conversion

In many cases, when a switch expression is optimized, the
resulting statement has only a few possible labels. The best
case is that only one label remains. In this case, the switch
can be eliminated entirely, leaving just the code of the re-
maining case. If there are two or three labels, the compiler
can transform the switch statement to an if statement. This
avoids a jump table, reducing code size. It also exposes the
opportunity for compilers to apply “if-conversion” during
low-level code generation on the ARM architecture, which
eliminates further branches by using predicated instructions.

4.5.2 Dead Code Elimination

The code transformations above may modify branch condi-
tions. This can cause related branch conditions (e.g. alternate
switch cases) to become unreachable, allowing those code
sections to be eliminated. Additionally, some code may be
eliminated indirectly. For example, consider the program in
Figure 2. The switch statement is simplified to the single
case, which ends in a return statement that terminates the
function. The remainder of the function becomes unreach-
able and can be eliminated.

4.5.3 Redundant Parameter Elimination

After performing context separation, some function parame-
ters become unnecessary. For example, a given context may
enforce only one possible value for a parameter. Therefore,
this parameter can be replaced by a constant and eliminated
under this context. This optimization reduces the code size
and reduces register pressure around call sites during code
generation, making it less likely that expressions will spill
onto the stack. It is especially crucial for architectures such
as ARM which use general-purpose registers in their stan-
dard calling conventions.

4.5.4 Inlining

Inlining is known to be one of the most important optimiza-
tions in the modern compiler, as it converts inter-procedural
issues into intra-procedural issues that are easier to analyze.
In general, the inlining decision is based on the trade-off be-
tween the code size (i.e. the size of the callee function) and
the benefit after inlining.

For our optimizations, after dead code elimination, the
size of some functions may be significantly smaller. This
provides opportunities to inline many functions that were
originally prohibitively large. For example, in the program in
Figure 2, under the context of the caller deleteCallerCap,
the function finalizeCap which originally has tens of
statements is reduced to a simple return statement which can
be inlined.

5. Evaluation and Discussion

We implemented our techniques as a plugin for GCC 4.5.2,
cross-compiling from an x86 host to an ARM target. Our
target platform is a BeagleBoard-xM with a TT DM3730
processor. This processor features a 1 GHz ARM Cortex-
A8 CPU core. It also contains separate L1 data and instruc-
tion caches, each 32 KiB 4-way set-associative, as well as a
128 KiB unified L2 cache. We ran the analysis and compi-
lation on our host platform which is a 2.66 GHz Intel Xeon
system with 10 GiB of memory, running Linux.

We measured the impact on runtime performance of three
sets of benchmarks:

® micro-benchmarks of seL4: we measure the critical fac-
tor in microkernel performance — inter-process commu-

S o
GCC-02 —— N . Invariants applied ——— ﬁ
) GCC -03 mmmm 0 o ¥ | Program safety applied [¢] 2
301 Gec-03 -fwhole-program s NS = X 30 Both applied s g\z A 2 <
o B T & < o §
25 | & 2 b 25 | o &
XS A o o X ®
o g g & % o SR g 3
= 20 2 2 N = 20 | N ~ 2 l': @
5 o ~ e 5 2 == - =
- s g : B 9
g 1° — o g 151 2 o
g 2 g _
10 ‘: 10 {
1R
Tz s Bx
=} A
P [R . S
IPC IPC SetlPCBuffer SetSpace SetPriority IPC IPC SetlPCBuffer SetSpace SetPriority
(fastpath) (slowpath) (fastpath) (slowpath)
Figure 10. Relative performance of sel.4 micro- Figure 12. Relative performance of each approach against

benchmarks against an unmodified compiler, after our
optimizations.

30 GCC -O3 mmmm
GCC -083 -fwhole-program

25 4

17.7%

20

15.3%
13.9%

o
N

i N »
o o o
— - =

Improvement %
o
10.4%

2
@©
©

<
7.6%

o
2.3%
0.1%
3.0%

E

0.2%

IPC IPC
(fastpath) (slowpath)

SetlPCBuffer SetSpace SetPriority

Figure 11. Relative performance using only context separa-
tion and inlining, without our invariant-based optimizations.

nication (IPC) — as well as several other microkernel op-
erations.

® micro-benchmarks of virtualized Linux running on seL.4:
these are obtained by running the LMbench 3.0 test suite.

e macro-benchmarks on virtualized Linux running on
seL4: we specifically selected I/O intensive applications
(rather than CPU-bound ones), as their performance is
significantly affected by the virtualization platform due
to frequent context switching.

As sel4 is primarily designed to support different OS
personalities, “native” seL.4 applications are uncommon. We
note that micro-benchmarks on Linux can be considered
macro-benchmarks for the seL4 API.

The virtualized Linux platform we tested is based on the
Linux 2.6.38 kernel, and is paravirtualized to run on seL4.

All of our tests were run using the —-02 optimization level
in GCC. We also ran the micro-benchmarks at the -03 opti-

an unmodified compiler individually, generated with GCC
-O2 optimization level.

mization level, and also with the ~-fwhole-program flag. As
these introduce extra optimization effort from the compiler,
we present these results to show that our analysis improves
performance beyond what the unmodified compiler achieves
at its most aggressive optimisation level.

5.1 seL4 Micro-benchmarks

Figure 10 shows the improvement in performance of seL.4’s
micro-benchmarks using our optimizations. The first bench-
mark in this graph is the seL.4 IPC fastpath — this is a highly-
tuned C code path for handling the most frequently exercised
part of the kernel as quickly as possible. Significant effort
was previously devoted to optimizing this code path [4]. As
such, there is little room for improvement here. The remain-
ing items in the graph show slowpath IPC (the less common
case), as well as several typical configuration primitives used
to configure threads in seL.4. These generally gain 17%—-28%
improvements when compiled with -O2.

As noted previously, our optimizations clone many func-
tions due to context separation. These cloned functions are
typically invoked only once in any execution and may be in-
lined by the compiler. This has an impact on performance
distinct to that of our own optimizations. We quantified this
impact separately by measuring the runtime performance af-
ter applying only context separation and inlining. None of
the proof-based optimizations were used for these measure-
ments.

These results are shown in Figure 11. We see that in al-
most all cases the improvements are much smaller than in
Figure 10. After applying our optimizations, we see perfor-
mance improvements in all cases.

Finally, we quantify the impact of applying invariants
and using program safety separately, shown in Figure 12.
Both techniques in isolation improve performance by be-
tween 12%-25%, and unsurprisingly are even better when
combined.

25, ¥ -
e with original kernel ———
N=! with context-separated kerne| m—
20{ ¢ with optimized kerne! mmmm

S33Q 5 53 5% oF 95 £8 88 58
o €= % 00 20 GEg 935 o5 x= =
oo o c o o o

« (]

<

Figure 13. LMbench: relative latency of Linux operations
virtualized on selL4, normalized to a baseline of 1 for native
Linux (smaller is better).

. with original kernel ———
& with context-separated kerne! mm—
2 1 ‘g ~ with optimized kernel ===
2R <& X .
~ Ay
R =A ® . 8%
191 88 9% IHOZ® A% g
i Ne 28 3&
Q@ Po SXS)
1
0.5 1
0 A

2p/0K 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K

Figure 14. LMbench: relative latency of context switching
in Linux virtualized on sel.4, normalized to a baseline of 1
for native Linux (smaller is better).

5.2 Virtualized Linux Micro-benchmarks

Running a virtualized Linux machine in parallel with a
mission-critical application is a common use-case of micro-
kernels. As such, the LMbench suite provides some insights
into the performance of virtualized Linux, as it heavily exer-
cises the Linux kernel and the microkernel/hypervisor. The
results of LMbench on virtualized Linux are shown in Fig-
ures 13 to 17. All results are normalized to a baseline of
1 representing native (un-virtualized) Linux. We also show
the performance improvement obtained using only context
separation and inlining, to clearly identify the improvement
obtained by our invariant-based optimization. Some perfor-
mance improvements using only context separation are defi-
nitely negative, which reflect the intuition that more inlining
is not always better.

In these tests, only the seL.4 microkernel was optimized —
no changes were made to the Linux kernel or user level pro-
grams. As the execution of seL.4 system calls are only a part
of the entire execution of a test case, the performance im-

4 o with original kernel ———
25 X 2 With context-separated kernel mm—
3.5 e @ 1 with optimized kernel ===
¥ = oo 32
3 oA
=& 2 2 e
25 T T
2 1 [aVYe) C}I jr_
1.5
1 4
0.5 1
0
Pipe AF/UNIX UDP TCP TCP conn.

Figure 15. LMbench: relative communication latency in
virtualized Linux on selL4, normalized to a baseline of 1 for
native Linux (smaller is better).

with original kernel ———
12 | with context-separated kerne| mm—
with optimized kernel ===

12.57%
21.07%

10 |
84
0 .0 0
4 NS o o o o9
61 88 =¥ 2 oo s
n [ToNe>) . 2
4] 22 2 | od_wvo 22 8%
Lo N RA <o 3=
o © &
24 o < — ©
0_
X 0 X O X O X O Q> = o= TH
ST Sz ST Sz T2 B3 P37 59
o = -0 ——= = = © © © S5
o [) 4 7] [0} o fag e [}
[$)) o o §§ o

Figure 16. LMbench: relative latency of filesystem opera-
tions in virtualized Linux on seL.4, normalized to a baseline
of 1 for native Linux (smaller is better).

with original kernel ———
2 | with context-separated kernel
with optimized kernel ===
O\OO\O o0
151 22 88 .. 0. %5 £b 2% 22 8
9 o~ O o~ - < O »n [=3=4 o0
No 1o Sv Q- S ‘s WR SS9 &9
0O < SO - P2 ¥ S+ ©So oo
1] coc Yo
0.5 1
0_
— — —
g IZX o 2% 8% 23 2T ET EL
g <2 © Lo go g2 g§ 2S¢ 2%
o F o S® m- @<
Q o <

Figure 17. LMbench: relative bandwidth of operations in
virtualized Linux on selL4, normalized to a baseline of 1 for
native Linux (bigger is better).

provements are naturally less than those of the seL.4 micro-
benchmarks.

On all latency micro-benchmarks from LMbench, we see
improvements of up to 21% with our optimized version
of seL4. The improvement in bandwidth throughput (Fig-
ure 17) is not as dramatic because these benchmarks are pri-
marily memory-bound.

The observant reader will notice that the “AF/UNIX”
benchmark shows better performance virtualized than non-
virtualized, both with the normal build as well as with our
optimized seL4. This is due to fragility in the benchmark,
which also exists in the “pipe” benchmark. These two bench-
marks pass messages over UNIX sockets and pipes, respec-
tively. However, neither of these transports are designed
to preserve message boundaries — the message boundaries
may be influenced by variations in scheduling and inter-
rupts. Therefore, the number of operations required to send
a message of a given size varies. Scheduling under virtual-
ized Linux consistently favours better throughput for these
benchmarks, as despite the fact operations are more expen-
sive virtualized, fewer operations are required.

5.3 Macro-benchmarks

Finally, we evaluated some typical applications running in
the virtualized Linux environment on seL4. These macro-
benchmarks give a realistic, tangible measurement of real-
world use cases. We examined the performance impact on
I/O-intensive applications which make frequent interactions
with the Linux kernel. We tested the performance of tar and
cp operations, which are common I/O-intensive commands
on Unix systems.

We ran tar and cp on a single file, whilst varying the size
of this file. The average improvements of tar and cp are both
6.4%. See Figure 18.

We also ran tar and cp on batches of files and direc-
tories. With 25 empty files in each directory, we varied the
number of directories to exercise the filesystem, with results
shown in Figure 19. The average improvements of tar and
cp for batches of files and directories are 16.0% and 12.9%,
respectively.

Figure 18 and Figure 19 also show the performance im-
provement from context separation and inlining alone. The
results indicate that the main contributor to improved perfor-
mance is our invariant-based optimizations.

5.4 Worst-Case Execution Time

The worst-case execution time (WCET) of a program is the
theoretical upper bound on its execution time. Knowing the
WCET of a program is essential for designing hard real-
time systems. A smaller WCET reduces the margin by which
hardware must be over-provisioned by in order to guarantee
correct and timely behaviour in all circumstances. WCET
can be computed using offline static analysis or through
measurement-based analysis [28].

tar with original kernel
200 { tarwith context-separated kernel
tar with optimized kernel

cp with original kernel

cp with context-separated kernel
cp with optimized kernel

1.4%
6.2%

0.7%

1.0%
6.2%

6.0%

0.8%
6.4%

Microseconds
6.7%

2MB 4 MB 8 MB 8 MB 10 MB

Figure 18. Performance of tar and cp for a single file on
Linux virtualized on seL.4. The geometric means of the im-
provements of tar and cp are both 6.4%.

tar with original kernel
tar with context-separated kernel
3 tar with optimized kernel
cp with original kernel
cp with context-separated kernel
2.5 4 cp with optimized kernel

6.4%
10.8%

Seconds

40 80 120 160 200

Figure 19. Performance of tar and cp for batch of files
and directories on Linux virtualized on seL.4. The geometric
means of the improvements of tar and cp are 16.0% and
12.9%, respectively.

The seL4 kernel has previously had its WCET computed
via static analysis with a view towards supporting safety-
critical hard real-time systems [5]. We examined the effects
of our optimizations on the WCET of seL4. We found that
the WCET was improved in all cases, as shown in Figure 20.
The WCET of our optimized kernel is 25.5% less than that
of the original kernel for a normal system call. The improve-
ment can be mostly attributed to eliminated code which re-
duces branch mispredictions and cache misses.

5.5 Impact on Code Size

The compiled seL4 kernel increased in size due to context
separation and inlining. This is quantified in Figure 21 which
shows the overall kernel size, including code, data and heap
sections produced by the compiler, as well as the effect on
the code size alone. For each optimization level, we show
the size of the original and optimized kernels, as well as for

25.5%
350 5-5% Original kernel ——
Optimized kerne|
300 1
8 250
c
3
8 200 1
(%]
o
S 150
=
100 -
21.5% 20.9%
50 1 ° 27.1%
. N | n (m
System Undefined Page Interrupt
call Inst. fault

Figure 20. Worst-case execution time of sel.4 before and
after invariant-based optimization (smaller is better).

1200 Original kernel size ——1
3 = Context-separated kernel size

1000 { © 2 Optimized kernel size ——
R — Original code size s
8 Context-separated code size =
S 800 1 Flx Optimized code size m—
Q 2 x x
< R I oS x
N 600 1 2 < < & § x
2 P ox = =3
g 400 | S x & N
e NN RV SEECEE N
X 5 N) <t v

200 1 S

0 !

-00 -O1 -02 -03 -083
-fwhole-program

Figure 21. selL4 kernel size (text, data and heap sections)
and code size (text section only) when compiled with differ-
ent GCC optimization levels.

a kernel compiled with context-separation and inlining. This
demonstrates that our invariant-based optimizations elimi-
nate a significant amount of dead code. In all cases where
any optimization was used (-O1 or higher), the overall ker-
nel size increased to at most 2—-3 x of the original.

Despite the increases in kernel and code size, we see
better performance. We believe this to be for the following
reasons:

e The code size of a single function is usually reduced,
never expanded. That means for any single function, the
local cache performance will be improved using our op-
timizations.

e Context separation clones the entire call chain which ac-
tually improves the likelihood of cache hits. Consider a
function @ which calls function b, and b is cloned to &’.
The scenario detrimental to cache performance occurs
when b is in the cache but a calls b’. However, this is
not a common scenario. Additionally, modern compilers

Lines of C code | 9525
Number of functions | 276

Number of contexts | 217439
Number of processed expressions | 106334
Inter-procedural analysis time | 12.22 seconds

0.04 seconds
5.23 seconds
201.09 seconds
16.89 seconds

Rule generation time

Code transformation time
Total compilation time
Original total compilation time

Number of C questions | 10223
Number of C answers | 1540
Number of rules | 125
Number of separated contexts | 4671

Table 2. Properties of seL.4 and our optimizations. The
times are measured with GCC -O2.

implement mitigating techniques which reorder functions
and basic blocks [16]. These techniques reorder the posi-
tion of &’ or the basic blocks in b’ after inlining to increase
the probability of cache hits. This may make up for the
performance loss due to increased instruction cache size
by code expansion.

Given this, we assert that a code base of sel.4’s size is
well suited to context separation. The increase in code size
of less than 200 KiB (at -O2 or above) is insignificant on to-
day’s protected-mode platforms (even embedded ones). On
large applications or resource-constrained devices, heuristic-
based inlining becomes necessary to ensure that the code
size increases remain manageable. However, this is a com-
plex topic beyond the scope of this paper.

5.6 Scalability

Table 2 gives some basic information on the seL.4 code base
used and our optimizations. We counted the number of func-
tions using the GCC intermediate representation (GIMPLE)
rather than in the source code. The number of expressions
counts multiple occurrences several times if they occur un-
der different contexts. The number of contexts is greater
than the number of expressions because some functions (and
therefore contexts) do not have a branch or only branch con-
ditions that cannot be processed. These numbers show that
it is possible to enumerate all contexts and process them
in a reasonable amount of time. For programs much larger
than selL4, users may select the appropriate contexts or use a
BDD-based system [27] for context processing.

The table also shows the time required for each stage
of the analysis. The inter-procedural analysis time includes
both applying invariants and using program safety. Most of
this time is spent enumerating all contexts and expressions.
The compilation time is significantly increased, dispropor-
tionately so compared to the expansion in code size. How-
ever, given the benefit in runtime performance, we believe
this is acceptable for many use cases.

The last section in Table 2 shows some statistics of the
rule generation phase. For the seL4 micro-kernel, applying
invariants raises 10,223 questions in the C language. 1540
of them can be answered with our 125 manual translation
rules. This shows that the rules are effective at answering
many questions in practice.

Although we separated 4671 contexts, most of the cloned
functions were eliminated in subsequent optimizations. This
reinforces the code size results seen in Figure 21: that with
no optimizations, the code size is significantly larger.

6. Limitations and Applicability

6.1 Implementation Correctness

At present, although we make use of invariants derived from
the formal verification, the translation rules themselves are
not formally verified. Thus, human error in writing the rules
can lead to an incorrect binary. This is not an inherent lim-
itation in our approach, as it should be possible to formally
verify each of the translation rules, eliminating this weak-
ness from the trusted computing base.

Bugs in the compiler or our plugin can lead to incorrect
object code being produced. GCC implements hundreds of
optimizations, none of which are formally verified. Without
any correctness guarantees, verified translation rules can be
easily undermined.

There are at least two possible solutions to these issues.
The first is to implement our approach in a formally verified
compiler such as CompCert [7, 14]. However, the state-
of-the-art in verified compilers cannot currently match the
performance achieved by mainstream optimizing compilers
such as GCC and LLVM.

A second solution is to verify the compiled assembly
code directly against the C code. This was recently achieved
by Sewell et al. for the seL4 microkernel [18]. By integrating
this verification step with the formal proof of seL4, we can
apply the existing proven invariants, which would wholly re-
move the compiler, our plugin, and the translation rules from
the trusted computing base, thereby avoiding any reliance on
their correctness. The proof would guarantee that the binary
is correct (with respect to the kernel specification), in the
presence of all optimizations.

6.2 Applicability

The main components of our approach, i.e., applying invari-
ants and program safety, are only loosely coupled with com-
piler internals. This makes our approach applicable to both
verified and non-verified compilers. There are two scenarios
for the potential application of our idea.

Firstly, for software that demands the strong assurances
of formal verification, the developer can input the invariants
into a verified compiler such as CompCert. In addition to im-
plementing the code transformation within the compiler, the

correctness of the transformations needs to be proven using
the invariants. Such a proof may require extra developer ef-
fort, but is required to maintain the strong assurances of for-
mal verification. However, as mentioned previously, Com-
pCert does not currently achieve the same levels of perfor-
mance as mainstream optimizing compilers.

On the other hand, our work can also be applied to soft-
ware that is not formally verified. For unverified software,
if a developer informally believes a program invariant to be
true, our techniques can use this to optimize the compilation
process. Most applications today use optimizing compilers
for performance, and rely on industry standard testing prac-
tices to catch bugs. The impact of an incorrect invariant in
these circumstances is comparable to any regular program
bug where a developer had assumed the invariant to be true.

The requirements of a specific application dictate the
acceptable trade-offs between correctness and performance.
If high assurance is required, system designers may choose
to sacrifice performance for verified correctness.

6.3 Human Effort

Another limitation of our work is the human effort required
to generate the translation rules. Although the process of
applying rules at compile time is automatic and transparent,
the entire optimization process cannot be performed without
this manual work.

In our approach, questions have full calling contexts
while rules and answers have only partial contexts. There-
fore, one partial context may match several full contexts.
For example, of the 10,223 questions (as shown in Table 2),
many are identical except for the context. 117 questions are
similar to the example in Table 1 and can be answered by a
single rule.

Furthermore, if a question cannot be answered, we can
filter out many similar questions with different contexts to
reduce human effort. For sel.4, we translated 125 invariants
into rules, which answer 1,540 questions. It took us 2-3
days in total to review all 10,223 questions and provide the
necessary translation rules (given existing familiarity with
the codebase). Providing these rules proved much easier than
manual code optimization.

In our experience, it is easy to maintain most of the trans-
lation rules when the source code changes. Many rules are
relatively primitive and context-independent so that source
code changes usually do not affect these rules. Let us con-
sider the translation rules in Figure 7. The first three rules
are primitive and context-independent. So the code changes
generally do not affect the correctness of these rules except
for the changes of the infrastructure. However, the last rule
is context-dependent which may not hold after some general
code changes.

Despite all this, the human effort required is still a lim-
itation of our approach. We plan to investigate methods to
derive these rules automatically in the future.

7. Related Work

Since the 1970s, formal program verification, and in particu-
lar OS verification, has been an active research area. As per-
formance is a key consideration in most practical operating
systems, many verification approaches have focused on im-
plementations in low-level languages such as C/C++ [2, 11—
13, 19, 25]. Optimization of these systems traditionally fo-
cuses on modifications to the source code — e.g. using better
algorithms.

Vandevoorde describes a prototype compiler for the
Speckle programming language which makes use of a for-
mal specification written in the Larch Shared Language [24].
In that work, the formal specification is targeted for op-
timizations, not for a proof of program correctness. Thus
the specification only guarantees the correctness of the op-
timizations performed, but not that of the original program.
The specification also requires multiple implementations for
general purpose and more specific optimizations. In contrast,
our motivation is to leverage the existing specifications for
the program correctness, which are not necessarily designed
for optimizations. We do not need to modify the specification
and its implementation, and do not need multiple implemen-
tations. Furthermore, Vandevoorde’s work is not based on a
full-featured programming language and omits some impor-
tant features such as non-local variables. It measured only
one simple benchmark of “AC-unification” and gained 11%
improvement comparing with an unknown baseline. In com-
parison, our approach is more practical and has successfully
optimized a real-world microkernel written in C.

Recently, Blackham and Heiser investigated optimizing
the IPC fastpath in the seL4 microkernel [4]. Unlike tradi-
tional fastpaths which are hand-coded in assembly, the seL.4
fastpath is written in C. They hand-tuned C code to provide
the compiler with more optimization opportunities. They
used knowledge from kernel invariants to ensure that re-
ordered code was still safe (e.g. that pointers could be safely
dereferenced earlier).

The CompCert project investigates the formal verification
of realistic compilers [6, 7, 14]. They have successfully
created the formally verified CompCert C compiler, and
have verified several optimization algorithms [3, 17, 21-23].
However, none of these apply formal verification of their
inputs to improve the performance of generated binaries.

To the best of our knowledge, no formally verified real-
world software has been automatically optimized using in-
formation obtained from the formal verification process.

We note that C compilers are permitted to treat undefined
behaviour however they choose. Wang et al. found numer-
ous bugs in critical software due to compilers optimizing
code that accidentally used undefined constructs [26]. They
demonstrate a case where a NULL-pointer dereference in
Linux caused security-critical checks to be omitted by the
compiler. Exploiting undefined behaviour can improve the
optimizations available to a compiler, but compiler writers

must be cautious, as many existing programs unknowingly
invoke undefined behaviour which can result in serious bugs
or security vulnerabilities [20]. In this paper, because seL4 is
proven to be free of undefined behaviour, we can use much
more aggressive optimizations without fear of introducing
such bugs.

8. Conclusion

Formal verification is traditionally only used to demonstrate
program correctness. We have demonstrated a technique
which can leverage existing proof effort to improve code op-
timizations. We proposed two approaches, applying invari-
ants and program safety, both of which are pervasive for for-
mally verified programs.

We have shown how to reuse information such as explicit
invariants from the formal verification of a program and in-
tegrate it into the compilation of the code in order to improve
its runtime performance. We also leverage the guarantee of
program safety provided by formal verification, to perform
further optimizations by detecting infeasible code paths. In-
variants may also be derived through informal reasoning and
applied to unverified software.

We evaluated our approaches and applied them to the
formally-verified seL4 microkernel. Integrating explicit in-
variants gave a performance increase of up to 24% in some
micro-benchmarks. When combined with the guarantees of
program safety, the maximum performance gains increase
to 28%. On I/O-heavy macro-benchmarks, we observe up to
16% improvements. Worst-case execution time was also re-
duced by 20-25%.

Our experiments have shown our techniques to be prac-
tical and effective for real-world applications. Constructing
translation rules in order to make use of the invariants is cur-
rently a necessary but tedious process. Future work will in-
vestigate how to automatically extract the relevant informa-
tion from a formal specification.

Acknowledgements

NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Coun-
cil through the ICT Centre of Excellence program.

References

[1] E. Alkassar, M. Hillebrand, D. Leinenbach, N. Schirmer, and
A. Starostin. The Verisoft approach to systems verification. In
N. Shankar and J. Woodcock, editors, VSTTE 2008, volume
5295 of LNCS, pages 209-224. Springer, 2008.

[2] J. Andronick, B. Chetali, and C. Paulin-Mohring. Formal
Verification of Security Properties of Smart Card Embedded
Source Code. In J. Fitzgerald, I. J. Hayes, and A. Tarlecki, ed-
itors, FM, volume 3582 of LNCS, pages 302-317, Newcastle,
UK, Jul 2005. Springer.

[3] Y. Bertot, B. Gregoire, and X. Leroy. A structured approach
to proving compiler optimizations based on dataflow analysis.

In Types for Proofs and Programs, Workshop TYPES 2004,
volume 3839 of LNCS, pages 6681, 2006.

[4] B. Blackham and G. Heiser. Correct, fast, maintainable —
choose any three! In 3rd APSys, pages 13:1-13:7, Seoul,
Korea, Jul 2012.

[5] B. Blackham, Y. Shi, S. Chattopadhyay, A. Roychoudhury,
and G. Heiser. Timing analysis of a protected operating sys-
tem kernel. In 32nd RTSS, pages 339-348, Vienna, Austria,
Nov 2011.

[6] S.Blazy and X. Leroy. Formal verification of a memory model
for C-like imperative languages. In International Conference
on Formal Engineering Methods, vol. 3785 of LNCS, pages
280-299, 2005.

[7] S. Blazy, Z. Dargaye, and X. Leroy. Formal verification of a C
compiler front-end. In /4th FM, volume 4085 of LNCS, pages
460-475. Springer, 2006.

[8] M. Daum, N. W. Schirmer, and M. Schmidt. From operating-
system correctness to pervasively verified applications. In
IFM, volume 6396 of LNCS, pages 105-120, Nancy, France,
2010. Springer.

[9] R. J. Feiertag and P. G. Neumann. The foundations of a
provably secure operating system (PSOS). In AFIPS Conf.
Proc., 1979 National Comp. Conf., pages 329-334, New York,
NY, USA, Jun 1979.

[10] L. Gu, A. Vaynberg, B. Ford, Z. Shao, and D. Costanzo.
CertiKOS: A certified kernel for secure cloud computing. In
2nd APSys, 2011.

[11] C. L. Heitmeyer, M. Archer, E. I. Leonard, and J. McLean.
Formal specification and verification of data separation in a
separation kernel for an embedded system. In CCS, pages
346-355, Alexandria, VA, USA, 2006.

[12] M. Hohmuth and H. Tews. The VFiasco approach for a
verified operating system. In 2nd PLOS, Glasgow, UK, Jul
2005.

[13] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Nor-
rish, T. Sewell, H. Tuch, and S. Winwood. sel.4: Formal ver-
ification of an OS kernel. In 22nd SOSP, pages 207-220, Big
Sky, MT, USA, Oct 2009. ACM.

[14] X. Leroy. Formal certification of a compiler back-end, or:
Programming a compiler with a proof assistant. In J. G.
Morrisett and S. L. P. Jones, editors, 33rd POPL, pages 42—
54, Charleston, SC, USA, 2006. ACM.

[15] J. Liedtke. On p-kernel construction. In /5th SOSP, pages
237-250, Copper Mountain, CO, USA, Dec 1995.

[16] A. Ramirez, J. 1. Larriba-pey, C. Navarro, J. Torrellas, and
M. Valero. Software trace cache. In 13th Intl. Conference
on Supercomputing, 1999.

[17] S. Rideau and X. Leroy. Validating register allocation and
spilling. In Compiler Construction, volume 6011 of LNCS,
pages 224-243, 2010.

[18] T. Sewell, M. Myreen, and G. Klein. Translation validation
for a verified OS kernel. In PLDI, pages 471-481, Seattle,
Washington, USA, Jun 2013. ACM.

[19] H. Tews, T. Weber, and M. Volp. A formal model of memory
peculiarities for the verification of low-level operating-system
code. In R. Huuck, G. Klein, and B. Schlich, editors, 3rd SSV,
volume 217 of ENTCS, pages 79-96, Sydney, Australia, Feb
2008. Elsevier.

[20] The GCC Team. GCC 4.8 release series: Changes,
new features, and fixes. http://gcc.gnu.org/gcc-4.8/
changes.html, 2013.

[21] J.-B. Tristan and X. Leroy. Formal verification of translation
validators: A case study on instruction scheduling optimiza-
tions. In 35th POPL, pages 17-27, 2008.

[22] J.-B. Tristan and X. Leroy. Verified validation of lazy code
motion. In 2009 PLDI, pages 316-326, 2009.

[23] J.-B. Tristan and X. Leroy. A simple, verified validator for
software pipelining. In 37th POPL, pages 83-92, 2010.

[24] M. T. Vandevoorde. Specifications can make programs run
faster. In Theory and Practice of Software Development,
LNCS, volume 668, pages 215-229, 1993.

[25] B.J. Walker, R. A. Kemmerer, and G. J. Popek. Specification
and verification of the UCLA Unix security kernel. CACM,
23(2):118-131, 1980.

[26] X. Wang, H. Chen, A. Cheung, Z. Jia, N. Zeldovich, and M. F.
Kaashoek. Undefined behavior: what happened to my code?
In 3rd APSys, pages 9:1-9:7, New York, NY, USA, 2012.
ACM.

[27] J. Whaley and M. S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In 2004
PLDI, 2004.

[28] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,
FE. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Sten-
strom. The worst-case execution-time problem—overview of
methods and survey of tools. ACM Trans. Emb. Comput. Syst.,
7(3):1-53, 2008. ISSN 1539-9087.

