Mobile Multicores: Use Them or Waste Them

Aaron Carroll and Gernot Heiser
NICTA and University of New South Wales
{Aaron.Carroll,gernot} @nicta.com.au

Abstract

Energy management is a primary consideration in the
design of modern smartphones, made more interesting
by the recent proliferation of multi-core processors in
this space. We investigate how core offlining and DVFS
can be used together on these systems to reduce energy
consumption. We show that core offlining leads to very
modest savings in the best circumstances, with a heavy
penalty in others, and show the cause of this to be low
per-core idle power. We develop a policy in Linux that
exploits this fact, and show that it improves up to 25% on
existing implementations.

1 Introduction

Energy efficiency is a first-class concern in mobile em-
bedded systems, such as the smartphone, due to battery
constraints. At the same time, multi-core processors are
emerging in the embedded space, with high-end smart-
phones now shipping with quad-core application proces-
sors. Such systems present new challenges and opportu-
nities for energy management.

Modern processors provide mechanisms to control
power consumption. Offlining allows the operating sys-
tem to power-down individual cores, allowing the remain-
ing cores to continue processing. DVFS, dynamic voltage
and frequency scaling, provides for the reduction of CPU
operating frequency (at the cost of performance), thus
reducing dynamic power per the equation P o< fV?2.

In this paper we investigate the combined efficacy of
these two mechanisms on a smartphone applications pro-
cessor. In particular we focus on slack management, i.e.,
managing an under-utilised processor to reduce energy
without adversely affecting performance.

We start in by measuring the energy consump-

This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive version will be published in Proceedings of
the 5th Workshop on Power-Aware Computing and Systems (HotPower’13).

tion of a range of synthetic workloads while varying the
core frequency and number of active cores. We analyse
this data in and conclude that offlining cores is
generally ineffective as a power management policy.

We propose high-level principles for designing a uni-
fied offline/DVFS policy, and in describe the
implementation of such a policy, medusa, in the Linux
kernel. In we perform a series of benchmarks
to evaluate its effectiveness, comparing it against existing
policies.

2 Motivation

To motivate our design, we first measure the energy con-
sumption of a series of workloads, keeping the total work
constant but varying the CPU frequency and number of
online cores; this pair forms the operating point, or OP.
loadcpu is designed to emulate periodic real-time work-
loads. It consists of 4 processes executing a tight busy-
loop for a certain number of iterations, and then sleeping
for the remainder of the 50 ms period. The number of
iterations is set to achieve the desired total CPU load:
we used 10, 25, 50 and 75% of maximum capacity (i.e.
4 cores running at maximum frequency). The total ex-
ecution time and amount of work performed are both
constant, with duty cycle varying with the OP. We run
each workload only at OPs that can sustain the required
throughput (i.e. utilisation < 100% without over-running
the 50 ms interval).

loadmem is similar to loadcpu, but rather than exe-
cuting a busy-loop, it strides through memory perform-
ing read-modify-write on buffers equal in size to the L2
cache. We also ran a fully CPU-bound workload (spin),
which executes a fixed number of iterations of a busy-
loop across 4 processes, and ran it across the full range
of OPs. Finally, we use a software video decoder playing
an H.264-encoded video across OPs able to decode all
frames with no overrun. In all cases, the average of 3
iterations is reported, with worst-case relative standard
deviation of 6%.

We run these workloads on 2 embedded platforms: the
Samsung Galaxy S III (SGS3), a latest-generation off-


mailto:aaron.carroll@nicta.com.au

Characteristic SGS3 MDP
SoC Exynos 4412 | APQ8064
CPU Cortex-A9 Krait

cores 4 4
Frequency (MHz)

min 200 384

max 1400 1512
Cache (KiB)

LO (I/D) — 4/4

L1 /D) 32/32 16/ 16

L2 (shared) 1024 2048
OS Android 4.0.4

Table 1: Platform characteristics.

(a) 10%

(b) 25%

(a) 10%

0.8 /

07 v

0.5

] _u
0.6 —7%

(b) 25%

Wad
4
e

Y

A— "

0.4 T T T

T
200

T
600

T T T
1000

T
1400

1 v
0.9 /

rat

L

0.8

/
0.7
0.6 /A/

0.5

—®— 1 core

0.7 4— —e— 2 cores
—¥— 3 cores
—— 4 cores

r'g

0.4

T T T T T T
200 600 1000
(c) 50%

1 .4
1400

T
200

T T
600
(d) 75%

T T
1000

T 1
1400

0.9 / 09 //'
08 / / 08 /
A//
1600 4do 800

09 F/ 0.9 -

0.8

1200 1600

el

Normalised Energy
B
&1
o
o]
<8
o

—m— 1 core

—&— 2cores
0.8 +— —¥— 3 cores
—A—— 4 cores

0.7 0.7

1600 400 800

(d) 75%

400 800 1200 1200 1600

(c) 50%
Frequency (MHz)

Figure 1: MDP loadcpu energy at 10, 25, 50 and 75%
load.

the-shelf smartphone; and the Qualcomm Snapdragon S4
Pro MDP/T tablet development kit (MDP). These plat-
forms represent two SoC vendors (Samsung and Qual-
comm, respectively) and two different implementations
of the ARMvV7 architecture (ARM Cortex-A9 and Qual-
comm Krait), and hence give us reasonable coverage of
the high-end mobile CPU space. The characteristics of
these platforms are summarized in While the
MDP platform allows independent frequency settings for
each core, for the present work we force all cores to run
at the same frequency.

The results of loadcpu on both platforms are shown in
Figures [T|and 2] The behaviour is similar on both plat-
forms. Energy consumption is very weakly dependent
on the number of cores used, except at low load (10%),
where it is significantly more efficient to use a single core
at mid to high frequency. For any number of cores, energy
is an increasing function of frequency (Fig.[2(a) 1 core
@ 800 MHz being a single exception). Minimum energy
is observed at minimum frequency, and the reverse is
also true: maximum energy at maximum frequency. We
omit the results of loadmem but note virtually identical
behaviour on MDP, with SGS3 showing a stronger posi-
tive correlation between number of cores and energy. Our

Figure 2: SGS3 loadcpu normalised energy vs. frequency
(MHz) at 10, 25, 50 and 75% load.

1 E\ 1 -'\
0.9 = 0.8
0.8 ;ﬁ%ﬁ 0.6
074
0.6 L\A/

0.5 1 .
400 800

(a) mdp

—&— 1 core
—&—2cores |
\ —¥— 3 cores

—&—— 4 cores

N
Nt

T T T T T
600 1000 1400

(b) sgs3

T 1 T
1200 1600 200

Figure 3: spin normalised energy vs. frequency (MHz).

observations otherwise continue to hold.

The results of spin on MDP and SGS3 are shown in
and again show common features across plat-
forms. At any frequency, energy decreases with increas-
ing number of cores; hence, energy is minimised with 4
online cores, and maximised with 1 core (at minimum fre-
quency). The optimal frequency varies with the number
of cores, but note that with additional cores, the optimal
frequency never increases, but sometimes decreases.

Figure 4] shows the video decode results on SGS3, dis-
playing similar behaviour to loadcpu, as does the same
benchmark running on MDP (not shown).

We also performed similar measurements on the Pand-
aboard, a development platform based around the OMAP4
SoC, featuring a dual-core Cortex-A9 CPU. However, this
platform is less interesting since fewer operating points
are supported (2 cores and 4 frequencies). For brevity
we omit the results, but note that they are similar to the
above, and our observations hold.

3 Analysis

Clearly, the energy cost of choosing an incorrect operating
point is substantial. Indeed, this result is well known from
the single-core DVFS literature [SLSPHO09]. Our results



1
>
2 09 ‘///.F
Q //
c
W os
gl
3
= 07 —
g ——— 2cores
5 064 —W%— 3cores |
pzd —A&—— 4 cores

0.5 ;

400 600 800 1000 1200 1400
Frequency (MHz)

Figure 4: SGS3 video playback energy.

show that the multi-core processor only exacerbates this
problem, both by increasing the penalty of incorrect OP
selection, and by increasing the size of the optimisation
problem with the additional “number of online cores”
dimension. Moreover, the results show that the offline
and DVFS mechanisms are inherently tied: one cannot be
optimised independently of the other. Applying the naive
wisdom that lower power implies lower energy, i.e. that
fewer cores result in lower energy consumption, leads to
catastrophic results.

In the periodic case, reducing frequency tends to reduce
energy consumption. Furthermore, and maybe surpris-
ingly, for a particular frequency there is little variation
of energy consumption with the number of online cores.
However, the increased computation power of a larger
number of cores makes it possible to run the workload at
a lower frequency, and thus reduce energy consumption—
the opposite of the naive expectation!

This is a consequence of the low idle power of each
core, as we can show with a simple model. Consider an
n-core CPU at fixed frequency:

FPcpu = Puncore + n(Pactive + Pidle) s ()

where P, is the power consumed for an online but idle
core (i.e. in a shallow sleep state), and Ppve 1S the ad-
ditional power when computing. Pyncore 1S the power
consumed by the remainder of the CPU (buses, last-level
cache, etc.) Substituting T for the period of the workload,
and ¢ for the per-period execution time (where t < T), we
get per-period energy of

Ecpu = Puncore T + n(Pactivet + PidleT) . (2)

For a workload with good scalability (i.e. t = o /n), we
get
Ecpu = Puncore T + QPctive +nPaieT 3)

and hence
Ecpu = (Puncore +nPate) T +k . “4)

This shows that the CPU energy consumption at a fixed
frequency is independent of n if the idle power of an
online core is low.

For CPU-bound workloads it is always more energy-
efficient to run with more cores online, because increasing
throughput reduces execution time and thus reduces the
accumulation of static CPU energy. This is an example
of the race-to-idle policy, which is well-documented in
the DVFS literature [MLH"02]. However, with DVFS,
dynamic power is super-linear in frequency and hence
race-to-idle is not necessarily optimal. On the other hand,
core power is linear in the number of online cores, and
thus additional cores are always more efficient. Again
this can be demonstrated with a simple model,

FPcpu = Puncore +nPeore - )

Assuming scalability (r «< 1 /n) where ¢t is the execution
time, we get

Puncore

Ecpy + Peore - (6)

The scalability requirement can be relaxed by replac-
ing the assumption of workload-independent dynamic
power by the approximation that Pyyqamic is proportional
to instructions per cycle [SKK11f], from which it follows
that Egynamic i proportional to the number of executed
instructions, which is constant for a fixed workload. Ex-
panding P,gve into its dynamic and static components,

from we gt
Ecpu = (P uncore 1 n(P static Pidle))t + ”Edynamic O

If we execute i instructions spread across n cores, then
from the above assumption,

Edynamic o< l/l’l > 3
hence
Ecpu = (Puncore + n(Pstatic + Pidle))t +k. &)

Thus, if Pyspaic + Pale 18 small compared with Pypcore,
then increasing n has negligible impact on Ecpy, even
for workloads with sub-linear scalability. Note that
for the purposes of this analysis we can treat Pypcore aS
constant—adding the dynamic uncore contribution would
only strengthen our argument.

Intuitively it is reasonable that per-core idle power is
low on smartphone-class embedded processors. They typ-
ically have little on-core state, and a modern ARM core
such as the Cortex-A9 heavily clock-gates, even in the
lightest sleep state, which “reduces the power drawn to the
static leakage current, leaving a tiny clock power overhead
requirement to enable the device to wake up” [ARMI10].
In[Figure 5| we show this directly with a plot of idle power
consumption as a function of cores online, at both maxi-
mum and minimum frequency, on the SGS3. The equa-
tions of linear fit show that P is approximately 6 and
25 mW per core at minimum and maximum frequency,
respectively. The corresponding uncore power is 263 mW
and 415 mW. Hence, Pyncore/Pidle 18 > 16 at fiax and > 40



600

y =25.2x + 415.1
500 +
fmax

400

S I — B

200 - y=6.3x+263.1 fmin

100

Power (mW)

0 T T T
0 1 2 3 4

Cores online

Figure 5: SGS3 idle power consumption at minimum and
maximum core frequencies.

at fmin. Further, we can determine Py, for one core by
solving

Puncore + Pdle + F dynamic + Pyatic (]0)
= PRincore +Pidlc+ﬁfV2+PstatiC , (D

using the values of Pyncore and Pgie from [Figure 5] and
Pcpy from our spin results (322 mW at fii, and 1092 mW

at fimax)- This yields a Py of approximately 10 mW per
core. Thus we expect to see, as we have indeed shown,
that having more online cores reduces energy consumed.

From this analysis, we propose the following principles
for design of an energy management policy: scale out
(online cores) before scaling up (increasing frequency);
offline cores conservatively,; and reduce frequency aggres-
sively.

Pcpu

4 Medusa: an offline-aware governor

Based on the principles outlined in [Section 3] we have
implemented such an energy management policy, medusa,

in the Linux kernel running on the MDP platform. It
aims to reduce energy consumption without affecting
performance by manging slack time in the CPU. Medusa
functions as a “cpufreq” DVFS governor, and additionally
controls the number of online cores.

At a high level, the policy runs regularly (every 200 ms
by default) and selects a new operating point by checking
the following conditions, executing the first that applies.

1. If the number of runnable threads exceeds online
cores, online additional cores (if available).

2. If any online core is at maximum utilisation, increase
frequency to the next highest.

3. If all cores are under-utilised, set the frequency to
that which maximises utilisation.

4. If any core is below 5% utilisation, offline it.

To improve OP stability, we apply a small amount of
hysteresis, and average load across 3 update cycles for

Normalised Energy

AnTuTu  Angry Birds  Video

Load 10 Load 25 Load 50 Load 75

Figure 6: Normalised energy consumption of benchmarks
under each energy-management policy.

the purposes of reducing frequency and offlining cores.
Furthermore, to improve responsiveness, frequency is
increased more aggressively after several consecutive in-
creases, or when executing a new workload from a quies-
cent state.

The full implementation, including extensive logging,
configuration, and debug support, is about 1000 lines of
code. The only CPU-specific information used is the
available frequencies and number of available cores.

5 Evaluation

To evaluate medusa, we ran a number of workloads and
compared the energy consumption to that of 3 existing
policies. Default is the built-in policy shipped with the
MDP device, which uses the ondemand DVFS gover-
nor combined with a (closed-source and undocumented)
userspace tool called mpdecision. Ondemand and con-
servative are standard Linux DVFS governors, but since
they control only frequency, we repeated each experiment
statically setting the number of active cores between 1 and
4, and report the result yielding minimum energy. Finally,
where feasible we report the optimal-static OP; that is, the
minimum energy consumption across all OPs when fixed
for the full run. For ondemand, conservative and optimal-
static, we discard any data where our OP constraint causes
the benchmark to exceed nominal runtime.

In total we used 7 benchmarks of 4 types. AuTuTu is
a 3D-intensive graphics benchmark. Angry Birds is a 2D
game, and the scenario involves a short (2 minute) play
through the game, using an input trace/replay method-
ology for repeatability. Video is playback of an H.264-
encoded video using a software decoder. Finally, loadgen
is the micro-benchmark from [Section 2} again used at the
same 4 load levels.

shows the normalised full-system energy con-
sumption for each policy and benchmark, averaged over
3 iterations. Across all benchmarks, medusa performs
equally or better than the dynamic policies, but is never
more efficient than optimal-static. This is due to the elas-
ticity of the workloads; that is, temporary overload is
acceptable since the extra work can be completed later,



when load is lower, without causing overrun. Since the dy-
namic policies (including medusa) are work-conserving,
they can not exploit such properties. Moreover, it is not
clear how such a policy could be implemented without
affecting performance for some applications.

On average, medusa consumes 85% the energy of the
default and ondemand policies, 75% in the best case.
Compared with conservative, medusa uses 97% on aver-
age, and 90% best case. However, note that for ondemand
and conservative we have selected the optimal number of
cores manually, whereas medusa does so automatically,
and so can adapt as the workload changes. Clearly this
is important, since the optimum varies significantly with
those policies: 4 cores 50% of the time, 3 cores 29%, 2
cores 14%, and 1 core in only 7% of cases.

6 Related work

Ghasemazar et al. [GPP10] takes a theoretical approach
to the problem of combining offlining and DVFS. They
develop a control-theoretic feedback algorithm to select
an operating point, and evaluate it via simulation of an
Alpha-like processor. Compared with a baseline of all
online cores and open-loop DVFES, they show a 17% im-
provement in energy consumption. They demonstrate that
increasing the number of online cores always decreases
the optimum frequency. As noted earlier, we see a similar
though small effect. They claim that offlining unused
cores is important, our results in most cases do not reflect
this.

Li and Martinez [LMO6] develop a number of heuristics
to reduce the optimisation search space and algorithms
to search for the optimal operating point. The policy is
reactive feedback-based, and hence depends on online
power measurement. They evaluate these on a simulated
Alpha, and show performance close to optimal for a range
of workloads. They claim that the optimal operating point
depends heavily on the power-performance curve of the
particular processor. We note that within the particular
class of CPUs in our study, variation in behaviour is is
somewhat limited.

Gupta et al. [GBK™12] consider the cost of the un-
core component of power consumption on heterogeneous
multi-core processors. They show that on desktop-class
systems, uncore consumes a significant fraction of CPU
energy, varying 20-80% of total depending on workload,
and that core and uncore power are approximately equal
at idle. Our data shows that uncore contributes a much
larger proportion of idle power in embedded-class proces-
sors, demonstrating why our results differ from those in
the desktop/server space.

7 Conclusions and Future Work

We have shown that, due to the low per-core idle power
consumption of embedded applications processors, of-
flining of cores makes little sense for energy management
if work is available to run on them. This occurs for 2

reasons: one, onlining cores allows access to lower, more
energy-efficient frequencies for equivalent throughput;
and two, completing the work quicker can reduce accumu-
lation of static CPU “uncore” power, which is significant
in such processors. A corollary of this for developers is
that writing multi-threaded applications can be effective
for reducing energy, even if the additional CPU through-
put is not required.

Using these observations, we have implemented
medusa, a Linux CPU frequency governor, that signif-
icantly improves energy efficiency compared with several
existing implementations: up to 25% reduction with no
cases of increased energy.

In the present work, we have concentrated on manage-
ment of idle time to reduce energy consumption without
affecting performance. In future, we hope to extend this
work by incorporating active energy management using
multi-core-aware DVFS optimisation. The most promis-
ing path seems to be to extend the approach taken by
Koala [[SLSPHO9]: use a parameterised hardware model,
characterised offline, which observes the application be-
haviour and uses performance counters to predict on-line
the system’s performance and energy response to changes
in operating points. Such a system would allow the trad-
ing of performance for reduced energy consumption.

Acknowledgements

NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

References
[ARM10] ARM Ltd. Cortex-A9 Technical Reference Manual, r2p2
edition, 2010. ARM DDI 0388F.

[GBK*12] Vishal Gupta, Paul Brett, David Koufaty, Dheeraj Reddy,
Scott Hahn, and Karsten Schwan. The forgotten ‘uncore’:
On the energy-efficiency of heterogeneous cores. In 2012
USENIX ATC, Boston, MA, USA, Jun 2012.

[GPP10] M. Ghasemazar, E. Pakbaznia, and M. Pedram. Minimiz-
ing energy consumption of a chip multiprocessor through
simultaneous core consolidation and DVFS. In ISCAS,
pages 49-52. IEEE, 2010.

[LMO06] J. Li and J.F. Martinez. Dynamic power-performance

adaptation of parallel computation on chip multiprocessors.
In 12th HPCA, pages 77-87. IEEE, 2006.

[MLH"02] Akihiko Miyoshi, Charles Lefurgy, Eric Van Hensbergen,
Ram Rajamony, and Raj Rajkumar. Critical power slope:
understanding the runtime effects of frequency scaling. In
16th Int. Conf. Supercomp., pages 35-44, New York, NY,
USA, Jun 2002. ACM Press.

V. Spiliopoulos, S. Kaxiras, and G. Keramidas. Green
governors: A framework for continuously adaptive DVFS.
In IGCC, pages 1-8. IEEE, Jul 2011.

[SLSPHO09] David C. Snowdon, Etienne Le Sueur, Stefan M. Petters,
and Gernot Heiser. Koala: A platform for OS-level power
management. In 4th EuroSys Conf., Nuremberg, Germany,
Apr 20009.

[SKK11]



	Introduction
	Motivation
	Analysis
	Medusa: an offline-aware governor
	Evaluation
	Related work
	Conclusions and Future Work

