
Towards Verified Microkernels for
Real-Time Mixed-Criticality Systems

Bernard Blackham

A thesis in fulfilment of the requirements for the degree of
Doctor of Philosophy

School of Computer Science & Engineering
Faculty of Engineering

The University of New South Wales

March 2013

THE UNIVERSITY OF NEW SOUTH WALES
Thesis/Dissertation Sheet

Surname or Family name: Blackham

First name: Bernard

Other name/s: Robert

Abbreviation for degree as given in the University calendar: PhD

School: Computer Science & Engineering

Faculty: Engineering

Title: Towards Verified Microkernels for Real-Time Mixed-Criticality Systems

Abstract 350 words maximum: (PLEASE TYPE)

Today's embedded systems are becoming increasingly complex. We are seeing many devices consolidate both mission-critical real-time
subsystems with convenience functionality such as networking stacks and graphical user interfaces. For example, medical implants such
as pacemakers now provide wireless monitoring and control; bugs within the wireless subsystem must not be able to affect the safety-
critical real-time operations of the pacemaker. Traditionally, this is achieved by using multiple processors with limited communication
channels. However, these extra processors add significant overheads of size, weight and power.

The mixed-criticality design promises to mitigate these overheads by consolidating multiple subsystems onto a single CPU, but this entails
both mission-critical and convenience functionality sharing the same processor. In order to enforce isolation between subsystems of
differing criticalities, we require a trustworthy supervisor to mediate control over the processor and provide behavioural guarantees.

In this thesis, we explore several ingredients required to construct a high-assurance mixed-criticality real-time system. We propose that
the formal verification and design of the seL4 microkernel makes it highly suited as a trustworthy foundation for these systems. We show
how to compute interrupt response time guarantees which complement seL4's guarantees of functional correctness. We also explore the
design space for such microkernels, which must balance the competing goals of formal verification and real-time responsiveness. We
investigate the limits of interrupt latency for non-preemptible microkernels, and question whether fully-preemptible kernels are necessary
for low-interrupt latency applications.

We show that C can achieve equivalent performance to hand-optimised assembly for performance-critical kernel code, thereby allowing
such code to be formally verified using C verification frameworks and maintain trustworthiness.

We also present a practical framework for applying the capabilities of model checkers and SMT solvers to reason about compiled binaries.
This framework can automatically detect infeasible paths and compute loop bounds, increasing the accuracy and the trustworthiness of
response time guarantees.

Declaration relating to disposition of project thesis/dissertation

I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in
part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all
property rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral
theses only).

……………………………………………………………
 Signature

……………………………………..………………
 Witness

……….……………………...…….…
 Date

The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for
restriction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional
circumstances and require the approval of the Dean of Graduate Research.

FOR OFFICE USE ONLY

Date of completion of requirements for Award:

THIS SHEET IS TO BE GLUED TO THE INSIDE FRONT COVER OF THE THESIS

Originality Statement

‘I hereby declare that this submission is my own work and to the best of my knowledge
it contains no materials previously published or written by another person, or substantial
proportions of material which have been accepted for the award of any other degree or
diploma at UNSW or any other educational institution, except where due acknowledge-
ment is made in the thesis. Any contribution made to the research by others, with whom
I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also
declare that the intellectual content of this thesis is the product of my own work, except
to the extent that assistance from others in the project’s design and conception or in style,
presentation and linguistic expression is acknowledged.’

Signed

Date 28 March 2013

iii

Copyright Statement

‘I hereby grant the University of New South Wales or its agents the right to archive and to
make available my thesis or dissertation in whole or part in the University libraries in all
forms of media, now or here after known, subject to the provisions of the Copyright Act
1968. I retain all proprietary rights, such as patent rights. I also retain the right to use
in future works (such as articles or books) all or part of this thesis or dissertation. I also
authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation
Abstract International. I have either used no substantial portions of copyright material in
my thesis or I have obtained permission to use copyright material; where permission has
not been granted I have applied/will apply for a partial restriction of the digital copy of
my thesis or dissertation.’

Signed
Date 1 October 2013

Authenticity Statement

‘I certify that the Library deposit digital copy is a direct equivalent of the final officially
approved version of my thesis. No emendation of content has occurred and if there are
any minor variations in formatting, they are the result of the conversion to digital format.’

Signed
Date 1 October 2013

v

For Pwar Pwar

Abstract

Today’s embedded systems are becoming increasingly complex. We are seeing many de-
vices consolidate both mission-critical real-time subsystems with convenience functionality
such as networking stacks and graphical user interfaces. For example, medical implants
such as pacemakers now provide wireless monitoring and control; bugs within the wire-
less subsystem must not be able to affect the safety-critical real-time operations of the
pacemaker. Traditionally, this is achieved by using multiple processors with limited com-
munication channels. However, these extra processors add significant overheads of size,
weight and power.

The mixed-criticality design promises to mitigate these overheads by consolidating multi-
ple subsystems onto a single CPU, but this entails both mission-critical and convenience
functionality sharing the same processor. In order to enforce isolation between subsystems
of differing criticalities, we require a trustworthy supervisor to mediate control over the
processor and provide behavioural guarantees.

In this thesis, we explore several ingredients required to construct a high-assurance mixed-
criticality real-time system. We propose that the formal verification and design of the seL4
microkernel makes it highly suited as a trustworthy foundation for these systems. We show
how to compute interrupt response time guarantees which complement seL4’s guarantees
of functional correctness. We also explore the design space for such microkernels, which
must balance the competing goals of formal verification and real-time responsiveness. We
investigate the limits of interrupt latency for non-preemptible microkernels, and question
whether fully-preemptible kernels are necessary for low-interrupt latency applications.

We show that C can achieve equivalent performance to hand-optimised assembly for
performance-critical kernel code, thereby allowing such code to be formally verified us-
ing C verification frameworks and maintain trustworthiness.

We also present a practical framework for applying the capabilities of model checkers and
SMT solvers to reason about compiled binaries. This framework can automatically detect
infeasible paths and compute loop bounds, increasing the accuracy and the trustworthiness
of response time guarantees.

ix

Acknowledgements

They say it takes a village to raise a child. Likewise, it takes a research community to
raise a PhD student. I have been fortunate to grow in the company of so many talented
individuals within SSRG and NICTA, and a fantastic international community of systems
researchers.

I am most grateful to my supervisor Gernot Heiser, for his ongoing guidance and support,
asking the tough questions (“why?”), and his invaluable feedback throughout my candi-
dature as a PhD student. Gernot’s high standards, his rational perspective on the world,
and his practical focus, have significantly enriched me and my research.

Thanks must also go to my co-supervisor and colleague Yao Shi, who achieved some
incredible feats in pulling together code under tight deadlines.

To David Greenaway, for many insightful discussions, proofreading, and for suggesting I
have “more bezierness” in my diagrams.

To everyone in Gernot’s power management power and real-time “random fun” group
(coined by Dan) for getting up obscenely early for group meetings, so that I didn’t have
to stay up obscenely late on the other side of the world.

To all my fellow research students and researchers in the lab, past and present: Aaron,
Adrian, Andrew, Anna, David(s), Etienne, Justin, Matt, Raf, Tom, and many others, for
their wonderful stimulating company.

To my family, for their unconditional love and support, no matter where life’s journey
would take me.

Finally, to Alysia for her ongoing encouragement, love and understanding, through the
many sleepless nights and long days.

Thank you!

xi

List of Publications

Some of the ideas presented in this thesis have been published in the following
papers.

Bernard Blackham, Yao Shi, and Gernot Heiser. Protected hard real-time: The
next frontier. In Proceedings of the 2nd Asia-Pacific Workshop on Systems
(APSys), pages 1:1–1:5, Shanghai, China, July 2011a. doi: 10.1145/2103799.
2103801.

Bernard Blackham, Yao Shi, Sudipta Chattopadhyay, Abhik Roychoudhury, and
Gernot Heiser. Timing analysis of a protected operating system kernel. In
Proceedings of the 32nd IEEE Real-Time Systems Symposium, pages 339–348,
Vienna, Austria, November 2011b. doi: 10.1109/RTSS.2011.38.

Bernard Blackham, Yao Shi, and Gernot Heiser. Improving interrupt response
time in a verifiable protected microkernel. In Proceedings of the 7th EuroSys
Conference, pages 323–336, Bern, Switzerland, April 2012a. doi: 10.1145/
2168836.2168869.

Bernard Blackham and Gernot Heiser. Correct, fast, maintainable – choose any
three! In Proceedings of the 3rd Asia-Pacific Workshop on Systems (APSys),
pages 13:1–13:7, Seoul, Korea, July 2012. doi: 10.1145/2349896.2349909.

Bernard Blackham, Vernon Tang, and Gernot Heiser. To preempt or not to pre-
empt, that is the question. In Proceedings of the 3rd Asia-Pacific Work-
shop on Systems (APSys), pages 8:1–8:7, Seoul, Korea, July 2012b. doi:
10.1145/2349896.2349904.

Bernard Blackham and Gernot Heiser. Sequoll: a framework for model checking
binaries. In Proceedings of the 19th IEEE Real-Time and Embedded Technology
and Applications Symposium, Philadelphia, USA, April 2013.

xiii

Contents

Originality Statement iii

Copyright Statement v

Authenticity Statement v

Abstract ix

Acknowledgements xi

List of Publications xiii

List of Figures xix

1 Introduction 1

1.1 On meeting deadlines . 4

1.2 On correct operation . 5

1.3 Research contributions and thesis outline 6

2 Background 9

2.1 Real-time application domains . 10

2.2 Designing trustworthy mixed-criticality systems 10

2.3 The worst-case execution time problem 17

2.4 Estimating the worst-case execution time 19

2.5 Summary . 26

xv

CONTENTS

3 A preliminary WCET analysis of seL4 27

3.1 Overview . 27

3.2 Related work . 29

3.3 seL4 design features . 31

3.4 Analysis method . 33

3.5 Initial WCET results . 43

3.6 Experimental results . 44

3.7 Summary . 48

4 Formal verification vs interrupt latency 51

4.1 Overview . 51

4.2 Design considerations . 52

4.3 Areas of improvement . 56

4.4 L1 cache pinning . 67

4.5 Analysis method . 68

4.6 Results . 71

4.7 Related work . 77

4.8 Summary . 79

5 Interrupt latency in non-preemptible kernels 81

5.1 Overview . 81

5.2 Related work . 83

5.3 A non-preemptible kernel . 84

5.4 A fully-preemptible kernel . 93

5.5 Results and analysis . 98

5.6 Conclusion . 103

6 Checking properties on binaries 105

6.1 Overview . 105

6.2 Background . 107

6.3 The problem . 109

6.4 Anatomy of sequoll . 111

xvi

CONTENTS

6.5 Evaluation . 123

6.6 Discussion . 127

6.7 Summary . 128

7 Automated infeasible path detection 131

7.1 Overview . 131

7.2 Motivating example . 133

7.3 Background . 133

7.4 Details . 137

7.5 Evaluation . 143

7.6 Related work . 147

7.7 Summary . 149

8 A look at verification and performance 151

8.1 Overview . 151

8.2 Related work . 153

8.3 Microkernel IPC . 154

8.4 Optimisation techniques . 158

8.5 Evaluation . 163

8.6 Discussion . 164

8.7 Summary . 166

9 Conclusion 169

9.1 Summary . 169

9.2 Contributions . 170

9.3 Future work . 171

References 173

xvii

List of Figures

1.1 Comparison of traditional and consolidated design models. 2

1.2 Formal verification, OS design and real-time 3

2.1 Putting latency into perspective . 11

2.2 The many faces of execution time . 18

3.1 Workflow used to analyse seL4 . 36

3.2 Error between estimated and real execution time 42

4.1 Pseudo-code of scheduler implementing lazy scheduling 58

4.2 Pseudo-code of scheduler without lazy scheduling 58

4.3 Virtual address spaces managed using ASIDs 64

4.4 Virtual address spaces managed using shadow page tables 65

4.5 Example of a common seL4 design pattern 72

4.6 Worst-case address decoding scenario 74

4.7 Overestimation of the hardware model 76

4.8 Effect of enabling L2 cache and branch predictors 78

5.1 Preemption point using enable/disable interrupts 85

5.2 Preemption point using polling . 86

5.3 Preemption point using software-emulated polling 87

5.4 WCET computed for all preemption points in seL4 99

5.5 Worst-case response time of seL4, QNX and hypothetical limits . . . 102

6.1 Impact of infeasible path information on computed WCET of seL4 . . 106

6.2 Bit counting—the motivating example for sequoll 110

xix

LIST OF FIGURES

6.3 Overview of sequoll . 111

6.4 An example of instruction semantics from the ARM formalisation . . 113

6.5 Control flow graph of the code in Figure 6.2 115

6.6 An example where constant propagation saves the day 117

6.7 Reduced control flow graph of Figure 6.5 119

7.1 The typical double diamond is forever 132

7.2 The 3-diamond motivates our infeasible path detection work 133

7.3 3-diamond control flow graphs are way cooler 134

7.4 Outline of our infeasible path detection algorithm 138

7.5 An example CFG with nested loops 140

7.6 An example of φ-elimination . 141

7.7 An example of C code which is improved by φ-elimination 141

7.8 WCET improvement with automated infeasible path detection 144

7.9 Comparison of automated algorithm with manual efforts 145

8.1 Anatomy of a fastpath “Call” operation 155

8.2 Execution time of IPC slowpath vs fastpath 156

8.3 Control flow graph of the seL4 slowpath and fastpath 157

8.4 An example of C code without lifting optimisation 161

8.5 An example of C code with lifting optimisation 161

8.6 Generated assembly without lifting optimisation 161

8.7 Generated assembly with lifting optimisation 161

8.8 Results obtained for one-way IPC after optimisations 163

xx

Chapter 1

Introduction

Embedded systems are ubiquitous today—we interact with them without even know-

ing. We entrust our lives to many of these embedded systems such as medical im-

plants, industrial automation controllers, engine controllers and avionics systems.

These are hard real-time high-criticality systems, where failure is unacceptable and

may lead to loss of life.

The safe operation of these systems depends on the functional correctness of the

software and the timeliness of its responses. Such systems must be able to react

to asynchronous events from external stimuli within a specific deadline, regardless

of any other activities currently executing. For example, airbag controllers in a

car must reliably deploy an airbag within milliseconds of an impact being detected;

similarly, pacemakers must be able to deliver precisely timed electrical pulses to the

heart.

As these systems are becoming increasingly important in our daily lives, the man-

ufacturers of these systems also seek to gain a competitive advantage by adding

convenience features to their devices. For example, many embedded devices today

incorporate wireless and Bluetooth networking stacks, and run a built-in web server

for configuration. This extra functionality adds a significant amount of complexity

and code, and is not critical to the system’s primary function. It is important that

these low-criticality subsystems are unable to interfere with the correct operation of

high-criticality subsystems.

This is achieved most easily by separating high- and low-criticality subsystems onto

different CPUs, with limited communication channels. However, this leads to in-

1

CHAPTER 1. INTRODUCTION

Hardware bus

RT App

CPU

RTOS

App App

CPU

OS kernel

RTOS

App App

CPU

IPC

RT App

IPC

Microkernel/hypervisor

Figure 1.1: Traditional system designs (left) isolate real-time components onto sep-
arate processors. A trustworthy microkernel or hypervisor (right) can be
used to provide strong isolation between trusted and untrusted components
executing on a single processor.

creased size, weight and power consumption (SWaP), as well as greater cost and

design complexity. A prominent example of these concerns can be seen in modern

cars, which have to up 100 CPUs, each dedicated to specific subsystems or tasks

(Broy et al., 2011).

Mixed-criticality systems offer a path to reduce design and production costs, whilst

improving software reuse. The key idea, illustrated in Figure 1.1, is to consolidate

both high- and low-criticality subsystems onto a single processor. Doing so can pro-

mote software reuse, simplify communication between subsystems, ease debugging

and thus speed up development.

The challenge in creating mixed-criticality systems is ensuring that the behaviour of

a low-criticality component is unable to affect the correct operation of high-criticality

components. Low-criticality components may be faulty due to software bugs or could

have been maliciously compromised. Mixed-criticality systems must be constructed

with strong guarantees of isolation between components—in particular, preserving

the behaviour of high-criticality components in all circumstances.

In this thesis, we explore various aspects of building hard real-time mixed-criticality

systems that provide strong guarantees of isolation. We build upon prior work on the

seL4 microkernel (Klein et al., 2009b) which is able to give guarantees of functional

isolation backed by the strength of machine-checked mathematical proof. Functional

isolation ensures that components cannot interfere with the memory or other state

2

Formal Verification

OS Design Real-time

Figure 1.2: This thesis explores the interaction between formal verification, operating
system design, and real-time requirements, and how to combine them to
build trustworthy mixed-criticality systems.

of one another. However, it does not address the interactions between components

caused by their effects on execution time.

We focus this thesis on the ability to provide usable guarantees on the timing be-

haviour of a mixed-criticality system, without compromising functional isolation.

We do not address total temporal isolation between components—in particular, a

malfunctioning high-criticality component may be able to affect a low-criticality

component. Nor do we address the possibility of covert communication channels,

although the results from our work are essential to addressing these concerns.

Instead, this thesis is concerned with ensuring that high-criticality real-time sub-

systems are able to meet their deadlines, regardless of the actions of low-criticality

subsystems. In particular, we look at measuring and managing the worst-case in-

terrupt latency of the operating system (OS) kernel. We examine how aspects of

formal verification interact with the worst-case interrupt latency of a system, and

how these demands influence kernel design (Figure 1.2). Finally, we investigate

whether average-case performance is degraded by the needs of formal verification.

We limit our investigation and analysis to uniprocessor systems, choosing to delve

deeper into the design of such systems, rather than attempting to address the wide

array of complexities introduced by multiple processors. Multiprocessor systems add

3

CHAPTER 1. INTRODUCTION

additional concerns for analysing both worst-case execution time and proving strong

correctness guarantees through formal methods. We build upon a rich foundation

of prior work towards high-assurance real-time uniprocessor systems, which is not

yet as mature or as advanced for their multiprocessor counterparts.

1.1 On meeting deadlines

Real-time systems are characterised by the need to complete their computations

within specific deadlines. They can be broadly categorised according to the severity

of the consequences of missing a deadline, as follows:

• hard real-time: missing any deadline is catastrophic, resulting in complete

system failure;

• soft real-time: missing some deadlines can be tolerated—each missed deadline

results in degraded system performance; and

• best-effort (not real-time): such systems have no strict deadlines which affect

the operation of the system.

Systems traditionally dedicate individual processors to real-time tasks (sometimes

referred to as a federated design). With no other tasks executing on the processor

which could interfere, it is reasonably easy to guarantee that real-time deadlines

are met. In mixed-criticality systems, this is no longer true: there will almost

certainly be lower-criticality tasks executing which may affect real-time performance.

In particular, these lower-criticality tasks may induce the kernel to disable interrupts

for prolonged periods of time. It is the responsibility of the system designer to ensure

that these non-interruptible periods do not compromise the real-time components.

In an event-driven system where external interrupts initiate any activity, the OS

kernel plays a significant role in ensuring that real-time deadlines are met. The

kernel must provide guarantees on the worst-case interrupt latency—i.e. the longest

possible length of time between the arrival of an external interrupt and the execution

of its respective interrupt handling routine. In general, this is determined by two

factors: (1) the longest duration for which interrupts are disabled on the CPU, and

(2) the execution time of the code performing interrupt delivery. Both of these can

be determined using techniques for analysing worst-case execution time (WCET).

4

1.2. ON CORRECT OPERATION

In this thesis, we consider the mixed-criticality model, and assume that lower-

criticality tasks may be malicious (e.g. they may be compromised and therefore

execute arbitrary code). It should be possible to guarantee that even if a compo-

nent is compromised, components at higher criticality levels remain unaffected and

continue to meet their deadlines. This depends on having safe upper bounds on the

worst-case execution time of the kernel, which we address in Chapter 3.

1.2 On correct operation

A kernel which can guarantee that real-time deadlines are met is useless if it mal-

functions, crashes, or is compromised. In particular, in our threat model of mixed-

criticality real-time systems with compromised components, we must expect that an

attacker will attempt to exploit any bugs in the system. This is not unreasonable

given, for example, recent exploits demonstrated on modern cars by Checkoway et al.

(2011), who were able to gain control over key components (including the engine

and brakes) via the CD player, Bluetooth wireless and even over a GSM connection.

To this end, we require not only a kernel with sound temporal guarantees, but also

one that provides strong guarantees of functional correctness and isolation.

In order to build high-assurance mixed-criticality systems, the trusted computing

base must be kept as small as possible. The trusted computing base refers to the

set of all components (both hardware and software) which are critical to the correct

operation of the system. In particular, a bug in the trusted computing base can

compromise the security or reliability of the system. We assert that for mixed-

criticality systems, the OS responsible for enforcing isolation must be kept as small

as possible—a notion shared by the design concepts of microkernels (Liedtke, 1995),

microvisors (Heiser and Leslie, 2010) and exokernels (Engler et al., 1995).

seL4 (Klein et al., 2009b) is a third-generation microkernel, broadly based on the

concepts of L4 (Liedtke, 1995). It provides familiar OS abstractions such as vir-

tual address spaces, threads, synchronous and asynchronous communication, and

capabilities (Dennis and Van Horn, 1966) for access control and confinement.

The distinguishing feature of seL4 is that it is the first general-purpose operating sys-

tem kernel to be formally verified, with a machine-checked formal proof that the C

code implementation adheres to the functional specification of the kernel. Recently,

the seL4 team have extended this proof to the compiled assembly code (Sewell et al.,

5

CHAPTER 1. INTRODUCTION

2013). There are some convenient byproducts of the correctness proofs—in partic-

ular, they additionally imply that seL4 will never perform a (functionally) unsafe

operation or crash due to a software error, and that all operations will eventually

terminate.

Built on top of the proof of functional correctness, are proofs that seL4 enforces

integrity (Sewell et al., 2011)—i.e. that the ability to modify any state of a component

is restricted to only those subsystems with the appropriate authority. When applied

to the context of mixed-criticality systems, this ensures that the functional behaviour

of a completely isolated component is unaffected by the actions of other software

running on the same CPU.

The work presented in thesis leverages seL4’s ability to provide strong isolation

and functional correctness guarantees. Acceptable real-time performance was a key

design goal of seL4. However, this was not quantified until we performed a worst-

case execution time analysis of seL4, as described in Chapter 3. The results of

our analysis showed that seL4 required several improvements to make it suitable

for industrial real-time applications. Our efforts to improve seL4’s real-time per-

formance were constrained by the demands of formal verification. We explore the

compromises between real-time performance and formal verification in Chapter 4.

We also demonstrate in Chapter 5 that by forgoing the requirements imposed by

formal verification, we can reduce latencies even further, without the need for a

fully-preemptible kernel design and still maintain high levels of assurance.

1.3 Research contributions and thesis outline

By combining a sound response time analysis with isolation and correctness guar-

antees that are backed by the strength of mathematical proof, we can create a

trustworthy platform for building high-performance mixed-criticality hard real-time

systems with unprecedented levels of confidence. This is the overarching goal of the

work contained herein.

The structure of this thesis is aligned with the key research contributions to achieve

this goal. These contributions are the following:

• We successfully compute the WCET of the complete seL4 microkernel—the

6

1.3. RESEARCH CONTRIBUTIONS AND THESIS OUTLINE

first such published WCET analysis of any protected general-purpose operat-

ing system kernel. (Chapter 3)

• We examine the trade-offs between achieving good interrupt response times

and formal verification of microkernels, as part of a case study in improving

the interrupt response time of the seL4 microkernel. (Chapter 4)

• We investigate the limits of how low interrupt response times can be reduced

within a non-preemptible kernel, and compare it to what may be possible with

a fully-preemptible kernel. (Chapter 5)

• We apply model checking to executable binaries, to automatically compute

upper bounds on the iteration count of loops, and to prove (or disprove) specific

properties given by the user. (Chapter 6)

• We demonstrate a new technique to automate much of the labour-intensive,

error-prone manual annotation work that is required to achieve tight upper

bounds on the worst-case execution time. (Chapter 7)

• We show that performance-critical code, such the as IPC fastpath used in

seL4, can be implemented in C rather than assembly, without incurring any

significant performance penalty, and remain amenable to formal verification.

(Chapter 8)

7

Chapter 2

Background

This thesis presents several different but related aspects of designing and analysing

trustworthy, mixed-criticality, real-time systems. In this chapter, we give an overview

of the broader area of mixed-criticality systems and their trustworthiness for mission-

critical real-time applications, as well as the worst-case execution time problem.

Additionally, each chapter will also give a more specific overview of related work to

contextualise the material presented therein:

• Section 3.2 gives an overview of past WCET analyses of real-time operating

systems code.

• Section 4.7 looks at previous work in the area of formal verification and kernel

design of real-time systems.

• Section 5.2 focuses specifically on previous work towards analysing and imple-

menting preemptibility in OS kernels.

• Section 6.2 highlights previous work on static analysis of binaries, including

control flow graph reconstruction and loop bound computation.

• Section 7.6 reviews previous work on infeasible path detection for WCET anal-

yses.

• Section 8.2 summarises previous work on using higher level languages for

micro-optimisations.

9

CHAPTER 2. BACKGROUND

2.1 Real-time application domains

Real-time systems are required in many different application domains. A common

feature of all real-time systems is that they demand guaranteed upper bounds on

response time. However, the magnitude of this bound is application-dependent and

can vary significantly. For example, as outlined in Figure 2.1, industrial automation

systems requiring motion control may need response times in the order of tens of

microseconds, while systems such as traffic light controllers can tolerate response

times in the order of seconds. Many industrial applications are controlled using

programmable logic controllers (PLCs), which are dedicated hard real-time systems

designed for interfacing with physical sensors and actuators. The typical response

times expected from these can be as low as one millisecond.

As Figure 2.1 shows, there is a difference of several orders of magnitude between

the clock speeds of modern embedded processors (nanoseconds) and the latency

requirements of high-end real-time applications (tens of microseconds). However,

designing a system that can guarantee a given response time requires careful thought

and analysis. In particular, as memory access times are 1-2 orders of magnitude

slower than CPU speeds, it is easy to unknowingly write code with long latencies

(in particular, long worst-case latencies).

This thesis focuses on creating real-time systems covering the full range of possi-

ble application domains. As such, we ultimately target the 10–100µs end of the

spectrum (in Chapter 5), and explore what is required to reach this goal, without

compromising on trustworthiness.

2.2 Designing trustworthy mixed-criticality systems

Mixed-criticality real-time systems consolidate mission-critical with less critical func-

tionality on a single processor, in order to reduce cost, weight and power consump-

tion, and improve software re-use. Examples include the integrated modular avionics

architecture (ARINC, 2012), and the integration of automotive control and conve-

nience functionality with infotainment (Hergenhan and Heiser, 2008).

In a typical mixed-criticality system, the high-criticality components contain at most

10 000 to 100 000 lines of code. In comparison, the low-criticality components may

have millions of lines of code, and it is unrealistic to certify these components to the

10

2.2. DESIGNING TRUSTWORTHY MIXED-CRITICALITY SYSTEMS

100 ns

1 µs

100 µs

1 ms

10 ms

100 ms

1 s

10 s

10 µs

10 ns

1 ns
1 CPU clock cycle, L1 cache access

L2 cache access

External memory access

High end motion control

Standard motion control

High speed PLCs, Audio processing

Standard PLCs, Video processing

Simple PLCs, Simple drives

Traffic lights, Home automation

Figure 2.1: Putting latency into perspective: typical latency requirements of various
application domains on the right (Graf, 2012), compared with the execution
time of various CPU operations on a modern embedded processor on the
left. Note that the time scale is logarithmic.

11

CHAPTER 2. BACKGROUND

same level as high-criticality ones. Safely consolidating both high- and low-criticality

components on the same processor demands strong isolation.

This isolation is provided by a supervisory OS such as a microkernel or hypervisor.

Each component is encapsulated within an isolated address space, with protection

enforced by hardware mechanisms that are configured by the OS. As the supervisor

OS has full control over the system, it must be certified to at least the same level as

the highest-criticality component.

Design standards for both safety- and security-critical software are now encourag-

ing more pervasive use of formal methods throughout the design, development and

testing phases. For example, IEC 61508 dictates functional safety standards for var-

ious industry applications, and highly recommends model-based testing and formal

verification for systems requiring the highest level of safety integrity (Int, 1998).

Similarly, the NIST Common Criteria define a range of “Evaluation Assurance Lev-

els” from EAL1, for non-critical systems, up to EAL7, for mission-critical systems in

high-risk environments (NIST). Levels 5 to 7 require formal methods in the design,

verification and testing.

The push for formal methods stems from the potential dangers arising from faulty

software. In contrast to traditional empirical testing-based validation, formal meth-

ods can offer significantly stronger assurances. However, both formal methods and

traditional testing have associated financial costs for industry. In order to minimise

cost, these efforts should be focused only where they are required.

2.2.1 Fully-preemptible vs non-preemptible kernel models

A fundamental design issue for kernels is whether they should be constructed as

fully preemptible or non-preemptible.

The traditional real-time operating system (RTOS) design uses a fully-preemptible

kernel, which means that the kernel is “interruptible by default”—interrupts are ex-

pected to occur almost anywhere in the kernel. For code that cannot be interrupted

(e.g. code which accesses shared data structures), interrupts are explicitly disabled

to avoid preemption. In addition to accessing shared data, other uninterruptible

sequences include kernel entry and exit, interrupt dispatching and some hardware

accesses. On a multi-processor system, disabling interrupts is combined with spin

locks to prevent other CPUs from concurrently accessing data. Uninterruptible code

12

2.2. DESIGNING TRUSTWORTHY MIXED-CRITICALITY SYSTEMS

paths must be kept short in order to minimise the kernel’s interrupt latency.

The alternative design, referred to as non-preemptible, disables interrupts by default

while the kernel is executing, resulting in a much simpler kernel design and imple-

mentation, as concurrency issues are avoided. The resulting RTOS code is easier

to understand, debug and reason about. It also simplifies the process of formally

proving the functional correctness of the code, something that is presently consid-

ered infeasible for preemptible programs given their high levels of concurrency (Klein

et al., 2009b). The simplicity also tends to result in better average-case performance,

which is the reason this approach has traditionally been taken in L4 microkernels.

RTOS designers, even when targeting high-performance processors typically used for

protected-mode systems, aim to achieve worst-case interrupt latencies in the order of

tens of microseconds or less. While this allows for a fair amount of computation, it is

difficult (if not impossible) to design a practical RTOS where all system calls are so

short. However, the interrupt latency of non-preemptible kernels can be reduced by

adding preemption points in long-running kernel operations. At a preemption point,

if a pending interrupt is detected, the current operation is postponed so that the

interrupt can be handled. Preemption points introduce a limited and controlled form

of concurrency. The approach requires that kernel data structures be in consistent

states when a preemption occurs. Furthermore, the designer should ensure that the

interrupted operations are eventually completed, and that high interrupt rates do

not impede progress.

The fully-preemptible design makes sense for a classical, unprotected RTOS, where

most interrupts can be handled with minimal switching of state. Such RTOSes can

achieve interrupt latencies of up to a few hundred cycles. Hofer et al. (2009) have

achieved latencies bordering on the limits of the hardware by taking advantage of the

CPU’s interrupt dispatcher for scheduling. However, this was done at the expense of

any memory protection, as all threads execute in system mode. Real-time systems

are becoming increasingly complex, running large software stacks which are hard to

debug and assure when using a flat address-space model. Given these pressures, the

unprotected RTOS design is reaching its limit.

Mixed-criticality systems demand strong isolation between subsystems, which re-

quires trustable memory safety (typically provided by hardware-enforced memory

protection, but could be a software-based solution). It also entails that hardware

interrupts should be handled in userspace. As such, the factors influencing the de-

13

CHAPTER 2. BACKGROUND

sign of such a kernel are significantly different to an unprotected RTOS. We explore

this further in Chapter 4 and Chapter 5.

Furthermore, embedded processors are becoming faster, and latencies in the order

of 10 000 to 100 000 cycles are acceptable in many situations. For example, 1 GHz

processors are increasingly common on modern high-end embedded devices and can

execute 100 000 cycles in 100µs—adequate for many applications. Hence, a fully

preemptible kernel is generally not necessary to meet real-time requirements (ex-

cept where ultra-low latencies are required) provided that the kernel can deliver

reasonable interrupt latency guarantees.

In the fully-preemptible design, it is also much more difficult to reason formally

(or even informally) about the behavior of the kernel, and adds complexity to de-

velopment and testing. It requires very careful coding of the interrupt paths, and

defensively analysing that at every point in the kernel an interrupt cannot crash the

kernel or make its state inconsistent. It also degrades the average-case performance

of the kernel due to locking overheads, which in-turn consumes more power, thereby

reducing the battery life of portable devices.

Analysing concurrency issues within a fully-preemptible kernel is extremely chal-

lenging due to the explosion of possible interleavings to consider and the difficulty

in reproducing timing-related bugs. Formal verification of a fully-preemptible kernel

has not yet been achieved although there has been some progress (Feng et al., 2008;

Cohen et al., 2009; Baumann et al., 2012).

In addition to unprotected RTOSes and high-assurance kernels for mixed-criticality

systems, there exist monolithic operating systems such as Windows, Linux or Mac

OS. In such systems, kernel operations can execute for a long time. Under a non-

preemptible design, limiting the WCET would require a very large number of pre-

emption points, resulting in negligible gain over a preemptible approach due to the

added complexity. As such, monolithic kernels are typically fully-preemptible. How-

ever, such kernels are a poor choice for high-assurance mixed-criticality systems, as

their trusted computing base is in the order of millions of lines of code.

2.2.2 Event-triggered vs time-triggered system designs

Any real-time system is concerned with responding to external stimuli. There are

two broad categories of systems based on how they are designed to respond to these

14

2.2. DESIGNING TRUSTWORTHY MIXED-CRITICALITY SYSTEMS

stimuli, known as event-triggered systems and time-triggered systems (sometimes

referred to as state-based systems).

In an event-triggered system, external stimuli are delivered via an interrupt to the

CPU. Depending on the system software, the interrupt may be handled immediately,

or after some non-interruptible operation has completed. In either circumstance, the

CPU processes the interrupt as soon as possible. Viewed differently, the execution

of the CPU is governed largely in response to external stimuli. This is the common

approach used for building non-safety critical systems.

In contrast, a time-triggered system is driven by periodically monitoring (polling)

the state of some object, and taking action when changes in state are observed.

Time-triggered systems are governed by a fixed schedule, and provide significantly

more deterministic behaviour than event-triggered systems.

Kopetz (1991) gives a comparison between the two types of systems, based on clas-

sifying events as either predictable or chance events. The occurrence of predictable

events is a priori, and therefore the system designer can anticipate them and allo-

cate the required resources ahead of time. Chance events cannot be predicted, and

therefore neither can their occurrence be limited. To compensate for this, event-

triggered systems must introduce mechanisms to control the flow of such events,

such as buffers and low-pass filters. On the other hand, a time-triggered system

implicitly provides such flow control by design. This avoids the need for testing

scenarios with high rates of chance events. Such testing can only be done with

simulated loads for event-triggered systems, and still does not guarantee correct

behaviour under all possible loads.

Scheler and Schröder-Preikschat (2006) more recently analysed the design consider-

ations when choosing between time-triggered and event-triggered architectures for

real-time systems. They considered several non-functional requirements of event-

and time-triggered systems, and identified only two criteria where one gives an ad-

vantage over the other. They found that fault tolerance is much easier to provide

through replication on a time-triggered system, as the schedules of each replica

offer convenient synchronisation points. However, event-triggered systems provide

lower overall resource utilisation, particularly when some inputs to the system are

aperiodic or sporadic in nature.

Others have shown that it is possible to defer the decision of whether to use an

event-triggered or time-triggered model and still build the majority of the system,

15

CHAPTER 2. BACKGROUND

by using design patterns which can be applied to both models (Scheler and Schröder-

Preikschat, 2006; Lakhani and Pont, 2012).

In the context of mixed-criticality systems, although the reliability of high-criticality

systems can benefit from a predictable time-triggered solution, low-criticality sys-

tems are often comprised of large legacy event-triggered code bases which are not

immediately portable to a time-triggered architecture. As such, mixed-criticality

systems may need to support aspects of both.

Irrespective of the system design, whether time-triggered or event-triggered, a real-

time OS kernel must still provide timing guarantees in order for a complete system

schedulability analysis. The work presented in this thesis applies to either design.

2.2.3 Schedulability of mixed-criticality systems

The scheduling of tasks and subsystems plays a fundamental role in a mixed-

criticality systems, in order to guarantee that high-criticality tasks are given the

CPU time they require to meet their deadlines. A straightforward approach to

scheduling is to provide fixed allocations of CPU time on a static schedule. However,

this requires the use of pessimistic worst-case execution time estimates to ensure that

high-criticality tasks can always meet their deadlines. In practice, this leads to a

significantly underutilised system, as the worst cases are rarely experienced.

Vestal (2009) presented a technique to reclaim this spare capacity for lower-criticality

tasks for preemptive fixed-priority systems. He observed that tasks of higher crit-

icality levels require more conservatism in their WCET estimates (to satisfy certi-

fication requirements), and conversely, lower-criticality tasks can accept much less

conservative estimates. He proposed that for a system with L criticality levels, L

different sets of WCET estimates should be used. He presented methods to use this

information to obtain a more precise schedulability analysis with better utilisation.

Baruah et al. (2011) continued this work to derive an optimal method of assign-

ing priorities to tasks (i.e. to maximise the system’s utilisation, and still guarantee

schedulability of the system). Mollison et al. (2010) have investigated the issue of

mixed-criticality scheduling on multi-core systems, presenting a technique to pro-

vide temporal isolation between tasks of different criticality levels, whilst allowing

unutilised CPU time to be reallocated.

16

2.3. THE WORST-CASE EXECUTION TIME PROBLEM

Baruah and Fohler (2011) have investigated the resource utilisation issue of time-

triggered architectures, with a view to creating certifiably correct systems. Under a

strictly time-triggered system, constructing schedules for multiple criticalities is NP-

hard and therefore can only be done offline. This lack of run-time adaptability limits

the maximum utilisation of a system. They show that a modification to the time-

triggered paradigm known as mode change can ensure that real-time guarantees are

still met, and also improve resource utilisation to be on par with event-triggered sys-

tems. Similar to the idea of Vestal, described above, two different system schedules

are computed: a “certification” schedule, which uses conservative bounds to ensure

that all high-criticality tasks can be scheduled; and a “system-designer” schedule,

that uses more realistic worst-case estimates (for example, based on measurements),

and allows for fuller utilisation of the system. In case of overrunning a deadline

in system-designer mode, the system immediately switches to certification mode to

ensure that no high-criticality deadlines are missed.

The work presented in this thesis is largely independent of the scheduling approach

used by a system. However, the worst-case response times and execution times of

the kernel are vital inputs into any schedulability analysis for a mixed-criticality

system.

2.3 The worst-case execution time problem

The response time of a system is the time between an event arriving, and it being

processed (the precise definition of “processed” depends on the application domain).

In software-based systems the response time is governed by the time it takes for some

program or code to execute.1 Determining the worst-case response time requires

computing the worst-case execution time of the relevant code.

Figure 2.2 shows different aspects of “execution time”. Along the bottom of the

figure, are the various aspects of a program’s execution time which can be prac-

tically observed or measured. Due to the complexity of modern hardware, it is

difficult to predict precisely how long a program will take to execute. For a deter-

ministic program, there exists some worst-case hardware state, and similarly some

1 There are often hardware delays before the software running on a CPU is even notified of an
event, but such delays are outside the scope of this thesis. They are typically in the order of cycles,
and so we assume they are negligible compared to the latencies required for software to respond.

17

CHAPTER 2. BACKGROUND

Safe lower bound

Best-case
execution time

Longest
observed

time

Shortest
observed

time

Worst-case
execution time

Safe upper bound

Execution time

Typical
execution

time

Underestimation Overestimation

Observable

Computed
estimates

Real but not
always observable

Figure 2.2: Different aspects of a program’s execution time (not to scale)

best-case hardware state, which maximises or minimises the execution time, respec-

tively. These give rise to the worst-case and best-case execution times. Given an

exponential number of possible hardware states, the likelihood that we see the worst

or best case through random testing is extremely small. In fact, even knowing what

the cases are, it can be extremely difficult to deliberately manipulate the hardware

into the required state.

For trustworthy real-time systems, we do not necessarily need to know the true

WCET. It suffices to instead have a safe upper bound which is guaranteed to be at

least as large as the WCET. A hard real-time system must be designed to allow for

the safe upper bound. Clearly, if the safe upper bound is significantly larger than

the actual WCET, the CPU would remain largely under-utilised. The difference

between the actual worst-case and a safe upper bound may be referred to as tightness,

pessimism, conservatism or overestimation. Tighter safe upper bounds are desirable,

as they allow slower (and thus generally cheaper) hardware to be used, while still

guaranteeing that deadlines are met.

18

2.4. ESTIMATING THE WORST-CASE EXECUTION TIME

2.4 Estimating the worst-case execution time

The problem of estimating the worst-case execution time can be broken down into

two distinct subproblems (Li et al., 1995). The first involves analysing the program

and identifying control structures which may cause long execution times. This in-

cludes loop analysis, examining conditionals and analysing recursive function calls.

This behaviour is independent of the hardware architecture.

The second subproblem involves applying this knowledge to a specific microarchi-

tecture. The microarchitecture of a system includes the structure of the CPU, its

pipelines and all levels of caches and main memory. For a given code path, the

microarchitecture can introduce a wide variation in possible execution times de-

pending on the state of other parts of the system. On a simple microprocessor with

no caches, a simple pipeline and deterministic instruction execution times, there is

no “hidden state” which could affect the execution time of a program. As a result,

there is practically no variability in the total execution time of a given code path.

More complex architectures often include features to optimise the common case.

These features include:

• deep pipelines,

• instruction caches,

• data caches,

• virtual address translation (MMUs),

• branch prediction,

• speculative execution, and

• out of order execution

The introduction of these features make analysis of the worst case execution time

much more difficult, as all of these features rely on some hidden state within the

processor. An increase in hidden state causes an exponential growth in the number

of possible states the processor could potentially be in. To exhaustively enumerate

all possible hidden states quickly becomes infeasible.

19

CHAPTER 2. BACKGROUND

Such features also cause a large disparity between best and worst case execution

times. For example, data caches are often 10–100 times faster than memory accesses.

A safe WCET estimation must assume that memory accesses miss the data cache

unless it can prove otherwise.

Caches are the dominant cause of execution time variability in modern embedded

systems. Mehnert et al. (2002) show that the use of MMUs and address spaces for

isolation did not significantly affect the real-time behaviour of tasks, as the extent of

their impact was comparable to that of caches. Features such as branch predictors

and other pipeline interactions can be considered second-order effects in comparison.

Complex interactions between different hardware features can create timing anoma-

lies. Timing anomalies arise when an instruction on a code path has multiple possi-

ble execution times—specifically, they occur when a locally shorter execution time

leads to a longer execution time overall, and vice versa (Lundqvist and Stenström,

1999; Reineke et al., 2006). This means that it is not possible for analysis tools to

assume that locally maximising execution time of a given instruction will guarantee

the worst-case execution time overall. Instead, more state needs to be maintained

throughout the analysis in order to compute a safe upper bound. Cassez et al. (2012)

make the distinction between timing anomalies which exist in the hardware itself,

and those which arise only due to the hardware abstraction used.

2.4.1 Analysis techniques

Wilhelm et al. (2008) have published a comprehensive survey of WCET analysis

tools and techniques. In the following sections only the most relevant ideas are

summarised.

WCET analysis techniques can be categorised into three classes (Petters et al., 2007):

static analysis attempts to analyse the source code and/or compiled binary with-

out executing it. Using a model of the hardware’s timing properties, it com-

putes conservative estimates at each stage of the analysis in order give an

upper bound with absolute confidence.

measurement-based analysis attempts to exercise various code paths to find the

worst-case execution path and measure it on real hardware.

20

2.4. ESTIMATING THE WORST-CASE EXECUTION TIME

hybrid analysis combines both static analysis and measurement-based analysis in

order to mitigate issues with unreliable hardware models of modern complex

processors.

Safe upper bounds for WCET are generally computed using a combination of static

analysis techniques and measurements on real hardware to validate the timing model

and/or results (Kirner et al., 2005b; Petters et al., 2007; Seshia and Rakhlin, 2012).

WCET bounds based on measurements alone cannot be relied upon—for example,

measurement-based upper bounds stated for RTLinux (Yodaiken and Barabanov,

1997) were later shown to be invalid (Mehnert et al., 2001).

2.4.2 Static analysis based approaches

Static analysis encompasses a class of techniques used to analyse code without exe-

cuting it. For the purpose of analysing WCET, there are several different approaches

that all use static analysis. Each approach makes a trade-off between accuracy of

the analysis and complexity (or time taken to perform the analysis).

Computing the WCET of programs in general is undecidable, as it is equivalent to

solving the halting problem. However, by placing reasonable restrictions on pro-

grams, we can obtain a tractable problem. For example, by removing the use of

recursive functions, self-modifying code and unbounded loops, it can be shown that

such programs will always terminate (Kligerman and Stoyenko, 1986; Li and Malik,

1995).

As static analysis never executes code, it requires a model of the architecture the

code will be executed on. Such models are often constructed from information made

available by the device manufacturer. The accuracy of the result depends largely

on the accuracy of the model. Whilst static analysis methods give theoretically safe

bounds, an error in the model can invalidate the result and any safety guarantees

provided by it. As an example, Avison (2010) has found discrepancies in the timing

models given by one prominent CPU manufacturer.

Implicit path enumeration

The implicit path enumeration technique (IPET) uses a set of integer linear equa-

tions to describe the possible execution paths of a program. Li et al. (1995) first

21

CHAPTER 2. BACKGROUND

described this technique and it has since seen widespread use through the litera-

ture and in tools developed by industry (Colin and Puaut, 2001a; Ferdinand and

Heckmann, 2004; Gustafsson, 2000; Staschulat et al., 2006; Li et al., 2007).

In IPET, the program is first decomposed into a control flow graph of basic blocks.

The cost ci of executing each basic block can be determined for the processor archi-

tecture (or, at least a safe upper bound). A variable xi is defined as the number of

times a given block will be executed in the program. Variables are also created for

the execution count of each edge within the program. These variables are related by

structure-defined flow constraints: the execution count of each basic block is equal

to the sum of the execution counts of all incoming edges, and similarly for outgoing

edges. Extra flow constraints may be added by the user or other analysis tools to

eliminate infeasible paths.

Once a set of equations in xi have been established, the total cost function to be

maximised is the sum-product of each basic block and its execution count:

Execution Time =
N∑
i=1

cixi

Together, these form a standard integer linear programming (ILP) problem. Such

problems arise in many fields and there has been a significant amount of research

effort dedicated to solving ILP problems (Schrijver, 1986). Although solving ILP

problems is in general NP-hard, the equations derived from IPET are similar to

network-flow problems and therefore exhibit systematic structures which can be

solved reasonably quickly with modern ILP solvers (Li et al., 1995).

The IPET technique has been extended to accommodate features of modern em-

bedded processor architectures, including multi-level instruction and data caches

(Chattopadhyay and Roychoudhury, 2009) and branch prediction (Burguière and

Rochange, 2006). It has also been used in conjunction with other methods, such as

abstract interpretation (described below), to refine the ILP equations and thus give

tighter WCET estimates.

IPET is the approach implemented by the Chronos tool (Li et al., 2006), which we

use for the WCET analyses in this thesis.

22

2.4. ESTIMATING THE WORST-CASE EXECUTION TIME

Abstract interpretation

Abstract interpretation provides a basis for creating safe approximations of programs

in order to analyse their properties (Cousot and Cousot, 1977). It is a technique

with a wide range of applications and is often used in compilers and other tools to

find bugs and analyse software. Applied to WCET analysis, abstract interpretation

can be used to provide a safe approximation of all possible cache states, pipeline

states or variable values that can occur at any point in a program (Theiling et al.,

2000). This technique is typically combined with IPET to compute a safe upper

bound on WCET.

At points in the control flow graph where two paths merge, the sets of possible states

(or values) are combined. Merging is necessary in order to manage the potentially

exponential number of states which the system may be in. However, this can lead

to significant overestimation, as contextual information associated with each state

is lost when merged. Without this context, the analysis may proceed to explore

bogus states after a merge, resulting in possible solutions which are infeasible in

practice. However, the analysis is still guaranteed to be safe—i.e. all possible states

and outcomes will be considered, and the result will never be smaller than the true

WCET.

Model checking

Model checking can be used to reason about the logical correctness of discrete sys-

tems. A model checker is a procedure which decides whether a given abstract model

of a system satisfies a specific property (Müller-Olm et al., 1999). There are two

types of model checkers: explicit-state model checkers explore individual states to

ensure a property always holds, whereas symbolic model checkers operate on sets

of states. In the symbolic approach, sets have a compact representation, typically

using binary decision diagrams (BDDs).

Applied to WCET analysis, a model checker can be used in several ways. Firstly,

it can be used to determine the longest path by checking a property such as “this

program will execute for no more than N cycles”. The WCET of a program is

computed by performing a binary search for the answer. Metzner (2004) notes that

using model checking for finding the longest path will not lead to more accurate

results than IPET, however it does overcome some limitations of IPET such as the

23

CHAPTER 2. BACKGROUND

numerical instability in some ILP problems.

Secondly, model checking can also be used to model the cache behaviour at different

program points. Unlike abstract interpretation, model checking does not overap-

proximate the set of states by abstracting details away. Model checkers only ever

deal with concrete states—if a solution is detected, it is guaranteed that it can be

realised on hardware (assuming the model itself is consistent with the hardware).

Dalsgaard et al. (2010) achieve both of the above in their tool METAMOC, by

framing the WCET problem as a network of timed automata in the UPPAAL sym-

bolic model checker (Behrmann et al., 2004). They produce independent models

of the CPU’s pipeline, its caches, external memory, and the executable being anal-

ysed. Loop bounds need to be manually provided as annotations on the executable.

These models are composed together using “synchronisation channels” into a com-

plete model on which UPPAAL computes a precise worst-case execution time.

Cassez (2011) uses some of the ideas from METAMOC, modelling the hardware and

program as timed automata, but instead frames the WCET problem as a “timed

two-player game”. Player one is the program whose goal is to terminate, and player

two is the hardware whose goal is to maximise the execution time of the program.

Using support for timed games in UPPAAL-TiGa (Behrmann et al., 2007), the model

checker finds the smallest time in which player one can “win” (terminate), regardless

of how the adverse hardware behaves. Cassez’s method also automatically performs

value analysis and computes loop bounds as part of the model, and demonstrates

better scalability than METAMOC.

Compared with IPET, these various approaches to model checking trade better accu-

racy for increased computational complexity. Huber and Schoeberl (2009) compare

both model checking and abstract interpretation, and suggest that model checking

is best suited to accurately computing results for basic blocks, while the overall

program WCET should be computed with IPET.

2.4.3 Measurement-based approaches

An obvious technique to calculate the worst-case execution time of a program is to

execute the program under all possible scenarios and measure the program’s exe-

cution time. However, all possible scenarios must accommodate all possible code

paths and all states of the system (including hidden states). As both programs and

24

2.4. ESTIMATING THE WORST-CASE EXECUTION TIME

processors typically have an exponentially large number of possible states, exhaus-

tively testing all of these is not possible. Measurement-based approaches determine

a subset of code paths and states to examine. It is very difficult to guarantee that

the selected subset covers the true worst-case bounds for the program and so the

WCET will always be underestimated. This makes it a risky approach for analysing

hard real-time systems where the missing a deadline is not permissible.

Whilst the number of paths and states becomes infeasible in the general case, nu-

merous approaches exist to contain the state explosion. Wenzel et al. (2005) propose

to partition loop-free programs into discrete units which can be analysed individu-

ally. Zolda et al. (2009) later extended this with support for loops and unstructured

code. However, this approach suffers from the issue that partitions of a program are

not completely independent. Deverge and Puaut (2005) explore how to eliminate

any interactions between different partitions, and assert that this requires support

from the compiler and comes at the expense of performance.

There are other techniques to improve measurement-based WCET analysis which

rely on some form of static analysis. These are classified as hybrid analyses and are

described in the following section.

2.4.4 Hybrid approaches

Hybrid approaches seek to gain some of the benefits of both static analysis and

measurement-based analysis. Such methods are typically targeted for soft real-time

systems. Kirner et al. (2005a) argue that hybrid analyses are much more realistic

and less likely to be undermined by modelling inaccuracies, compared with pure

static analysis.

Schaefer et al. (2006) present a hybrid approach called Potoroo, which seeks to

identify the worst-case execution time by analysing the execution time profile (ETP)

of a code path. An ETP represents a distribution of timings for a specific code

path. For such a path, the most significant factor contributing to execution time

on modern cache-based processors is the number of memory accesses that miss the

caches. Other sources of microarchitecture-specific variability, such as pipeline stalls

and branch mispredictions, can be considered second-order effects and of much less

significance than caches.

The Potoroo approach attempts to correlate predicted ETPs generated from static

25

CHAPTER 2. BACKGROUND

analysis with the measured ETPs from executing a code path. Given the set of cache

miss counts observed during execution of a program, Potoroo uses static analysis

to either confirm that it is in fact the largest number of cache misses possible,

or automatically construct a counterexample which can be executed and measured.

Although this technique is probabilistic as it assumes all non-cache related variations

to be negligible, it does lend some assurance that the WCET is in reality feasible.

Seshia and Rakhlin (2012) demonstrate a different hybrid approach to WCET mea-

surement called GameTime, based on game-theoretic online learning and systematic

test case generation. They decompose a loop-free program into “basis paths”, such

that all paths through the program can be represented as linear combinations of

the basis paths. In GameTime, the problem is modelled as a game between the

WCET-estimation algorithm and the hardware (the adversary). In this game, the

hardware is assumed to always hide the worst case if it can, and the algorithm is

challenged with finding these hidden cases. The approach is highly portable as it

discovers the platform’s timing model automatically. However, the resulting WCET

guarantees remain probabilistic and therefore may not be suitable for hard real-time

systems.

2.5 Summary

Both mixed-criticality system design and worst-case execution time analysis are

active research areas in their own right. This chapter has given a background on the

relevant aspects of each area, as they are both key ingredients in the construction

of trustworthy mixed-criticality real-time systems.

In the following chapters of this thesis, we build upon existing static analysis tools

for computing worst-case execution time, applying them to a verified OS kernel,

as well as improving infeasible path detection. We also explore the interactions of

kernel design, formal verification and real-time constraints, in order to develop a

high assurance real-time kernel that is suitable as a platform for a variety of mixed-

criticality real-time systems.

26

Chapter 3

A preliminary WCET analysis of seL4

This chapter is based on work published at RTSS 2011 in which I was the primary author

(Blackham, Shi, Chattopadhyay, Roychoudhury, and Heiser, 2011a). The analysis of the seL4

kernel was performed primarily by myself, with assistance from Yao Shi, and using analysis

software based upon the Chronos tool from the National University of Singapore. Some of

the text in Section 3.4.3 describing the functioning of Chronos was contributed by the paper’s

co-author Sudipta Chattopadhyay.

3.1 Overview

Mixed-criticality designs aim to reduce the hardware requirements of a system, com-

pared with their traditional federated counterparts. This is achieved by consolidat-

ing multiple components onto a single processor and trusting a supervisor such as

a microkernel or hypervisor to provide functional and temporal isolation between

critical real-time components and less critical time-sharing components. To support

hard real-time applications, the supervisor must provide safe upper bounds on its

interrupt latency.

Computing interrupt latency bounds on OS kernels is a task made difficult by their

unstructured code, tight coupling with hardware and sheer size. Their design, struc-

ture and implementation details determine how complex such an analysis will be.

For example, the interrupt latency of a well-designed fully-preemptible kernel can

be computed by evaluating a small subset of kernel paths independently. Non-

preemptible kernels require much longer code paths to be analysed. Unconventional

27

CHAPTER 3. A PRELIMINARY WCET ANALYSIS OF SEL4

control flow, as is common in OS kernels, can also significantly complicate the anal-

ysis.

We assert that using a microkernel-based design reduces the size and complexity of

the analysed code base. This makes them amenable to static analysis, whilst also

reducing the size of the trusted computing base, which is a desirable property for

mixed-criticality systems.

The seL4 microkernel is especially suited to high-reliability applications as it is for-

mally verified (Klein et al., 2009b). Formal machine-checked proofs guarantee not

only functional correctness, but also that all operations terminate, which is an es-

sential (and non-trivial) underpinning of any execution time analysis. Whilst these

strong guarantees are sufficient for many systems, the formal verification offers no

temporal guarantees required by real-time systems (other than eventual termina-

tion).

In this chapter, we present a case study of the seL4 microkernel and analyse its

worst-case execution time and thus interrupt latency, with a view to tuning the

kernel for hard real-time mixed-criticality applications. This case study is the first

published complete interrupt-response-time analysis of an OS kernel providing full

virtual memory and memory protection.

We show that realistic safe upper bounds on interrupt latencies can be determined

for protected microkernel-based systems. We perform a full context-aware WCET

analysis of all of seL4’s code paths on a modern embedded CPU architecture using

a realistic pipeline model. We identify several properties of seL4’s code that assist

in the analysis and make it possible to give tighter bounds on execution time. The

structure of seL4 helps to resolve many of the difficulties encountered in previous

analyses of kernels.

The analysis performs virtual inlining in order to be context-aware: each function

is analysed under different calling contexts, which provides much tighter bounds

on WCET. Such an approach is feasible due to seL4’s small code size (compared

with other protected operating system kernels), at around 8 700 lines of C code.

Despite this fact, it is, to our knowledge, still the largest code base where a full

context-aware WCET analysis has been performed. We also measure the identified

worst-case paths on real hardware, demonstrating that the WCET bounds obtained

are not overly pessimistic and can be used in practical systems.

Section 3.2 summarises the state of the art of WCET studies of operating systems

28

3.2. RELATED WORK

code. Section 3.3 details the properties of seL4 that make it amenable to auto-

mated analysis. Section 3.4 describes the methods and tools used to analyse seL4.

Section 3.5 gives some background on work performed to improve seL4’s temporal

behaviour. Section 3.6 shows the results of our analysis, highlighting the worst-case

execution paths found.

3.2 Related work

Several studies have been performed to compute the interrupt latency of operating

systems code, however none have successfully analysed a kernel providing memory

protection and full virtual memory support. The most relevant analyses of RTOS

kernels are summarised in this section.

RTEMS: The first major static WCET analysis of a real-time executive was pub-

lished by Colin and Puaut (2001b), who analysed the C source code of the RTEMS

operating system. Their version of RTEMS did not provide memory protection or

any form of virtual address spaces. They used a tree-based static analysis tool,

HEPTANE, targeting a Pentium processor. They encountered several issues such

as unstructured loops with goto statements and function pointers, which all had to

be resolved manually to complete the analysis.

The study was also faced with the problem of determining loop bounds which were

tied to the dynamic run-time state of the system. This includes factors such as the

number of tasks running, the structure of the system heap and the rate of interrupts.

As such, the WCET of the RTEMS kernel is heavily dependent on the construction

or design of the system in which it is used.

OSE: A WCET analysis of the microkernel used by the OSE delta operating sys-

tem was undertaken by Carlsson et al. (2002) and Sandell et al. (2004) using the

SWEET analysis tool (Gustafsson, 2000). OSE is widely used in embedded systems

including mobile phones and for industrial control applications. The OSE kernel

permits interrupts in most kernel code, except within 612 “disable-interrupt” re-

gions. Despite the complex control flow of the kernel, most of the disable-interrupt

regions were simple, well structured and free of function pointers, simplifying the

29

CHAPTER 3. A PRELIMINARY WCET ANALYSIS OF SEL4

analysis. Caches were not modelled in the analysis. The microkernel analysed did

not support memory protection.

µC/OS-II: Lv et al. (2009a) analysed the µC/OS-II kernel for the WCET of each

system call. They used the Chronos analysis tool to model a MIPS processor with an

L1 cache. The analysis was generally successful, but required a significant amount of

manual intervention. The µC/OS-II kernel also does not provide memory protection.

L4: Singal and Petters (2007) attempted an analysis on the L4 N1 kernel, which

does offer memory protection. They also found that unstructured code, inline as-

sembly and context switching contributed to making the analysis difficult. They

highlight the long execution paths associated with destroying kernel objects, due to

the nature of dynamic memory structures of the kernel. Safe WCET bounds were

never established.

Other studies: Lv et al. (2009b) have also conducted a survey of past WCET anal-

yses of real-time operating systems. Their survey highlighted the need for context-

specific WCET values, rather than a single absolute value, as well as a combined

kernel/application analysis. They concluded that tools were not sufficiently ma-

ture to permit tight WCET estimates on modern RTOS kernels on modern CPU

architectures.

What is a “tight” estimate depends on the application domain, which dictates how

much over-provisioning of the system is permissible. In analysing the seL4 micro-

kernel, we encountered overestimation of up to a factor of three, using state of the

art tools (Figure 4.7).

Most past WCET analyses of real-time operating systems have been assisted or

simplified by the designs of the kernels they were analysing. Our work is no different,

as we describe in the following section. This trend suggests that operating systems

code pushes the bounds of both WCET analysis techniques and in particular of

static analysis methods.

30

3.3. SEL4 DESIGN FEATURES

3.3 seL4 design features

The seL4 microkernel has several properties that assist with automated static anal-

ysis. First and foremost is that its code base is small. We analyse the ARM version

of the seL4 kernel, which has around 8 700 lines of C code and 887 lines of ARM

assembly code. The analysis is performed using a modified version of Chronos 4.1

(Li et al., 2007), adapted for the ARM architecture, and requires around four hours

to compute. The analysis is described further in Section 3.4.

seL4 is an event-based kernel—i.e. the kernel uses a single kernel stack irrespective

of which thread it is servicing. Context switching between threads is performed by

changing a variable pointing to the currently running thread. In contrast, process-

based kernels, with dedicated per-thread kernel stacks, switch the stack pointer dur-

ing a context switch. As a result, the entire call stack is invalidated, and execution

resumes based on the call stack from a prior context switch. We explore this fur-

ther in Section 4.2.1, but the key insight is that the event-based model aids static

analysis, as control flow is more structured.

The seL4 microkernel was designed from its inception to be formally verified. Al-

though the executable code is written in C, seL4 was initially developed in the

functional language Haskell, to support rapid prototyping and provide a common

ground for both the development team and verification team (Klein et al., 2009a).

From the Haskell prototype, the development team implemented a high-performance

C version, while the verification team mathematically formalised the expected be-

havior of the kernel into an abstract specification. The correctness of seL4 relies on

a chain of proofs that the C code implements the Haskell prototype, and that the

Haskell prototype conforms to the abstract specification.

As a result of this construction, the requirements of formal verification, as well as

the security-driven desire for strong resource isolation, the C implementation of seL4

exhibits a number of properties that simplified our analysis:

• seL4 never stores function pointers at run-time. This allows all branches to be

automatically resolved off-line (with the help of symbolic execution).

• seL4 never passes pointers to stack variables. This eliminates the possibility

of variables aliasing stack memory, simplifying the analysis of memory aliasing

for WCET.

31

CHAPTER 3. A PRELIMINARY WCET ANALYSIS OF SEL4

• The task of memory allocation is delegated to userspace, avoiding complex

allocation routines within the kernel. The kernel checks that regions do not

overlap but these checks are much simpler than the code for a complete allo-

cator.

• There are very few nested loops within seL4. Automatically identifying nested

loops at the assembly level and their loop relations is not an easy task, or even

well-defined, in the presence of heavy compiler optimisations.

• Most unbounded operations (such as object deletion) already contain explicit

preemption points. If an interrupt is pending at a preemption point, seL4 will

postpone the current operation and return up the call stack to a safe context

to handle the interrupt. There still remained some unbounded loops, which

we address in Section 3.5.

It is worth noting that many of these properties arose because of requirements of

the formal verification process, without any regard to a WCET analysis. Despite

the restrictions imposed by some of these properties, seL4 does not suffer a signifi-

cant performance penalty—its hot-cache IPC performance is as good as the heavily

optimised assembly IPC path found in the OKL4 2.1 microkernel (described further

in Chapter 8).

The specification of seL4 guarantees that the kernel will never enter an infinite loop—

i.e. all seL4 system calls eventually return to the user. This allows the analysis to

ignore any infinite loops that exist in the kernel. Such loops are executed when

assertions in the C code fail, however the proofs guarantee that these assertions are

always true (under the assumptions of the proof, which include a correct C compiler1

and the absence of hardware bugs).

One issue arising during our analysis of seL4 is that in two places mutually-recursive

functions are used. The formal proof guarantees termination, proving that the

functions do not recurse more than once. This knowledge simplifies the analysis, as

it allows us to simply virtually inline each function at most twice. However, for this

analysis, we choose to unwind the recursion manually.

1 Sewell et al. (2013) have recently demonstrated work that eliminates this assumption in seL4
for binaries compiled with gcc’s -O1 optimisation level, and also potentially at higher optimisation
levels.

32

3.4. ANALYSIS METHOD

Lines of C code ∼8 700
Lines of assembly code 887
Number of C functions 316
Number of loops 76

Code size (bytes) 42,120
Number of instructions 10,271
Number of functions 228
Number of basic blocks 2,384
Number of loops 56

Table 3.1: Properties of the analysed seL4 source code (left) and compiled binary
(right)

In seL4’s event-based model, almost all functions return to their caller, making static

analysis simpler. However, this is not true in one specific code path: seL4 features

a highly optimised C routine for handling the most common IPC operations, known

as the IPC fastpath; it improves the average time for these IPC operations by an

order of magnitude. The fastpath, though in C, returns directly to userspace (using

an inlined assembly routine), avoiding the need for stack unwinding. The analysis

toolchain required some work to support this control flow as it previously assumed

that all functions would return to their caller.

Finally, seL4 is accompanied by a large body of machine-checked proofs which con-

tains thousands of invariants and lemmas. It should be possible to incorporate these

into a WCET analysis to assist in excluding many infeasible paths. They have not

been utilised in this analysis, but present an opportunity for future research.

Some interesting statistics of the analysed seL4 binary are summarised in Table 3.1.

3.4 Analysis method

We analyse the seL4 kernel binary to compute a safe upper bound on its interrupt

latency. For comparison, we construct scenarios to exercise the worst-case paths

detected by the analysis and executed them on real hardware. Together, these

indicate how closely the computed bounds reflect reality.

3.4.1 Processor model

seL4 can run on a variety of ARM architectures and platforms. For this analysis we

use the BeagleBoard-xM platform with a TI DM3730 processor. This processor has

an ARM Cortex-A8 core running at 800 MHz, with separate 32 KiB L1 instruction

33

CHAPTER 3. A PRELIMINARY WCET ANALYSIS OF SEL4

and data caches, both 4-way set-associative. Our analysis tools do not support

modelling the L2 cache.2 As a result, the L2 cache is also disabled in hardware for

our measurements.

The experiments were configured to use 128 MiB of physical memory. We measured

the latency of a read or write to physical memory on this platform to vary between

80–100 cycles; in the static analysis we assume a 100-cycle penalty for all cache

misses. The seL4 kernel locks its pages into the TLB so that there are no TLB

misses during execution.

The Cortex-A8 has a 13-stage dual-issue pipeline, with in-order issue, execution

and retirement. Most arithmetic instructions3 can be issued simultaneously with

a subsequent arithmetic instruction or memory load, provided that there are no

dependencies between them. Forwarding paths between stages permit single-cycle

instructions to execute without stalls arising from register dependencies. The com-

piled seL4 binary happens to use only those arithmetic instructions which can be

dual-issued—in particular, there are no multiplication or “rrx” operations which

would incur a multi-cycle latency. Our static analysis models the dual-issue nature

of the pipeline for arithmetic instructions.

All non-arithmetic instructions executed by the seL4 kernel fall into one of the

following categories:

• load/stores—these incur a 100 cycle memory access penalty on a cache miss

or with caches disabled;

• branches—these incur a 13 cycle penalty without prediction (see below);

• coprocessor operations mcr/mrc (move from coprocessor to register/move from

register to coprocessor)—these include cache flushing, TLB flushing and ad-

dress space switching which can take 120 cycles or more, depending on the

particular operation and the state of the system;

• synchronisation instructions isb/dsb (instruction synchronisation barrier/data

synchronisation barrier)—these instructions flush the instruction pipeline (13

cycles) or flush the CPU’s write buffers (29 cycles), respectively;

2 The analyses presented in Chapter 4 and Chapter 5 use a newer version of Chronos which
gained support for L2 cache analysis.

3On ARM the “arithmetic instructions” also include logical primitives. The full list is: ADC,
ADD, AND, BIC, EOR, ORR, RSB, RSC, SBC, SUB, CMN, CMP, TEQ, TST, MOV and MVN.

34

3.4. ANALYSIS METHOD

• processor state changes (cps)—these take 60 cycles.

The Cortex-A8 also supports speculative prefetching and branch prediction. These

features were disabled in hardware in order to make measurements more determin-

istic, and were not included as part of the processor model.

The L1 caches on the Cortex-A8 have an unspecified random replacement policy.

This prevents simulation of the exact cache behavior, and effectively forces any safe

cache analysis to assume a direct-mapped 8 KiB cache. Furthermore, it makes it

infeasible to construct a true worst-case scenario on hardware, Thus we can only

determine an upper bound on the pessimism of our model.

3.4.2 Static analysis

We analyse seL4 for its interrupt latency by examining the worst-case execution

time of all possible paths through the kernel. A path through the kernel begins at

one of the kernel’s exception handlers, such as the system-call or page-fault handler.

A path ends when control is passed back to the user, or at the start of the kernel’s

interrupt handler code.

Being a non-preemptible kernel, seL4 disables interrupts at all times when executing

kernel code, but checks for pending interrupts at explicit preemption points (typi-

cally in long-running unbounded loops). If an interrupt is detected at a preemption

point, seL4 postpones the current operation and immediately handles the interrupt.

As preemption points occur only at the end of loop iterations, we account for them in

the analysis by forcing the iteration count of the loop to 1. The worst-case scenario

for a path including a preemptible loop occurs when an interrupt arrives immedi-

ately after entry to the kernel. The kernel will still execute the operation with one

iteration of the loop to ensure progress is made (avoiding livelock) and then handle

the interrupt.

Interrupts arriving during kernel execution are handled immediately prior to return-

ing to the user. The interrupt latency is therefore the sum of the WCET of any path

through the kernel up to this point, and the time taken to dispatch the interrupt to

a user thread.

The seL4 binary we analyse is compiled with gcc 4.5 (from CodeSourcery’s 2010.09

release) using the -O2 optimisation level and additionally the -fwhole-program flag,

35

CHAPTER 3. A PRELIMINARY WCET ANALYSIS OF SEL4

!"#$

%&'()*'+($

,%-.$/01)(2$

!"#$
30*(+4)(*50'%*'6()7$$

8+9%701:$

30*(+4)(*5$*+1,;$

<(+*%,,+($

*+1=:6()>+1,$

"61*>+1)7$*+1,;$$

?01@%),0/7%$

A)'5,B$%'*C$

<)'5$D1)72,0,$

"7+E$*+1,;$

F,%($

D990>+1)7$6,%($

*+1,;$?7++A$

/+619,B$%'*;C$

G-<$$

A(+/7%8$

!<-HI$

H,>8)'%9$$

J!HK$

L/,%(M%9$

J!HK$

N%):7%/+)(94&3$

Figure 3.1: Workflow used to analyse seL4

which enables gcc to perform very aggressive optimisation and inlining of code. This

means that most function boundaries are lost and functions are on average much

larger because of inlining. Chronos has a feature to assist in correlating source code

to instructions with the help of debug information. However, the structure of the

output from our version of gcc bears very little resemblance to that of the source

code, making this correlation difficult to automate. There exist solutions to compute

the correspondence in the presence of heavy compiler optimisations (Sewell et al.,

2013), but we have not investigated these.

Figure 3.1 outlines the tools and workflow used to analyse seL4. We wrote a program

called Quoll to extract the control flow graph (CFG) of seL4 from the kernel binary.

This step can be performed without any user guidance thanks to the absence of

function pointers in seL4’s C sources.

Quoll uses symbolic execution to extract the CFG, by finding all reachable instruc-

tions within the kernel from the given set of entry points (system call and other

exception handlers). Determining the destination of some branches requires evalu-

36

3.4. ANALYSIS METHOD

ating sequences of pointer arithmetic on read-write memory (e.g. return addresses

pushed onto the stack). By symbolically executing the binary, Quoll can resolve all

of these off-line. The symbolic execution is sound but not complete, and is sufficient

to simulate any arithmetic operations, memory loads and stores which ultimately

affect the possible destinations of a branch.

We specify the iteration counts of the 56 loops by hand. Due to compiler optimi-

sations, some effort is required to correlate loops in the binary CFG to the source

code. Most loops in seL4 have obvious fixed bounds which can be determined

automatically with a rudimentary analysis utilising constant propagation. Some

loops have iteration counts which would require more sophisticated analysis and

reasoning—however there is sufficient information in the binary to ascertain all of

these automatically.

We modified the kernel to ensure that all loop iteration counts were fixed and in-

dependent of any system state (described further in Section 3.5). Due to heavy

inlining by the compiler, none of the iteration counts in the binary are context-

sensitive, even though some are at the source level (e.g. memcpy). The analysis

itself virtually inlines all function calls, so even if the compiler had not performed

such aggressive inlining, context-dependent iteration counts could still be specified,

or computed automatically (e.g. using our techniques presented in Chapter 6).

The control flow graph, along with the loop iteration counts, is passed to a modified

version of Chronos 4.1 (Li et al., 2007).

The compiled binary exhibits optimisations such as tailcalls (where a function re-

turning up the call stack shortcuts intermediate callers when possible) and loop

rotation (where the loop body is “rotated” so that the entry and exit points of

the loop are not necessarily the first and last instructions of the loop body). This

required some modifications to Chronos, as these optimisations violated its assump-

tions about the structure of functions and loops.

3.4.3 Static timing analysis by Chronos

We use the Chronos tool, from the National University of Singapore, for our analysis

because of its existing support for instruction and data caches, its flexible approach

to modeling processor pipelines, and its open license.

Static timing analysis through Chronos is broadly composed of two parts: (i) micro-

37

CHAPTER 3. A PRELIMINARY WCET ANALYSIS OF SEL4

architectural modeling and (ii) path analysis. Micro-architectural modeling involves

estimating the timing effects of major micro-architectural components of the un-

derlying hardware platform such as the pipeline and caches. Path analysis exploits

infeasible path information in the control flow graph to estimate the execution time

of the longest program path.

Chronos was written to target the MIPS-based SimpleScalar simulation platform,

allowing a variety of processor features and configurations to be easily interchanged

and tested against. We adapted Chronos to support the ARMv7 instruction set. Pre-

cise modeling of the Cortex-A8 pipeline is made difficult not only by its complexity,

but also due to a lack of sufficient documentation. Even the official documents from

the manufacturer have been shown to be inaccurate (Avison, 2010). We therefore

use a conservative approximation of the pipeline, as described in Section 3.4.1.

Chronos models the pipeline on the granularity of a basic block. For each basic

block, it constructs an execution graph. Nodes in the execution graph correspond

to the different stages of the pipeline for each instruction in the basic block. Edges

in the execution graph correspond to dependencies among pipeline nodes. Such a

flexible modeling of pipeline behavior via dependence edges also allows Chronos to

model advanced processor features such as superscalarity.

For a normal processor, there are dependent edges between the pipeline stages of

subsequent instructions, for example IF (Ii+1) can only start after IF (Ii) concludes,

where Ii+1 is the instruction following Ii and IF denotes instruction fetch. For a

superscalar processor with n-way fetch we add dependency edges between IF (Ii+n)

and IF (Ii), thereby allowing greater parallelism. The estimation method supports

any execution graph; various pipeline models can be achieved by simply altering the

automated mechanism for generating the execution graph from basic blocks.

Instruction cache modeling can be easily integrated with the pipeline modeling in

Chronos. Chronos categorises each instruction memory block m into one of the

following: if m is categorised as HIT, then the memory block is always a cache hit.

If m is categorised as MISS, then the memory block is always a cache miss. Finally,

if m is categorised as UNCLEAR, static cache analysis has failed to determine an

accurate cache categorisation of m.

The instruction cache is accessed at the IF stage. Pipeline modeling computes

an interval of each pipeline stage for each instruction in the basic block. If an

instruction is HIT, then we can add [1,1] as the instruction cache latency to the

38

3.4. ANALYSIS METHOD

computed interval of the IF node. If an instruction is a MISS and miss penalty

is lat, we add [lat, lat] to the computed interval. Finally, if the instruction cache

categorisation is UNCLEAR, the exact latency is not known but we are sure that it

is between the interval [1,lat]. Therefore, we add [1,lat] to the computed interval.

A major source of imprecision in data-cache analysis comes from the “address

analysis”—estimating the set of memory addresses touched by an instruction. Data-

cache analysis in Chronos avoids this by determining which instances of a given

instruction touch the same memory address. This leads to an analysis framework

which is scalable, precise and also takes into account program scopes.

Chronos differentiates the cache contexts in terms of loop nests. For a single loop

nest, Chronos considers two different contexts: the first iteration and all subsequents

iterations. This contextual cache analysis greatly helps to give tighter estimates as

the cache categorisation of a memory block may vary significantly, depending on its

loop nest.

After the micro-architectural modeling, we obtain the WCETs of each basic block,

which are fed to the program path analysis stage. Program path analysis in Chronos

is performed using IPET, described earlier in Section 2.4.2. We refer the reader to

other papers for details of the static analysis employed by Chronos (Li et al., 2006),

and its techniques for data-cache modeling (Huynh et al., 2011).

All function calls are virtually inlined in Chronos so that the cache analysis is

context-aware. This results in approximately 400 000 basic blocks after inlining.

The output from Chronos is a system of linear constraints and an objective func-

tion to maximise subject to those constraints. With 400 000 basic blocks, Chronos

creates 2.3 million variables and three million equations.

Finally, we utilise an off-the-shelf ILP solver—IBM’s ILOG CPLEX Optimizer

12.2—to solve the ILP problem generated by Chronos. The result gives the WCET

value and the assignment of edge counts, which can be used to reconstruct a corre-

sponding path. This is the most computationally intensive step of the process, and

takes about four hours for the entire seL4 kernel, when performed on an Intel Xeon

running at 2.66 GHz. Smaller portions of the kernel are solved much faster—within

seconds for most. Section 3.6.4 details the time taken to analyse portions of the

kernel.

39

CHAPTER 3. A PRELIMINARY WCET ANALYSIS OF SEL4

3.4.4 Hardware measurements

In order to get an idea of the degree of pessimism in our WCET estimates, we

measure the actual execution times on hardware for the feasible worst-case paths

detected by static analysis. We measure timing using the Cortex-A8’s cycle counter,

which is a part of its performance monitoring unit.

The results from the ILP solver specify the execution counts of basic blocks and

edges of the worst-case path. We wrote a tool to determine the path itself. This is

achieved by constructing a directed multigraph (a graph with potentially multiple

edges between nodes) using the nodes of the original CFG, and replicating the CFG

edges as many times as the execution count variable corresponding to that edge

dictates. The path taken is then given by an Eulerian path from the source to sink—

a path that traverses every edge once and only once. Such a path is guaranteed to

exist in the graph because of the flow constraints for each node. Note that this path

may not be feasible due to semantic behavior of the code which is not modeled in

the static analysis.

In the absence of nested loops, this information is sufficient to uniquely identify the

concrete path through the kernel. With nested loops, the edge counts in the ILP

solution are insufficient to uniquely identify a path, as inner loop iterations could

potentially differ between iterations of the outer loop. However, if the inner loop

has a fixed iteration count, then the path is unambiguous. In our compiled seL4

binary, the few nested loops from the source code are unrolled by the compiler and

thus we did not encounter this issue.

We manually construct test cases to approximate the worst-case path resulting from

static analysis. In some cases, these paths turned out to be clearly infeasible, in

which case we manually add constraints to exclude these paths.

3.4.5 Comparing static analysis with measurements

The results of our static analysis give an upper bound on the worst-case execution

time of kernel operations. However, this upper bound is a pessimistic estimate. In

practice, we may never observe latencies near the upper bound for several reasons:

• The conservative nature of our pipeline and cache models means we consider

potential worst-case processor states which are impossible to achieve.

40

3.4. ANALYSIS METHOD

• Of the worst-case processor states which are feasible, it may be extremely

difficult to manipulate the processor into such a state.

• The worst-case paths found by the analysis may be extremely difficult (but

not impossible) to exercise in practice.

Only the first of these reasons contributes to actual pessimism in our system model,

but attempts to measure pessimism will be affected by the latter two.

In order to compare our static analysis model with empirical results, we wrote

a number of test programs to exercise various parts of the seL4 kernel API and

analysed their WCET. The test cases were run on the QEMU simulator (QEMU),

which provided us with a trace of the instructions that would be executed. We also

ran the test case on hardware to obtain empirical timings. Our test programs pollute

both the instruction and data caches with dirty cache lines prior to exercising the

paths, in order to maximise execution time. All test cases are deterministic and so

always produce the same execution paths in the simulator as on hardware (assuming

there are no bugs in the simulator).

Using the instruction trace, we determined the precise iteration counts of the loops

as executed and provided these as extra linear constraints to Chronos. Finally, we

verified that the new path from our static analysis matched what was executed on

the simulator. Note that this was only used for determining the amount of pessimism

in our model, and not for the safe WCET bounds themselves.

Figure 3.2 shows the difference between the estimated execution time and the real

execution time for typical uses of the system calls in Table 3.2. The average ratio of

all system calls in Figure 3.2 is 6.0, and the largest ratio is 7.4. For each system call,

because the estimated path and the executed path are identical, we attribute the

error to conservatism in the pipeline and cache models and the inability to exercise

the worst-case cache/pipeline behaviour of the processor.

3.4.6 Open vs. closed systems

We analysed seL4 for two different use cases—open systems and closed systems. We

define an open system to be one where the system designer cannot prevent arbitrary

code from executing on the system. This is in contrast to a closed system, where

the system designer has full control over all code that executes. This is a coarse

41

CHAPTER 3. A PRELIMINARY WCET ANALYSIS OF SEL4

0	

20	

40	

60	

80	

100	

120	

seL
4_
Sen

d	

seL
4_
NB
Sen

d	

seL
4_
Ca
ll	

seL
4_
Wa

it	

seL
4_
Re
ply
	

seL
4_
Re
ply
Wa

it	

seL
4_
No
;fy

	

seL
4_
Yie
ld	

Es;ma;on	
 Execu;on	

Figure 3.2: The error between estimation and real execution time for typical invocations
of the seL4 system calls (measured in µs)

parameterisation of the kernel, as suggested by Schneider (2002), in order to achieve

tighter bounds on WCET in real-world use cases.

In seL4, all long-running system calls have preemption points to prevent unbounded

execution with interrupts disabled. However, there still exist paths with a longer

execution time than desirable for some hard real-time systems. Adding preemp-

tion points to some of these paths is difficult to both implement and reason about

formally. For example, adding preemption points to certain object creation and dele-

tion paths would lead to the existence of partially constructed (or deconstructed)

objects. These objects must be handled specially by other kernel operations and

considered throughout the formal proof. We address this in detail in Chapter 4.

In an open system, real-time subsystems may execute in conjunction with arbitrary

and untrusted code (such code can be confined through the use of access control

policies). seL4 uses a strict priority-based round-robin scheduler. In such a scheme,

time sensitive threads must be assigned the highest priority on the system so that

they may run as soon as required (typically when triggered by a hardware interrupt).

seL4’s design disables interrupts whenever in the kernel, except at a few select

preemption points. As a result, the interrupt latency for the highest-priority thread

is the sum of the worst-case execution time of all possible non-preemptible operations

performed by seL4, and the time taken to handle and dispatch an interrupt.

42

3.5. INITIAL WCET RESULTS

System Call Description
seL4 Send() Blocking send to an endpoint.
seL4 Wait() Blocking receive on an endpoint.
seL4 Call() Combined blocking send/receive.
seL4 NBSend() Non-blocking send to an endpoint (fails if remote

is not ready).
seL4 Reply() Non-blocking send to most recent caller.
seL4 ReplyWait() Combined reply and wait.
seL4 Notify() Non-blocking send of a one-word message.
seL4 Yield() Donate remaining timeslice to a thread of the same

priority.

Table 3.2: System calls permitted in a closed system (after initialisation)

In a closed system, the system designer has full control over all operations performed

by the kernel. Therefore she can ensure that operations which have a significant im-

pact on interrupt latency are avoided at critical times (e.g. by allocating all resources

at boot and avoiding delete operations at run time). The interrupt latency in this

scenario is defined by the WCET of a select number of paths within the kernel which

are used by the running system—primarily inter-process communication (IPC) op-

erations, as well as thread scheduling. The IPC operations are also used for receiving

interrupts. Table 3.2 lists the permitted system calls.

Note that seL4 Call() can be invoked on an IPC object to perform IPC operations,

but it is also used to interact with other kernel objects (e.g. for object creation and

deletion). We exclude these latter operations from the analysis of closed systems,

allowing only the IPC-related uses of seL4 Call(). This reflects the typical be-

haviour of static embedded systems, where no objects are created or destroyed at

run-time.

3.5 Initial WCET results

Our initial analysis of seL4 pointed us to some serious latency issues under patho-

logical circumstances. One such issue arose due to a scheduler optimisation used

in seL4 known as lazy scheduling (Liedtke, 1993a). This optimisation improves the

average-case performance of microkernel IPC operations, but creates a potentially

unbounded worst-case execution path. In order to bound execution time, we re-

placed the lazy scheduling optimisation with a different approach (known internally

43

CHAPTER 3. A PRELIMINARY WCET ANALYSIS OF SEL4

as “Benno scheduling”) which removes the unbounded loop from the scheduler and

delivers equivalent average-case performance. We describe the scheduling issue fur-

ther in Section 4.3.1, in the context of improving real-time kernel design.

We discovered other unbounded non-preemptible paths in our initial analysis, such

as the object creation and deletion paths. For the experimental results given in

the following section, we introduced additional preemption points so that all non-

preemptible regions have bounded execution time. Combined with the removal of

lazy scheduling, these modifications reduced seL4’s worst-case interrupt latency to

a constant, independent of variables such as the number of objects on the system.

The modifications are detailed further in the following chapter (Chapter 4), along

with the implications for the design of verified OS kernels suitable for real-time

mixed-criticality systems. Only a subset of the modifications detailed in Chapter 4

were used for the following analysis—the minimum changes required to achieve a

bounded interrupt latency, independent of system state.

3.6 Experimental results

3.6.1 Open system

In analysing an open system, all possible seL4 operations are considered. Without

any user input other than the loop bounds themselves, our toolchain determined

the worst-case execution time to be in excess of 20 ms, and corresponded to an

infeasible execution path. We excluded this and several other infeasible paths by

adding additional constraints on the set of ILP equations until we found a feasible

worst case.

We found the single longest path to occur when deleting an ASID pool. ASID pools

are seL4 objects used to manage collections of virtual address spaces. Deleting an

ASID pool requires iterating over each address space in the pool (of which there may

be 1024), and invalidating the user’s TLB mappings associated with each one. Sec-

tion 4.3.6 discusses this issue further and explores how ASID pools can be avoided.

Beyond this case, we also found that most of the long non-preemptible paths oc-

curred when creating, deleting or recycling4 objects. The largest non-preemptible

4An seL4 recycle operation is equivalent to deleting and re-creating the object, but is faster and

44

3.6. EXPERIMENTAL RESULTS

Event handler Computed Observed Ratio
Syscall (open) 1634.8µs 305.2µs 5.4
Syscall (closed) 387.4µs 46.4µs 8.2
Unknown syscall 173.3µs 17.9µs 9.7
Undefined instruction 173.4µs 17.1µs 10.2
Page fault 175.5µs 18.9µs 9.3
Interrupt 104.7µs 13.1µs 8.0

Table 3.3: Computed WCET versus observed WCET for feasible worst-case paths in
seL4

loop in seL4, by measure of iteration count, is in one of these paths and iterates over

a 16 KiB page directory in order to clear all of its associated mappings.

The other entry points into the kernel (unknown system calls, undefined instructions,

page faults, interrupts), do not invoke the creation or deletion paths. Their worst

cases involve a simple asynchronous message delivery to a specific thread on the

system and are therefore very lightweight.

The results of these are shown in Table 3.3.

3.6.2 Closed system

Within a closed system, we permit only the system calls outlined in Table 3.2, along

with page faults, undefined system calls and invalid instructions (commonly used for

virtualisation), and of course, interrupts. The only difference between the open and

closed analysis is in the system-call handler. All other exception paths are identical

to the open-system case.

The most significant worst-case scenario that arose was the seL4 ReplyWait() sys-

tem call. seL4 ReplyWait() is used to respond to the most recently received mes-

sage, and then wait for a new incoming message. The particular scenario detected

was infeasible and is described below. It is an interesting infeasible case as there are

in fact invariants in the formal proof that could potentially be utilised to exclude

this automatically.

In seL4, threads do not communicate with each other directly. Rather, they con-

struct IPC “endpoints” which act as communication channels between threads. Mul-

tiple threads are permitted to wait to receive (or send) a message on an endpoint—

requires less authority than re-creating the object.

45

CHAPTER 3. A PRELIMINARY WCET ANALYSIS OF SEL4

threads join a queue and are woken in turn as partners arrive. Deleting an endpoint

in such a state leads to a long-running operation as threads are unblocked and moved

back onto the scheduler’s run queue. Although this is done preemptibly, it still adds

a non-trivial amount of work to this path. On closed systems, we do not permit a

delete operation, so this scenario is not considered there.

However, seL4 Reply() and seL4 Wait() utilise a one-time endpoint (known as a

reply cap) which is stored in a dedicated location in each thread control block (the

reply slot). The kernel must delete the existing reply cap before a call to seL4 Wait()

and after a call to seL4 Reply().

The analysis detected that deleting this reply cap could lead to a longer execution

time as it entered the deletion path. Even though we excluded explicit delete op-

erations from our analysis, this implicit delete operation was exposed. However, it

is impossible to construct this scenario, as a reply cap can only be used by other

threads if it is first removed from the reply slot. Therefore the delete operation on

the reply slot never needs to enter the longer deletion path.

With this knowledge, we added an extra constraint which excluded this infeasible

path. The new analysis determined that the worst-case path for each kernel entry

point was bounded by the time taken to perform an IPC.

In a feasible IPC operation, we identified three factors which affected execution time.

The first is that endpoints are addressed using a structure resembling guarded page

tables (Liedtke, 1993b); decoding the address involves traversing up to 32 edges

of a directed graph. The second is, unsurprisingly, the size of the message to be

transferred, on which seL4 places a hard limit of 120 32-bit words. Finally, an

IPC may also grant the recipient access to seL4 objects, which requires additional

bookkeeping to be done by the kernel. With these three factors exercised to their

limits, the worst-case latency is still bounded to a reasonable value.

We reproduced this case on hardware and measured its execution time, as shown in

Table 3.3.

3.6.3 Analysis of results

The results in Table 3.3 show that there is a factor of up to 10.2 between the observed

and computed execution times. This disparity can be attributed to both the ran-

dom cache replacement policy of the instruction and data caches, and conservatism

46

3.6. EXPERIMENTAL RESULTS

in modeling the Cortex-A8 pipeline. It is extremely difficult to model worst-case

scenarios for these without very fine control over the processor’s state.

Part of this disparity is also because the worst-case paths identified by the analysis

are in fact infeasible. Although we manually excluded some infeasible paths, the

final paths detected may still contain smaller portions that cannot be executed in

practice. There is scope here to improve the bounds further, to the degree permitted

by the inherent unpredictability of the hardware.

To compute the worst-case interrupt latency of the system, from interrupt arrival to

a userspace interrupt handler executing, we take the largest WCET value from the

given scenario and add the WCET of delivering an interrupt to the highest priority

thread on the system.

Overall, these results show that seL4 could be used as a platform for closed systems

and provide a guaranteed interrupt response time of 387.4 + 104.7 = 492.1µs on

this hardware. In open systems, the interrupt response time is 1635µs + 104.7µs =

1.74 ms, which is still quite reasonable for many applications. However there is

clearly scope to improve the response times for both open and closed systems.

In this thesis, we focus primarily on the interrupt response time for high-priority

threads which are ready to execute in response to an interrupt. Based on the re-

sults we have obtained, it is possible to compute the worst-case execution time for

individual system calls—i.e. the time between a system call being issued and its

completion. Such an analysis must account for several factors: (1) the amount of

state affected by the operation (e.g. number of objects, size of memory regions, etc);

(2) all possible preemptions of higher priority operations and their execution times;

and (3) whether the amount of work for a preempted system call can be increased

while preempted. The first two factors are heavily dependent on the design of the

overall system, and seL4 alone cannot make any guarantees. However, seL4 is de-

signed to mitigate the third factor, ensuring that the amount of work required for an

operation cannot be increased after the operation begins. For example, cancelling

all pending messages on an endpoint will only cancel those messages which were

pending when the system call was issued (other access control mechanisms exist

to ensure that new messages cannot be enqueued, but these need not be utilised).

Similarly, when a deletion commences, it is possible to compute precisely how much

work is required to complete the operation, regardless of other system activities.

47

CHAPTER 3. A PRELIMINARY WCET ANALYSIS OF SEL4

BBs before BBs after
Function inlining inlining Chronos CPLEX Total

1 arm swi syscall 2, 384 433, 085 6m52s 227m37s 234m29s
2 handleSyscall 2, 381 433, 082 6m42s 226m9s 232m51s
3 decodeInvocation 2, 148 139, 066 2m49s 44m11s 47m0s
4 handleInvocation 2, 237 140, 890 2m20s 14m50s 17m10s
5 decodeCNodeInvocation 985 32, 106 37s 4m59s 5m36s
6 decodeTCBInvocation 958 100, 810 2m11s 2m14s 4m25s

Table 3.4: Most computationally intensive seL4 functions when solving for WCET,
showing the analysis time spent by Chronos and the ILP solver

3.6.4 Computation time

To examine the scalability of our analysis method on seL4, we computed the worst-

case execution time for not only the top-level entry points, but also all subroutines

in the seL4 binary. Table 3.4 shows the functions in seL4 that took the longest time

to analyse. All results were obtained on an Intel Xeon running at 2.66 GHz with

10 GiB of memory.

arm swi syscall is the assembly-level entry point for all system calls. It directly

or indirectly calls the other functions listed in the table. All other functions within

the kernel are solved much faster (in minutes or seconds, rather than hours). The

table also shows the number of basic blocks (BBs) before and after virtual inlining,

as a measure of how complex the computation is.

Only five functions took more than five minutes to solve. They contain the largest

number of basic blocks of any function in the kernel, once virtual inlining has been

performed. From this table we can can see that, given a little patience, our approach

scales up to the size of seL4.

3.7 Summary

This chapter presented an interrupt-response-time analysis of the seL4 microkernel,

highlighting the properties of the code base that make it amenable to static analysis.

This is the first such published analysis of a protected operating system kernel

providing virtual memory. There are many properties of seL4 that both ease the

analysis process and reduce the interrupt latency, without the need for a fully-

preemptible kernel. Our analysis shows that seL4’s WCET can be kept low enough

48

3.7. SUMMARY

for many closed- as well as many open-system applications.

seL4 is designed as a highly-secure general-purpose OS kernel, suitable for a large

class of real-time, best-effort and hybrid systems. One of the design decisions sup-

porting these goals is to disallow interrupts in the kernel, and instead limit interrupt

latencies via specific preemption points. seL4’s latencies are currently over one mil-

lisecond in the worst case. With the introduction of additional preemption points,

and guided by this analysis, seL4’s interrupt latency can be reduced significantly.

The following chapter investigates how to achieve this without compromising on the

verifiability of the kernel.

There are still significant differences between the results of static analysis and mea-

surements on hardware. A part of this is due to conservatism in the pipeline and

cache model used by static analysis (mostly inevitable due to the degree of undocu-

mented behaviour in the processor). Another factor is code paths which are difficult

to reproduce from userspace because of very fragile pathological cases. It may be

possible to set up the state of the relevant data structures from within the kernel to

force these paths, but this may not result in a realistic scenario.

Finally, some amount of pessimism comes from undetected infeasible paths in the

control flow graph. While some of these paths could be eliminated manually in our

analysis, there is scope for automation which would remove both human effort and

the potential for human error. Since performing this analysis, we have automated

the determination of loop bounds (Chapter 6), and the detection of some of the

infeasible paths (Chapter 7).

Despite the limitations of the analysis, we have been able to analyse the complete

seL4 kernel. In conjunction with a formal proof of functional correctness, this already

makes seL4 a compelling platform for safety-critical applications.

Whilst the focus of this thesis has been WCET analysis for determining the interrupt

response time of the kernel, the results of our analysis can also be used to determine

bounds on the execution time of individual kernel operations. The bounds for non-

preemptible kernel operations are directly obtainable using the tools and analysis

presented, whilst bounds for preemptible operations need to consider the running

system and its possible preemptions. This knowledge forms part of a schedulability

analysis which is crucial for designing reliable hard real-time systems.

49

Chapter 4

Formal verification vs interrupt latency

This chapter is based on work published at EuroSys 2012 in which I was the primary author

(Blackham, Shi, and Heiser, 2012a). Many members of the seL4 team contributed to the ideas

presented in this chapter, including Kevin Elphinstone (lead seL4 architect), Adrian Danis,

Dhammika Elkaduwe, Gernot Heiser, Ben Leslie, Thomas Sewell and Gerwin Klein. However,

the final design and implementation of the modifications described are my own work. The

WCET analysis in this chapter was performed primarily by myself, with assistance from Yao

Shi. The correctness proofs of the seL4 scheduler changes were completed by Timothy Bourke

and the seL4 verification team.

4.1 Overview

The previous chapter presented a worst-case execution time analysis of seL4 which

required some modifications in order to ensure bounded interrupt latencies. We saw

that despite being bounded, the interrupt response time was still significantly large

for open systems (over 1 millisecond). Although we could avoid large interrupt

latencies through careful system construction (using the “closed system” model),

we would prefer to remove the sources of interrupt latency from the kernel itself.

Our aim is to be able to give shorter guarantees on seL4’s interrupt response time

without the need for artificial limitations.

Like most of its predecessor L4 kernels, seL4 disables interrupts throughout ker-

nel execution, except at specific preemption points. This was originally done to

optimise average-case performance, at the expense of increased average-case inter-

51

CHAPTER 4. FORMAL VERIFICATION VS INTERRUPT LATENCY

rupt latency. However, it was also essential to making the formal verification of

the functional behaviour of seL4 tractable. This suggests that constructing a kernel

which can guarantee acceptably short interrupt latencies, and be amenable to formal

verification, requires careful design.

In this chapter, we explore the limits of response time of a verified protected mi-

crokernel such as seL4, and the design implications for kernels for real-time mixed-

criticality systems. We describe the bottlenecks encountered in achieving suitable

real-time performance and the challenges associated with overcoming them, whilst

retaining the ability to be verified and thereby ensure strong functional guarantees.

We introduce the notion of incremental consistency as a design philosophy which

can ease the formal verification of real-time kernels and applications.

We have implemented changes to seL4 which reduce its interrupt latency by an

order of magnitude—from milliseconds to hundreds of microseconds. Although re-

verification of these changes is ongoing work, it is largely mechanical and similar

in nature to other proof maintenance activities over the past four years since the

original completion of the seL4 proof (Klein et al., 2009b).

The previous analysis of seL4’s response time in Chapter 3 targeted an 800 MHz

OMAP3 CPU. The work in this chapter uses a different platform, the i.MX31,

in order to benefit from better cache management. The OMAP3 differs from the

i.MX31 in CPU speed, micro-architecture and memory latency. We have repeated

our previous analysis on the i.MX31 platform to obtain directly comparable results.

4.2 Design considerations

4.2.1 Multi-threading models

In Section 3.3, we introduced the concepts of event-based and process-based ap-

proaches to support multi-threading in a kernel. These concepts are orthogonal but

related to the notion of fully-preemptible or non-preemptible kernels, as described

in Section 2.2.1. In this section, we address all combinations of the two and examine

the implications for formal verification and interrupt latency.

In the process-based model, each thread is allocated a dedicated kernel stack. This

kernel stack is used for handling requests on behalf of the thread. It implicitly stores

52

4.2. DESIGN CONSIDERATIONS

the state of any kernel operation in progress within the contents of the call stack and

local variables stored on the stack. A context switch alters the stack pointer and

thereby modifies the entire calling context. This poses challenges for both formal

verification and static analysis—in both domains, many techniques are dependent

on the notion of a “calling context” of a function, which implicitly encodes part of

its execution history. The context switch in a process-based kernel stymies the use

of any techniques that depend on the calling context.

A process-based kernel lends itself to being made fully preemptible (Ford et al.,

1999). With some defensive coding, an interrupt can be permitted almost anywhere

in the kernel. Therefore a fully-preemptible process-based kernel allows for very

short interrupt response times, despite significantly complicating WCET analysis.

The process-based kernel was also originally thought to be more efficient in the

presence of frequent context switching (Liedtke, 1993a). However, results on modern

ARM hardware have shown the difference to be negligible and in fact event-based

kernels have been shown to perform better in macro benchmarks (Warton, 2005).

An event-based kernel uses a single kernel stack to handle requests for all threads on

the system. This reduces memory consumption significantly, but changes the way

in which preemption can be handled. As the stack implicitly encodes an ordering

on function returns, it cannot be shared amongst multiple threads as doing so could

result in deadlock due to stack blocking. Scheduling disciplines such as the stack

resource policy (Baker, 1991) are able to overcome this, however they enforce specific

scheduling requirements, limiting system flexibility.

Some event-based kernels such as QNX Neutrino (QNX) are made fully preemptible

by discarding the shared stack on preemption. The preempted operation is later

restarted from the kernel’s entry point. However, under high interrupt rates, such a

model cannot guarantee forward progress of a preempted thread, as the preemption

may occur before any progress is made.

In fully-preemptible kernels, under both the process-based and event-based models,

the control flow can be diverted at any point by an incoming interrupt. This is a

significant challenge for formal verification and also static analysis (particularly for

static WCET analysis).

L4 kernels have traditionally been process-based but not fully preemptible.1 In a

1 There are some exceptions: the L4-based Fiasco kernel (Hohmuth, 2002) is process-based and
also preemptible; both OKL4 (Heiser and Leslie, 2010) and seL4 use a single kernel stack and are

53

CHAPTER 4. FORMAL VERIFICATION VS INTERRUPT LATENCY

microkernel-based system, kernel execution tends to be dominated by fast inter-

process communication (IPC) operations; there is little benefit in making the mi-

crokernel fully-preemptible, as long as the worst-case latencies of the longer-running

operations are kept reasonable through well-placed preemption points.

The design used by seL4 is non-preemptible and event-based, and thereby provides

reasonable average-case performance and guarantees forward progress under high

interrupt rates. It also simplifies formal verification and static analysis, as the seL4

code has a standard procedural control flow like any regular C program.

4.2.2 Saving preempted state

In seL4’s non-preemptible event-based model, preemption points are manually in-

serted to detect and handle pending interrupts in long operations. If an interrupt

is found to be pending, the state of the current operation must be explicitly saved.

There are several ways in which this state can be saved (and the operation later

resumed).

One possibility is to use continuations to efficiently represent the saved state of

a blocking or preempted kernel operation (Draves et al., 1991). A continuation

specifies (a) the function that a thread should execute when it next runs; and (b) a

structure containing any necessary saved state. Using continuations allows a thread

to discard its stack whilst it is blocked or preempted.

An alternative is to treat a preempted operation effectively as a restartable system

call. In this case, when a preemption point detects an interrupt, any necessary

state for the preempted operation is saved as the kernel returns up the call stack.

The thread is left in a state where simply re-executing the original system call will

continue the operation.

seL4 uses the restartable system call model over continuations. It uses a common

entry point for both new and restarted kernel operations, which means that the

code to validate an operation can be shared between both cases. For example, both

a new and a resumed deletion operation must check if the object to be deleting

(still) exists. This reduces code duplication and also verification effort, as kernel re-

entry automatically re-establishes the required invariants. It also simplifies reasoning

about the kernel’s correctness: it is not necessary to reason about what state a

not fully preemptible.

54

4.2. DESIGN CONSIDERATIONS

preempted thread is in and whether it was performing an operation. Instead, it

suffices to only reason about the state of objects in the system.

This design leads to a small amount of duplicated run-time effort, as the system call

must be decoded again each time a preempted operation is resumed. However, the

code paths taken are likely to be hot in the CPU’s caches. Work on the Fluke kernel

demonstrated that these overheads are negligible (Ford et al., 1999).

4.2.3 Incremental consistency

A noteworthy design pattern in seL4 is an idea we call incremental consistency:

large composite objects are composed of individual components that can be added,

deleted, or updated one-at-a-time. Specifically, there is always a constant-time

operation that will partially construct, deconstruct, or modify a large composite

object and still maintain a coherent system. In seL4, this is relevant to objects

such as address spaces and book-keeping data structures, which commonly pose

significant issues in deletion paths.

Incrementally consistent designs have several benefits:

1. they provide invariants which are almost certainly required for verification;

2. they reduce the verification burden as such invariants are only violated for

brief periods before being reestablished;

3. they provide natural locations for inserting preemption points, helping to re-

duce the interrupt latency of real-time systems.

Although a simple concept, it is not always easy to maintain in a system with

complex data structures and intricate dependencies between them.

4.2.4 Proof invariants of seL4

In seL4, consistency of the kernel is defined by a set of formalised invariants on

the kernel’s state and in turn all objects in the kernel. There are in fact hundreds

of invariants and lemmas that are maintained across all seL4 operations. These

include:

55

CHAPTER 4. FORMAL VERIFICATION VS INTERRUPT LATENCY

• well-formed data structures: structures such as linked lists are well-formed—

i.e. there are no circular links and all back-pointers point to the correct node

in doubly-linked lists;

• object alignment: all objects in seL4 are aligned to their size, and do not

overlap in memory with any other objects;

• algorithmic invariants: some optimisations in seL4 depend on specific proper-

ties being true, allowing redundant checks to be eliminated;

• book-keeping invariants: seL4 maintains a complex data-structure that stores

information about what objects exist on the system and who has access to

them. The integrity of seL4 depends on the consistency of this information.

The formally-verified seL4 code base proves that all kernel operations will maintain

all of the given invariants. Any modifications to seL4 require proving that these in-

variants still hold, in addition to proving that the code still correctly implements the

specification of the kernel. Therefore, for each preemption point that we add to seL4,

we must correspondingly update the proof in order to maintain these invariants.

In some cases, it is not possible to maintain all invariants, in which case the invariant

may be replaced by a weaker statement. The weakened invariant must be sufficient

to satisfy the remainder of the proof over the whole kernel. If an aspect of the

proof fails with the weakened invariant, this generally suggests that a bug has been

introduced and that extra safety checks may be required in the code.

4.3 Areas of improvement

In this section, we look at some of the long-running operations in seL4 and examine

how to either add suitable preemption points or replace the operations with better

algorithms. Most of these operations, whilst presented in the context of seL4, are

typical of any OS kernel providing abstractions such as protected address spaces,

threads and IPC.

There are some operations that may be found in other OS kernels which are not

present in seL4. One example is the absence of any memory allocation routines.

Almost all allocation policies are delegated to userspace; seL4 provides only the

56

4.3. AREAS OF IMPROVEMENT

mechanisms required to enforce policies and ensure they are safe (e.g. checking that

objects do not overlap) (Elkaduwe et al., 2007). This design decision removes much

of the complexity of a typical allocator from seL4 as well as some potentially long-

running operations.

4.3.1 Removal of lazy scheduling

As mentioned in Section 3.5, our initial WCET analysis identified a problematic

optimisation in seL4 known as lazy scheduling. Lazy scheduling attempts to min-

imise the manipulation of scheduling queues on the critical path of IPC operations

(Liedtke, 1993a), and has traditionally been used in almost all L4 kernels (Fiasco is

an exception). It is based on the observation that in L4’s synchronous IPC model,

threads frequently block while sending a message to another thread, but in many

cases the other thread replies quickly. Multiple such ping-pongs can happen on a

single time slice, leading to repeated de-queueing and re-queueing of the same thread

in the scheduler’s run queue.

Lazy scheduling leaves a thread in the run queue when it executes a blocking IPC

operation. When the scheduler is next invoked, it dequeues all threads which are

still blocked. Pseudo-code for a scheduler implementing lazy scheduling is shown in

Figure 4.1.

Lazy scheduling can lead to pathological cases where the scheduler must dequeue a

large number of blocked threads (theoretically only limited by the amount of memory

available for thread control blocks), which leads to unbounded worst-case latency.

As the scheduler is responsible for determining which thread to run next, it is not

always feasible or even meaningful to add a preemption point to this potentially

long-running operation.

We therefore had to change the scheduling model so that only runnable threads

existed on the run queue. In order to maintain the benefits of lazy scheduling, we

use a different scheduling trick, (internally known as “Benno scheduling”, after the

engineer who first implemented it in an earlier version of L4): when a thread is

unblocked by an IPC operation and, according to its priority, it is able to execute

immediately, we switch directly to it and do not place it into the run queue (as it

may block again very soon). In particular, the currently running thread does not

need to be on the run queue. This has the same best-case performance as lazy

57

CHAPTER 4. FORMAL VERIFICATION VS INTERRUPT LATENCY

thread_t chooseThread () {

foreach (prio in priorities) {

foreach (thread in runQueue[prio]) {

if (isRunnable(thread))

return thread;

else

schedDequeue(thread);

}

}

return idleThread;

}

Figure 4.1: Pseudo-code of scheduler implementing lazy scheduling

thread_t chooseThread () {

foreach (prio in priorities) {

thread = runQueue[prio].head;

if (thread != NULL)

return thread;

}

return idleThread;

}

Figure 4.2: Pseudo-code of scheduler without lazy scheduling

58

4.3. AREAS OF IMPROVEMENT

scheduling, but maintains good worst-case performance, as only a single thread (the

presently running one) may have to be enqueued lazily.

In this model the implementation of the scheduler is simplified, as it now just chooses

the first thread of highest priority, as demonstrated in the pseudo-code listing in

Figure 4.2. There is an existing invariant in the kernel that all runnable threads

on the system are either on the run queue or currently executing. This is sufficient

for lazy scheduling, but Benno scheduling obviously requires an additional invariant

which must be maintained throughout the kernel: that all threads on the scheduler’s

run queue must be in the runnable state.

This seemingly simple C code change impacts the proof in all functions that alter a

thread’s state, or modifies the scheduler’s run queue. The invariant must be proven

true when any thread ceases to be runnable and when any thread is placed onto the

run queue. The removal of lazy scheduling has since been implemented and proven

correct in the formally-verified kernel with these updated invariants.

4.3.2 Scheduler bitmaps

We added one more optimisation to the scheduler: a bitmap representing the pri-

orities that contain runnable threads. We make use of ARM’s count leading zeroes

(CLZ) instruction which finds the highest set bit in a 32-bit word, and executes in

a single cycle. seL4 supports 256 thread priorities, which we represent using a two-

level bitmap. The 256 priorities are divided into 8 “buckets” of 32 priorities each.

The top-level bitmap contains 8 bits each representing the existence of runnable

threads in any of the 32 priorities within a bucket. Each bucket has a 32-bit word

with each bit representing one of the 32 priorities. Using two loads and two CLZ

instructions, we can find the highest runnable priority very efficiently, and have thus

removed the loop from Figure 4.2 altogether.

This optimisation technique is commonly used in other OS schedulers and has re-

duced the WCET of seL4 in several cases. However, it introduces yet another

invariant to be proven: that the scheduler’s bitmap precisely reflects the state of

the run queues. As this is an incremental change to the existing scheduler, the

re-verification effort is significantly lowered.

59

CHAPTER 4. FORMAL VERIFICATION VS INTERRUPT LATENCY

4.3.3 Aborting IPC operations

Threads in seL4 do not communicate directly with each other; they instead commu-

nicate via endpoints which act as communication channels between threads. Multiple

threads may send or receive messages through an endpoint. Each endpoint main-

tains a linked list of all threads waiting to send or receive a message. Naturally,

this list can grow to an arbitrary length (limited by the number of threads in the

system, which is limited by the amount of physical memory that can be used for

threads, which in turn is theoretically limited by the size of free physical memory

after the kernel boots). The length of this list is not an issue for most operations,

as they can manipulate the list in constant time.

The only exception is the operation to delete an endpoint. Deletion must iterate over

and dequeue a potentially large number of threads. There is an obvious preemption

point in this operation: after each thread is dequeued. This intermediate step is

fortunately consistent with all existing invariants, even if the thread performing the

deletion operation is itself deleted. Forward progress is ensured by deactivating

the endpoint at the beginning of delete operations, so threads (including those just

dequeued) cannot attempt another IPC operation on the same endpoint.

The preemption point here is obvious because it is a direct result of the incremental

consistency design pattern in seL4. As a result, the impact of these changes on the

proof are minimal.

4.3.4 Aborting badged IPC operations

A related real-time challenge in seL4 is the aborting of badged IPC operations.

Badges are unforgeable tokens (represented as an integer) that server processes may

assign to clients. When a client sends a message to the server using a badge, the

server can be assured of the authenticity of the client. A server may revoke a specific

badge, so that it can ensure that no existing clients have access to that badge. Once

revoked, the server may re-issue the badge to a different client, preserving guarantees

of authenticity.

In order to revoke a badge, seL4 must first prevent any thread from starting a new

IPC operation using the badge, and second ensure that any pending IPC operations

using the badge are aborted. This second operation stores book-keeping informa-

tion in a multiset data structure, to track threads and their badges, and requires a

60

4.3. AREAS OF IMPROVEMENT

compromise between execution time, memory consumption and ease of verification.

The choice of data structure used has a significant impact on all three factors.

For example, a balanced binary-tree structure has very good worst-case and average-

case execution time, but requires more work in the verification effort; the invariants

involved in self-balancing binary tree structures are more tedious than linear data

structures. A hash-table-based data structure may be easier to verify, and has good

average-case performance, but raises challenging memory allocation issues in seL4,

where memory allocation is handled outside the kernel. It also does not improve

worst-case execution time, as a determined adversary could potentially force hash

collisions.

Instead, seL4 uses a simple linked list containing the list of waiting threads and their

associated badges, as described in Section 4.3.3. Enqueuing and dequeuing threads

are simple O(1) operations. In order to remove all entries with a specific badge,

seL4 must iterate over the list; this is a potentially unbounded operation, and so

we require a preemption point. Unlike the simple deletion case where we simply

restart from the beginning of the list, here we additionally need to store four pieces

of information:

1. at what point within the list the operation was preempted, so that we can

avoid repeating work and ensure forward progress;

2. a pointer to the last item in the list when the operation commenced, so that

new waiting clients do not affect the execution time of the original operation;

3. the badge which is currently being removed from the list, so that if a badge

removal operation is preempted and a second operation is started, the first

operation can be completed before starting the new one;

4. a pointer to the thread that was performing the badge removal operation when

preempted, so that if another thread needs to continue its operation, it can

indicate to the original thread that its operation has been completed.

With all this information, we are able to achieve our goal of incremental consis-

tency. The above information is associated with the endpoint object rather than

the preempted thread (as would be done in a continuation). In doing so, we can

reason simply about the state of objects in our invariants, rather than the state of

any preempted thread.

61

CHAPTER 4. FORMAL VERIFICATION VS INTERRUPT LATENCY

Note that although the preemption point bounds interrupt latency, this approach

gives a longer than desirable execution time for the badged abort operation, as every

waiting thread must be iterated over, rather than only threads waiting for a specific

badge. This has not yet been an issue in real systems, however, should it cause

problems then we may replace it with an alternative such as a self-balancing binary

tree data structure and undertake the extra verification effort required.

4.3.5 Object creation

When objects, such as threads, page tables or memory frames, are created on be-

half of the user, their contents must be cleared and/or initialised in order to avoid

information leakage. Clearing an object may be a long-running operation, as some

kernel objects are megabytes in size (e.g. large memory frames on ARM can be up

to 16 MiB in size; capability tables, used for managing authority, can be of arbitrary

size).

The code to clear an object was previously deep inside the object creation path,

and replicated for each type of object. Additionally, the code updated some of the

kernel’s state before objects were cleared, and the rest of the kernel’s state after

objects were cleared. Adding a preemption point in the middle of clearing an object

would therefore leave the kernel in an inconsistent state.

To make clearing of objects preemptible, seL4 required significant restructuring of

the object creation paths. We chose to clear out the contents of all objects prior to

any other kernel state being modified. The progress of this clearing is stored within

the object itself. The remainder of the creation code that manipulates the state of

the kernel (e.g. updating the kernel’s book-keeping data structures) can usually be

performed in one short, atomic pass.

Page directories (top-level page tables) however pose an added complication. The

top 256 MiB of virtual address space is reserved for the seL4 kernel, and is mapped

into all address spaces. When a new page directory is created, the kernel mappings

for this region must be copied in. This copy operation is embedded deep within the

creation path of page directories. There is also an seL4 invariant specifying that

all page directories will contain these global mappings—an invariant that must be

maintained upon exiting the kernel.

Preempting the global-mapping copy poses significant (though not insurmountable)

62

4.3. AREAS OF IMPROVEMENT

challenges for verification. Fortunately, on the ARMv6 and ARMv7 architectures,

only 1 KiB of the page table needs to be updated. We chose to make all other block

copy and clearing operations in seL4 preempt at multiples of 1 KiB, as smaller mul-

tiples would not improve the worst-case interrupt latency until the global-mapping

copy is made preemptible. Given that the time required to copy 1 KiB of data is in

the order of microseconds, such operations no longer contributed to the worst-case

execution time.

We address the issue of how to reduce this further, forgoing the requirements of

formal verification, in Section 5.3.4.

4.3.6 Address space management

In a virtual address space, physical memory frames are mapped into page tables or

page directories, creating a mapping from virtual address to physical address. In

order to support operations on individual frames, seL4 must additionally maintain

the inverse information: which address space(s) a frame has been mapped into, and

at which address.

In seL4, all objects are represented by one or more capabilities (Dennis and Van Horn,

1966), or caps, which encapsulate metadata about the object such as access rights

and mapping information. Capabilities form the basic unit of object management

and access control in seL4 systems, and a typical system may have tens or hundreds

of thousands of caps. As such, the design of seL4 endeavours to keep caps small

to minimise memory overhead. seL4 caps are 16 bytes in size: 8 bytes are used for

pointers to maintain their position in a “derivation tree”, and the other 8 bytes are

used for object-specific purposes.

8 bytes of extra information suffices for almost all objects, however caps to physical

memory frames are an exception. To support seL4’s object deletion model, frames

are required to store their physical address, the virtual address at which they are

mapped, and the address space into which they are mapped. This, along with some

extra bits of metadata, exceeds the 8-byte limit inside a cap.

In order to squeeze this information into 8 bytes, the original seL4 design uses a

lookup table to map from an 18-bit index to an actual address space. The index is

called an address space identifier, or ASID, and is small enough to be stored inside

a frame cap. The lookup table is stored as a sparse 2-level data structure in order

63

CHAPTER 4. FORMAL VERIFICATION VS INTERRUPT LATENCY

Page table

Frame cap Frame

Page directory

ASID directory

ASID pool

Figure 4.3: Virtual address spaces managed using ASIDs. Each arrow denotes a refer-
ence (pointer) stored in one object, referring to another object.

to minimise space usage—the first 8 bits of the ASID are an index into the first

level (the ASID directory), and the remaining 10 bits are an index into the second

level (an ASID pool). Each ASID pool provides entries for 1024 address spaces. The

objects and references required for using ASIDs are shown in Figure 4.3.

Using ASIDs offered the additional benefit of enabling dangling references to deleted

address spaces to safely exist. If frame caps were to store a reference to the address

space itself, then when the address space is deleted, all frame caps referring to it

would need to be updated to purge this reference. By instead indirecting through

the ASID table, the references from each frame cap, whilst stale, are harmless. Any

time the ASID stored in a frame cap is used, it can be simply checked that the

mapping in the address space (if any still exist) agrees with the frame cap. As a

result, deleting an address space in this design simply involves: (a) removing one

entry from the ASID lookup table, and (b) invalidating any TLB entries from the

address space.

However, the use of ASIDs poses issues for interrupt latency in other areas, such

as locating a free ASID to allocate, and deleting an ASID pool. Locating a free

ASID is difficult to make preemptible—in the common case, a free ASID would be

found immediately, but a pathological case may require searching over 1024 possible

64

4.3. AREAS OF IMPROVEMENT

Shadow page directory

Page table Shadow page table

FrameFrame cap

Page directory

Figure 4.4: Virtual address spaces managed using shadow page tables. As in Figure 4.3,
each arrow denotes a reference stored in one object to another. The dotted
line shows an implicit link by virtue of the shadow being adjacent to the
page table itself.

ASIDs. Similarly, deleting an ASID pool requires iterating over up to 1024 address

spaces. Whilst we could play with the size of these pools to minimise latency, the

allocation and deallocation routines are inherently difficult to preempt, and so we

decided to seek an alternative to ASIDs.

By removing ASIDs, we needed some other method to prevent dangling references

within frame caps. In particular, we needed to store a back-pointer from a virtual

address mapping to the frame cap used for the mapping. We chose to store these

pointers in a shadow page table, mapping from virtual address to frame cap (as

opposed to mapping to the frame itself). This effectively doubles the amount of

space required for each page table and page directory. We store this data adjacent

to the page table in order to facilitate fast lookup from a given page table entry,

as shown in Figure 4.4. Now, all mapping and unmapping operations, along with

address space deletion, must eagerly update all back-pointers to avoid any dangling

references.

This design removes the ability to perform lazy deletion of address spaces, but

65

CHAPTER 4. FORMAL VERIFICATION VS INTERRUPT LATENCY

resolves many of the latency issues surrounding the management of ASID pools. We

needed to insert preemption points in the code to delete address spaces, however this

is trivial to do and can be done without violating any invariants on the kernel’s state.

The natural preemption point in the deletion path is to preempt after unmapping

each entry in a page table or page directory. To avoid repeating unnecessary work,

we also store the index of the lowest mapped entry in the page table and only resume

the operation from that point.

We observe that the ability to add a preemption point here is again a direct result

of the shadow page table design adhering to the incremental consistency design

pattern.

Memory Overhead of Shadow Page Tables The space overhead of shadow page tables

might be considered detrimental on some systems. We can compare it to an alter-

native solution, where we utilise a frame table to maintain bookkeeping information

about every physical page on the system. This is the approach used by many other

operating systems, including Linux.

The frame table incurs a fixed memory overhead and removes the need for shadows.

In its simplest form, without support for sharing pages between address spaces

(which the shadow page table solution does support), a frame table would require

a single pointer to track each frame cap created. On a 32-bit system with 256 MiB

of physical memory and 4 KiB frames, the frame table would occupy 256 KiB of

memory. On ARMv6 platforms, page directories are 16 KiB and page tables are

1 KiB (each page table spans 1 MiB of virtual address space). A densely-packed

page directory covering 256 MiB of virtual address space would use an extra 256 KiB

in shadow page tables, and an extra 16 KiB per address space in page directories.

In this scenario, the difference between the two approaches is negligible (16 KiB).

Shadow page tables have higher memory overheads when address spaces are sparsely-

populated. However, even without shadow page tables, sparsely-populated address

already incur wasted space in the page table structures. The use of shadow page

tables only amplifies (doubles) this wastage.

66

4.4. L1 CACHE PINNING

4.4 L1 cache pinning

In order to achieve faster interrupt delivery and tighter bounds on the worst-case

execution time (WCET) of seL4, we modified seL4 to pin specific cache lines into

the L1 caches so that these cache lines would not be evicted. We selected the

interrupt delivery path, along with some commonly accessed memory regions to be

permanently pinned into the instruction and data caches. The specific lines to pin

were chosen based on execution traces of both a typical interrupt delivery, and some

worst-case interrupt delivery paths.

As the cache on our target platform (described in Section 4.5.1) supports locking

one or more complete cache ways, we can choose to lock 1/4, 1/2 or 3/4 of the contents

of the cache. We selected as much as would fit into 1/4 of the cache (4 KiB), without

resorting to code placement optimisations. A total of 118 instruction cache lines

were pinned, along with the first 256 bytes of stack memory and some key data

regions.

The benefit of cache pinning on worst-case execution time is shown in Table 4.1. On

the interrupt path, where the pinned cache lines have the greatest benefit, the worst-

case execution time is almost halved. On other paths, the gain is less significant but

still beneficial.

Of course, these benefits do not come for free; as a portion of the cache has been

partitioned for specific code paths, the remainder of the system has less cache for

general usage which can adversely affect average-case performance if not carefully

managed. A system with hard real-time requirements may also require that code

and data used for deadline-critical tasks are pinned into the cache. Methods to

optimally select cache lines to pin for periodic hard real-time task sets have been

the subject of previous research (Campoy et al., 2001; Puaut and Decotigny, 2002).

Our platform has a 128 KiB unified L2 cache with a hit access latency of 26 cycles

(compared with external memory latency of 96 cycles). Our compiled seL4 binary

is 36 KiB, and so it would be possible to lock the entire seL4 microkernel into the

L2 cache. Doing so would drastically reduce execution time even further, but our

analysis tools did not yet provide such support when this analysis was performed.

In Chapter 5, our newer analysis tools allow us to add this support and reduce the

worst-case latency even further as a result.

67

CHAPTER 4. FORMAL VERIFICATION VS INTERRUPT LATENCY

Without With
Event handler pinning pinning % gain

System call 421.6µs 378.0µs 10%
Undefined instruction 70.4µs 48.8µs 30%
Page fault 69.0µs 50.1µs 27%
Interrupt 36.2µs 19.5µs 46%

Table 4.1: Improvement in computed worst-case latency by pinning frequently used
cache lines into the L1 cache

4.5 Analysis method

After making the changes outlined above, we analysed seL4 to compute a new safe

upper bound on its interrupt latency. The analysis was performed on a compiled

binary of the kernel and finds the longest paths through the microkernel using a

model of the hardware. We also evaluate the overestimation of the analysis by

executing the longest paths on real hardware.

4.5.1 Evaluation platform

seL4 can run on a variety of ARM-based CPUs, including processors such as the

ARM Cortex-A8 which can be clocked at over 1 GHz. However, we were unable

to obtain a recent ARM processor (e.g. using the ARMv7 architecture) which also

supported cache pinning. In order to gain the benefits of cache pinning, we ran

our experiments on a somewhat older processor, the Freescale i.MX31, on a KZM

evaluation board. The i.MX31 contains an ARM1136 CPU core with an 8-stage

pipeline and is clocked at 532 MHz.

The CPU has split L1 instruction and data caches, each 16 KiB in size and 4-

way set-associative. These caches support either round-robin or pseudo-random

replacement policies. The caches also provide the ability to select a subset of the four

ways for cache replacement, effectively allowing some cache lines to be permanently

pinned. Alternately, the caches may also be used as tightly-coupled memory (TCM),

providing a region of memory which is guaranteed to accessible in a single cycle.

As our analysis tools do not yet support round-robin replacement (and pseudo-

random is not feasible to analyse), we analysed the caches as if they were a direct-

mapped cache of the size of one way (4 KiB) or, viewed alternately, as if the other

68

4.5. ANALYSIS METHOD

three cache ways were pinned with user data. This is a pessimistic but sound

approximation of the cache’s behaviour, as only the most recently accessed cache

line in any cache set is guaranteed to reside in the cache when next accessed.

The i.MX31 also provides a unified 128 KiB L2 cache which is 8-way set-associative.

The KZM board provides 128 MiB of RAM with an access latency of 60 cycles when

the L2 cache is disabled, or 96 cycles when the L2 cache is enabled. Due to this

significant disparity in memory latency, we analysed the kernel both with the L2

cache enabled and with it disabled.

We disabled the branch predictors of the ARM1136 CPU both on hardware used for

measurements and in the static analysis itself, as our analysis tools do not yet model

them. Interestingly, using the branch predictor increases the worst-case latency of

a branch: with branch predictors enabled, branches on the ARM1136 vary between

0 and 7 cycles, depending on the type of branch and whether or not it is predicted

correctly. With the branch predictor disabled, all branches execute in a constant 5

cycles.

The effect of disabling these features on execution time is quantified in Section 4.6.4.

4.5.2 Static analysis for worst-case execution time

Our analysis to compute the interrupt response time of seL4 is based upon work

described in Chapter 3. This section summarises the method used for this analysis

and highlights improvements over the previous analysis technique.

We use a newer version of Chronos (4.2), which provides support for a combined

L1 and L2 cache analysis (Chattopadhyay and Roychoudhury, 2009). As before, we

use Chronos to compute the worst-case execution time of seL4 and evaluate our im-

provements to seL4. We had previously modified Chronos to analyse binaries on the

ARMv7 architecture using a model of the Cortex-A8 pipeline. For this analysis we

adapted the pipeline model to support the ARM1136 CPU on our target hardware.

ARM’s documentation of the ARM1136 describes the performance characteristics

of the pipeline in detail (ARM, 2005).

Additional constraints were added manually in order to exclude certain infeasible

paths. As the analysis only considers the control flow graph, it has no insight into

the values of variables in the kernel. Therefore, it may consider paths that are

not actually realisable. In order to exclude these paths, we manually added extra

69

CHAPTER 4. FORMAL VERIFICATION VS INTERRUPT LATENCY

constraints to the ILP problem where necessary. These constraints take one of three

forms:

• a conflicts with b in f : specifies that the basic blocks at addresses a and b

are mutually exclusive, and will not both execute during an invocation of the

function f . If f is invoked multiple times, a and b can each be executed under

different invocations.

• a is consistent with b in f : specifies that the basic blocks at addresses a and

b will execute the same number of times during an invocation of the function

f .

• a executes n times: specifies that the basic block at address a will only ever

execute at most n times in total in all possible contexts.

It would be possible to transform these extra constraints into proof obligations—

statements which a verification engineer could be asked to prove formally. This

would remove the possibility of human error mistakenly excluding a path which

is in fact feasible, resulting in an unsound analysis. We validate some of these

constraints automatically in Chapter 6.

4.5.3 Comparing analysis with measurements

As in Section 3.4.5, we aim to gain some insight into how close our upper bounds are.

We wrote test programs to exercise the longest paths we could find ourselves (guided

by the results of the analysis) and ran these on the hardware. We measured the

execution time of these paths using the cycle counters available on the ARM1136’s

performance monitoring unit.

In order to quantify the amount of pessimism introduced by conservatism in the

hardware model, we use our static analysis model to compute the execution time of

paths that we are able to reproduce, and compared them with real hardware. The

results of this are shown in Figure 4.7. These are upper bounds on the amount of

pessimism, as we cannot guarantee that we have truly hit the worst-case scenario

for the hardware.

70

4.6. RESULTS

Event
Before After
L2 off L2 off L2 on

computed computed observed ratio computed observed ratio

Syscall 3851µs 332.4µs 101.9µs 3.26 436.3µs 80.5µs 5.42
Undef. inst. 394.5µs 44.4µs 42.6µs 1.04 76.8µs 43.1µs 1.78
Page fault 396.1µs 44.9µs 42.9µs 1.05 77.5µs 41.1µs 1.89
Interrupt 143.1µs 23.2µs 17.7µs 1.31 44.8µs 14.3µs 3.13

Table 4.2: WCET for each kernel entry-point in seL4, before and after our changes to
reduce WCET. Computed results are a safe upper bound on execution time.
Observed results are our best-effort attempt at recreating worst cases on
hardware.

4.6 Results

We first computed the worst-case execution time of our modified seL4 kernel binary

using only the loop iteration counts and no other human input. This provided us

with an upper bound on the execution time of the kernel of over 600 000 cycles

(1.2 ms). We converted the solution to a concrete execution trace. However, from

looking at these traces it was quickly apparent that the solution was in fact infeasible

as the path it took was meaningless—no input could possibly result in execution of

the path.

We then added additional constraints of the form described in Section 4.5.2, in

order to eliminate paths that were obviously infeasible. Each of these constraints

was derived by observing why a given trace could not be executed. The biggest

cause of these infeasible paths was due to the style of coding in seL4, which stems

from its functional roots. Many functions in seL4 contain switch statements that

select code based on the type of cap passed in, as shown in Figure 4.5. If f() and

g() both use this style then, due to virtual inlining, much of the inlined copy of g()

will never be executed, as the return value of getCapType() is guaranteed to be the

same in both functions.

Our analysis detects the WCET of g(), which only occurs for one specific cap

type, as contributing to every invocation of g() from f(). This leads to significant

overestimation of the WCET. Based on this, we added several constraints of the

form a is consistent with b, where a and b were the blocks corresponding to the same

types in f() and g(). Later, we show how these constraints can be automatically

validated (Chapter 6), or detected (Chapter 7).

71

CHAPTER 4. FORMAL VERIFICATION VS INTERRUPT LATENCY

void f(cap_t cap) {

...

switch (getCapType(cap)) {

case frame_cap:

...

g(cap);

...

break;

case page_table_cap:

...

g(cap);

...

break;

...

Figure 4.5: Example of the coding style used in many seL4 functions. This arises
from the use of pattern matching over type constructors in its Haskell
specification.

We added additional constraints until we obtained a path that appeared to be

feasible. This path has an execution time estimate of 232 098 cycles with the L2

cache enabled, or 176 851 cycles with the L2 cache disabled. On the 532 MHz

i.MX31, this corresponds to an execution time of 436.3µs with L2 and 332.4µs

without L2.

The full results of the analysis are shown in Table 4.2. The first column shows

the WCET before we modified seL4 as outlined in this chapter, making the results

comparable to our previous analysis in Chapter 3 (the previous analysis was on

the OMAP3 platform and thus is not directly comparable).2 For the system call

path, we observe a factor of 11.6 improvement in WCET, largely due to the added

preemption points. The other kernel entry points also see a significant improvement

because the scheduler bitmaps and the new address-space management techniques

remove two potentially long-running loops.

The worst-case interrupt latency of seL4 is the sum of the WCET for the system

call path (the longest of all kernel operations), and the interrupt path. This gives

an upper bound on the interrupt latency of 481µs with L2 and 356µs without.

2 The i.MX31 processor in this analysis has half the L1 cache of the OMAP3 from our previous
analysis, a 33% slower clock, and only a single-issue pipeline. Additionally, the difference in latency
between a cache hit and a cache miss is much smaller on the i.MX31 (when the L2 is disabled),
reducing the amount of overestimation in the analysis.

72

4.6. RESULTS

For all entry points except the system call handler, we were able to construct sce-

narios that produced execution times that were within 31% of the computed upper

bound when the L2 cache was disabled. Enabling the L2 cache increases the amount

of pessimism in our upper bounds, and thus the disparity is much higher (e.g. 3.13

for the interrupt path). Recreating the path identified by the system call handler

proved to be extremely complicated and our best efforts only achieved a case that

was within 5.4 times of our computed upper bound.

4.6.1 Analysis

The worst-case we detected was a system call performing an atomic two-way (send-

receive) IPC operation, using all the features seL4 provides for its IPC, including

a full-length message transfer, and granting access rights to objects over IPC. The

largest contributing factor to the run-time of this case was address decoding for

caps. Recall that caps are essentially pointers to kernel objects with some associ-

ated metadata. In seL4, caps have addresses that exist in a 32-bit capability space;

decoding an address to a kernel object may require traversing up to 32 edges of a

directed graph, as shown in Figure 4.6. In a worst-case IPC, this decoding may

need to be performed up to 11 times, each in different capability spaces, leading

to a significant number of cache misses. Note that most seL4-based systems would

be designed to require at most one or two levels of decoding; it would be highly

unusual to encounter anything close to this worst-case capability space on a real

system, unless crafted by an adversary.

This worst case demonstrates that our work has been successful in minimising the

interrupt latency of the longer running kernel operations, such as object creation

and deletion. In previous analyses of seL4, a distinction was made between open and

closed systems, where closed systems permitted only specific IPC operations to avoid

long interrupt latencies, and open systems permitted any untrusted code to execute.

Our work now eliminates the need for this distinction, as the latencies for the open-

system scenarios are no more than that of the closed system. However, retaining

a closed system distinction would permit the latency to be reduced further, as the

worst-case lookup of a 32-level-deep capability could be avoided in such a design.

The atomic send-receive operation exists in seL4 primarily as an optimisation to

avoid entering the kernel twice for this common scenario—user-level servers in an

event loop will frequently respond to one request and then wait to receive the next.

73

CHAPTER 4. FORMAL VERIFICATION VS INTERRUPT LATENCY

Object B

0 1

0 1

0 1

0 1

0 1

0 1

Object A

Figure 4.6: A worst-case address decoding scenario uses a capability space that re-
quires a separate lookup for each bit of an address. Here, a binary address
010...0 would decode to object A, but may need to traverse up to 32
levels of this structure to do so.

If necessary, the execution time of this operation could be almost halved either by

inserting a preemption point between the send and receive phases, or by simply

forcing the user to invoke the send and receive phases separately. This latter ap-

proach would be detrimental to average-case throughput. We investigate placing a

preemption point between the two phases in Section 5.3.6 of the following chapter.

Other entry points to the kernel show no unexpected pathological cases; these entry

points are largely deterministic and have little branching. Like the IPC operations,

the worst case for these require decoding a capability that exists 32 levels deep in

the capability space. However only one such capability needs to be decoded in the

other exception handlers (to the thread which will handle the exception).

The improvements outlined in this chapter do not significantly affect the best- or

average-case execution time of the kernel, because IPCs are the most frequent op-

erations in microkernel-based systems. seL4 already provides fastpaths to improve

the performance of common IPC operations by an order of magnitude—fastpaths

are highly-optimised code paths designed to execute a specific operation as quickly

as possible. The fastpath performance is not affected by our preemption points. In

74

4.6. RESULTS

fact, the IPC fastpath is one of the fastest operations the kernel performs (around

185 cycles on the ARM1136) and hence there would be no benefit in making it

preemptible.

For complete systems, the in-memory working set of the typical workload must

be considered to determine if reducing the available cache memory will have any

detrimental effects—particularly for memory-bound applications.

4.6.2 Conservatism of hardware model

Our hardware model is conservative to guarantee a safe bound on execution time.

In order to determine the amount of pessimism this adds to our upper bounds, we

computed the execution time of the specific paths we tested in our analysis. We

achieved this by adding extra constraints to the ILP problem to force analysis of the

desired path. The results are shown in Figure 4.7. The observed execution times

were obtained by taking the maximum of 100 000 executions of each path.

The disparity between the computed and observed time is attributable to both

conservatism in our pipeline and cache models of the processor, and the difficultly

in forcing a worst-case processor state. To identify the amount due to conservatism

in cache modelling, we also configured the cache to allow only a single cache way

for replacement (i.e. emulating a direct-mapped cache) and observed the worst-case

execution times on hardware. This resulted in a negligible change in overestimation

on all paths except for the system call path, where overestimation was reduced by

16%.

As the system call path is much longer than the other three paths (by an order of

magnitude), contention within each cache set is more likely. However the small dif-

ferences suggest that our measurement tests exhibit little cache contention—longer

paths with pathological cache conflicts could still arise.

4.6.3 Computation time

The entire static analysis ran in 65 minutes on an AMD Opteron (Barcelona) system

running at 2.1 GHz. We repeated all analysis steps for each entry point—system

calls, undefined instructions, page faults and interrupts. The analysis of the latter

three entry points completed within seconds, whilst the analysis of the system call

75

CHAPTER 4. FORMAL VERIFICATION VS INTERRUPT LATENCY

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

System
call

Undefined
Inst.

Page
fault

Interrupt

%
 o

v
e
re

s
ti
m

a
ti
o
n

L2 cache enabled
L2 cache disabled

L2 cache disabled, direct-mapped

Figure 4.7: Overestimation of our hardware model for static analysis with the L2 cache
enabled and disabled, and with a direct-mapped cache. Each bar corre-
sponds to a realisable path and shows the percentage difference between
the observed execution time on hardware and the predicted execution time
for the same path.

entry point took significantly longer. This is to be expected, as the system call

handler is the entry point for the majority of seL4’s code.

For the system call handler, the most computationally-intensive step of the analysis

was running Chronos, taking 61 minutes. Over half the execution time of Chronos

was spent in the address and cache analysis phases—these phases compute worst-

case cache hit/miss scenarios for each data load, store and instruction fetch.

We went through numerous iterations of adding additional constraints to the ILP

problem in order to exclude infeasible paths, with each iteration taking around an

hour to execute.

4.6.4 Impact of L2 and branch predictors

As mentioned in Section 4.5.1, we disabled the branch predictors on our platform

and in our model as we are presently unable to analyse their effect. We also compare

the effects of enabling or disabling the L2 cache. Figure 4.8 shows the impact of

enabling these features both individually and together on actual execution time.

76

4.7. RELATED WORK

It is interesting to note that some of the observed times actually increased when

enabling the L2 cache, by up to 8% for the page fault path. This is because the

worst-case scenarios execute with cold caches that are polluted with data which

must first be evicted. Enabling the L2 cache increases the latency of the memory

hierarchy—from 60 cycles to 96 cycles for a miss serviced by main memory—which

is particularly detrimental to cold-cache performance. The code paths executed in

seL4 are typically very short and non-repetitive, thereby gaining little added benefit

from the L2 cache that is not already provided by the L1 caches.

Enabling the branch predictor gave a minor improvement in all test cases. The

benefit is minimal again because of the cold-cache nature of these benchmarks; the

benefit of the branch predictor barely makes up for the added costs of the initial

mispredictions.

Despite these results, the L2 cache and branch predictors greatly improve perfor-

mance in the average case. Reduced run-time translates directly to increased battery

life for hand-held devices such as mobile phones, and so the slightly detrimental ef-

fect on interrupt latency is almost certainly worthwhile on such devices.

As noted earlier, it is possible to lock the entire seL4 microkernel into the L2 cache,

giving a substantial benefit to worst-case interrupt latency of the kernel whilst also

reducing non-determinism. We pursue this idea in Section 5.3.7.

4.7 Related work

The intersection of formal verification, kernel design and real-time kernels is not an

area previously explored in the literature. However, each of these areas individually

have been researched in quite some depth. This section will cover the most relevant

related work.

Ford et al. (1999) have explored the differences between process-based and event-

based kernels, and presented the Fluke kernel which, like seL4, utilises restartable

system calls rather than continuations to implement an atomic kernel API. They

outline the advantages of this model, including ease of userspace checkpointing, pro-

cess migration and aided reliability. They also measured the overhead of restarting

kernel operations to be at most 8% of the cost of the operations themselves.

Several subprojects of Verisoft have attempted to formally verify all or part of dif-

77

CHAPTER 4. FORMAL VERIFICATION VS INTERRUPT LATENCY

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

System
call

Undefined
Inst.

Page
fault

Interrupt

N
o

rm
a

lis
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

Baseline
L2 enabled

B-pred enabled
L2+B-pred enabled

Figure 4.8: Effects of enabling L2 cache and/or branch prediction on worst-case ob-
served execution times. Each path is normalised to the baseline execution
time (L2 and branch predictors disabled).

ferent OS kernels. They have verified a very small and simple time-triggered RTOS

called Olos (Daum et al., 2009b), as well as parts of their Vamos microkernel

(Daum et al., 2009a). These kernels are also based on the event-driven single-kernel-

stack model. They are much simpler kernels than seL4 (e.g. Vamos supports only

single-level page tables) and are designed for the formally-verified VAMP processor

(Beyer et al., 2006). Whilst the VAMP processor is a real-world product, it is not

widely used.

A related project has constructed and verified a small hypervisor on the VAMP

processor down to the assembly level (Alkassar et al., 2010; Paul et al., 2012). The

verification process uses the C verification tool, VCC (Cohen et al., 2009), linked by a

pen-and-paper proof to semantics on a simple C intermediate language and a macro

assembler language. VCC has also been used to verify parts of the Microsoft Hyper-

V hypervisor, although neither of these hypervisors provide real-time guarantees.

A second related project began to verify the PikeOS RTOS, which consists of a

multi-threaded, preemptible, L4-based microkernel acting as a hypervisor for par-

avirtualised guests (Baumann et al., 2010, 2012). PikeOS is a commercial product

used in safety-critical real-time systems such as aircraft and medical devices, but

78

4.8. SUMMARY

there has been no indication of a sound worst-case interrupt latency analysis.

Some progress has been made towards verifying code that executes in the presence

of interrupts. Feng et al. (2008) have constructed a framework on which to reason

about OS code in the presence of interrupts and preemption. Gotsman and Yang

(2011) have also constructed frameworks for verifying preemptible and multiproces-

sor kernels, and have used theirs to verify an OS scheduler.

Chapman et al. (1994) propose the idea of reusing a proof system and the invariants

proven within it to aid worst-case timing analysis. They use symbolic execution

to analyse a program in order to compute verification conditions for correctness

proofs, and compute path conditions for timing analysis. They use SPARK Ada

which integrates partial proof information such as pre- and post- conditions into the

language. Although this idea has promise, their paper describes a work-in-progress

implementation that does not appear to have been completed.

Klein (2009) provides thorough overview of the state of formal verification of oper-

ating systems.

4.8 Summary

In this chapter we have explored how to reduce the worst-case interrupt response

time of a verified protected microkernel such as seL4. We have added preemp-

tion points into some of seL4’s operations, and have restructured others in order

to remove all non-preemptible long-running operations from the kernel. These im-

provements have been guided by an analysis of the kernel’s worst-case execution

time.

From its inception, the design of seL4 was intended to limit interrupt latency to

short bounded operations, although this was not true of the original implementation.

Using static analysis to compute interrupt latencies, we could systematically validate

and improve the design where necessary.

As a verified microkernel, seL4 imposes additional constraints on how preemption

may be introduced. We must take care when adding preemption points to ensure

that the effort of re-verifying the kernel is minimised. This effort can be reduced

by avoiding unnecessary violations of global kernel invariants, and searching for

intermediate states that are generally consistent with the kernel’s normal execution.

79

CHAPTER 4. FORMAL VERIFICATION VS INTERRUPT LATENCY

With careful placement of preemption points, we have eliminated large interrupt

latencies caused by longer running operations inside seL4. This enables seL4 to host

execution of untrusted code, confined by the capabilities given to it, and still safely

meet real-time deadlines within 189 117 cycles. On modern embedded hardware

this translates to a few hundred microseconds, which is ample for many real-time

applications.

The biggest issue with seL4’s design in terms of interrupt latency, is the decision to

use a versatile 32-bit capability addressing scheme—each of the 32 bits that need

to be decoded can theoretically lead to another cache miss, and decoding several

such addresses results in significant interrupt latencies. Practical systems can use

the seL4 authority model to prevent this scenario by not allowing an adversary the

ability to construct their own capability space.

We have shown that the event-based model of seL4 can offer sub-millisecond laten-

cies, making it acceptable for many real-time application domains. The event-based

model also brings the benefits of reduced kernel complexity. We assert that a process-

based kernel without preemption would attain interrupt latencies in the same order

of magnitude as the event-based model. A fully-preemptible process-based kernel

may attain much smaller latencies, but forgoes the possibility of formal verification

using present state-of-the-art techniques. We investigate this notion further in the

following chapter.

Verification technology may some day be able to reason about the correctness of

fully-preemptible kernels. Until then, a formally-verifiable event-based microkernel

such as seL4 provides a very high assurance platform on which safety-critical and

real-time systems can be confidently built.

80

Chapter 5

Limits of interrupt latency in
non-preemptible kernels

This chapter is partly based on work published at APSys 2012 in which I was the primary author

(Blackham, Tang, and Heiser, 2012b). The analysis of the QNX microkernel in Section 5.4

was performed by Vernon Tang.

5.1 Overview

In the previous chapter, we saw that the interrupt latency of a non-preemptible

kernel could be limited to the order of hundreds of microseconds using a design that

employs the idea of incremental consistency and appropriately placed preemption

points. This is suitable for a large class of systems, but some systems demand even

shorter interrupt latencies—for example, high-end motion control systems require

response times in the order of tens of microseconds. Such applications presently use

a fully-preemptible RTOS, often without memory protection, to ensure interrupt

latency is minimised.

The interrupt latencies obtained in the previous chapter are an order of magnitude

worse than what these application domains require. However, we were working under

the additional constraint that the resulting kernel code could still be functionally

verified, something that is presently not achievable at all for preemptible kernels.

A fully-preemptible kernel design exhibits lower average-case latencies but they do

so at a cost: RTOS code must be reentrant and is full of critical sections, which

81

CHAPTER 5. INTERRUPT LATENCY IN NON-PREEMPTIBLE KERNELS

must be protected by locks. Not only do locks introduce run-time overhead (which

affects average-case performance), the resultant highly-concurrent code is difficult to

reason about and therefore highly error-prone, significantly increasing the potential

for obscure bugs which can be extremely hard to find and eliminate. We are facing

a trade-off between assurance and timeliness.

Mixed-criticality systems necessitate the use of isolation between components (and

the RTOS). In a protected-mode OS, hardware-imposed overheads significantly in-

crease the cost of switching between application and OS operation, and the cost of

switching between user contexts (e.g. to handle an interrupt destined for a partition

different from the one presently executing).

In fact, these hardware costs are in the order of dozens or even hundreds of cycles, in

the same magnitude as the (generally simple) functions performed by an RTOS. This

means that the cost of preempting the RTOS operation is similar to the time required

for letting it complete uninterrupted, resulting in a significant shift in performance

trade-offs compared to classical, unprotected RTOSes.

Yet, the belief persists in academia and industry that an RTOS must be fully pre-

emptible: for example, commercial RTOSes supporting memory protection, such

as QNX Neutrino (QNX), VxWorks (Wind River) and INTEGRITY (Green Hills

Software), are fully preemptible.

We claim that the perceived need for a fully-preemptible design of a protected RTOS

is a myth. Specifically, we assert that for mixed-criticality systems, or any system

employing dual-mode execution and memory protection, a non-preemptible design

can achieve acceptable worst-case performance for many applications, while remain-

ing much simpler (and therefore more trustworthy) and providing better average-case

performance. We claim that this is largely because of the inherently high costs of

delivering an interrupt to userspace, compared with in-kernel interrupt delivery.

In this chapter, we demonstrate modifications to the non-preemptible seL4 kernel to

significantly reduce its interrupt latency, and describe how preemption points can

be added with minimal performance impact (Section 5.3). We extrapolate this to

what could be hypothetically achieved with a dedicated engineered effort, and also

compare with the worst-case interrupt response time for a mature commercial fully-

preemptible RTOS, QNX Neutrino. The results are given in Section 5.5, showing

that the non-preemptible approach can achieve a guaranteed latency of under 50µs,

making it highly competitive for low-latency applications. This supports our claim

82

5.2. RELATED WORK

that there is no inherent advantage to the fully-preemptible design that would justify

the added complexity and reduced average-case performance.

5.2 Related work

Our work relates closely to previous experiments by Ford et al. (1999) on the Fluke

kernel. They found that a fully-preemptible kernel provided the lowest latency

for dispatching kernel threads, however their evaluation only addressed observable

latency using hardware measurements, and not necessarily the true worst cases. The

analyses presented in this thesis use static analysis to compute safe upper bounds on

the worst-case latency, which can be relied upon for hard real-time systems. Ford

also measure latencies only on long IPC operations, and add preemption points

only for IPCs. Our results find that while IPC is a bottleneck, there exist other

long-running kernel operations which are more difficult to preempt.

Swartzendruber (1994) investigated making the Mach microkernel fully-preemptible,

by reusing the work that had been done to support multi-processor systems. He

observed that a multi-processor-capable kernel is easier to migrate to be fully-

preemptible, by reusing existing locking protocols as critical sections for a preempt-

ible uni-processor kernel. Although neither latency or performance were measured,

he estimated that uni-processor performance would decrease by roughly 10 %.

The monolithic Linux kernel originally used a non-preemptible design, but has

evolved incrementally towards increased preemptibility. McKenney provides a good

summary of the various attempts to retrofit real-time behaviour onto a Linux kernel.

For mixed-criticality real-time systems, the only viable approaches are those taken

by projects such as L4Linux (Härtig et al., 1998), where Linux is ported to run para-

virtualised on top of a real-time capable microkernel. This approach sidesteps the

preemptibility issue of Linux entirely, whilst reducing the trusted computing base.

We note that seL4 also supports running para-virtualised Linux as an unprivileged

user process.

We are not aware of any work which considers the extent to which worst-case latency

can be reduced in a non-preemptible kernel.

83

CHAPTER 5. INTERRUPT LATENCY IN NON-PREEMPTIBLE KERNELS

5.3 A non-preemptible kernel

We choose to adapt seL4 as our non-preemptible target, primarily because we al-

ready have a working worst-case execution time analysis workflow for seL4, as de-

scribed in previous chapters. Starting with the results achieved in Chapter 4, we

perform a series of modifications to seL4 to reduce its interrupt latency further,

dropping the requirement of formal verification. Forgoing this requirement enables

optimisations such as more liberal use of preemption points, and other common C

optimisation tricks.

Given the proliferation of preemption points, minimising their impact on worst-case

and average-case performance is an important goal. Section 5.3.1 describes how

preemption points can be implemented with minimal impact. Subsequent sections

elaborate on the changes made, analysing what bottlenecks need to be overcome to

improve real-time performance.

5.3.1 Minimal impact preemption points

We have seen that introducing preemption points into a non-preemptible kernel

allows the interrupt latency to be bounded and reduced when executing long code

paths. However, there are a number of ways to implement them, each with their

own trade-offs in the design space. The features and timing characteristics of the

target hardware often influence the best choice of implementation for a kernel. For

example, some hardware imposes a much higher cost to poll for pending interrupts

than to simply take the interrupt. On some CPUs, disabling and enabling interrupts

can also be expensive operations, taking dozens of cycles or more.

The following sections describe three possible implementations of preemption points

for non-preemptible kernels.

Explicitly enabling interrupts

One possible method runs the kernel with interrupts disabled. Within long-running

loops, the state of the kernel is made consistent at the end of each loop iteration

(leveraging the principle of incremental consistency described in Section 4.2.3). Once

consistent, the kernel can enable interrupts and then immediately disable them.

84

5.3. A NON-PREEMPTIBLE KERNEL

/* Begin long -running operation. */

for (...) {

/* Perform incremental progress. */

...

if (++ amountOfWork >= 100) {

/* Make kernel state consistent. */

...

amountOfWork = 0;

interruptEnable ();

/* If any interrupts are pending , they

* will be handled immediately here. */

interruptDisable ();

}

}

Figure 5.1: A preemption point implemented by enabling and disabling interrupts when
the kernel’s state is consistent.

If any interrupts are pending, the CPU will immediately branch to the interrupt

handler. If no interrupts were pending, the kernel can continue with the long-

running operation.

The performance impact of this method depends on the execution cost of enabling

and disabling interrupts on the CPU. As this is typically at least tens of cycles,

it is common to only enable interrupts after a specific amount of work has been

completed. Setting the “amount of work” becomes a trade-off between the average-

case performance degradation and the worst-case interrupt latency. The structure

of such a loop is shown in Figure 5.1.

Polling for pending interrupts

A second method also runs the kernel with interrupts disabled, but instead of en-

abling and disabling interrupts, it simply polls the hardware for any pending inter-

rupts, as shown in Figure 5.2. The advantage of this method is that the kernel’s

state need only be made consistent if there is actually an interrupt pending, which

may be more efficient for some operations.

85

CHAPTER 5. INTERRUPT LATENCY IN NON-PREEMPTIBLE KERNELS

/* Begin long -running operation. */

for (...) {

/* Perform incremental progress. */

...

if (++ amountOfWork >= 100) {

amountOfWork = 0;

if (interruptPending ()) {

/* Make kernel state consistent. */

...

handleInterrupt ();

}

}

}

Figure 5.2: A preemption point implemented by polling the interrupt controller for
pending interrupts.

The performance of this method is heavily dependent on the execution cost to query

for pending interrupts. On some platforms, notably on many ARM-based platforms,

there is no mechanism within the CPU to discover pending interrupts, and a request

must be made to the off-core interrupt controller to learn this information. If the

cost of accessing the interrupt controller is negligible, then this approach is superior

to the method above. However, on some hardware, accessing the interrupt controller

could be more expensive than enabling or disabling interrupts.

Software-emulated polling for pending interrupts

The third approach we present is similar to the previous, but emulates a “pending

interrupt” flag in software in order to overcome the high cost of polling the hard-

ware for interrupts. To emulate the flag, the kernel runs with interrupts enabled.

However, the interrupt handler routine first checks if it was the kernel that was in-

terrupted. If so, it (1) sets the pending interrupt flag, (2) disables further interrupts,

and (3) returns directly to the code it interrupted.

Like in the second approach, a long-running operation polls for pending interrupts,

but this time using the pending interrupt flag. When an interrupt is detected, it

86

5.3. A NON-PREEMPTIBLE KERNEL

/* Begin long -running operation. */

for (...) {

/* Perform incremental progress. */

...

if (interruptPending == true) {

/* Make kernel state consistent. */

...

handleInterrupt ();

}

}

Figure 5.3: A preemption point implemented by a software-emulated pending interrupt
flag.

makes the kernel’s state consistent so that the interrupt can be handled, as shown

in Figure 5.3. The common case now contains no slow interrupt-management code.

The pending interrupt flag check is a single memory access which by its nature will

almost always be hot in the CPU’s L1 cache.1 This also means that “amount of

work” counter seen in the previous two approaches is no longer necessary, as it serves

no benefit here.

The impact on the average case performance is reduced to a hot-cache memory load,

an arithmetic comparison and an untaken branch. On a typical ARM platform such

as the ARM1136, hot-cache accesses are single-cycle (although with a 3-cycle load

delay) and correctly predicted branches are folded (i.e. completely removed from

the instruction stream). For a well-crafted (or well-compiled) loop which avoids

the pipeline stall created by the memory load, the average-case execution time per

iteration can be as little as two cycles greater than the equivalent non-preemptible

code section.

It is easy to be enamored with the elegance of this approach to preemption points.

However, there are ugly artefacts of real-world systems and CPUs which mean de-

velopers need to be careful when implementing this. Namely, numerous ARM imple-

mentations have errata which can cause incorrect behaviour, or even deadlock the

CPU, if interrupts arrive at inopportune times during certain system operations.

1 Strategic data placement can ensure the address of this flag can be easily computed (and thus
does not require an additional literal load), reducing excess register pressure, as well as minimising
the impact on the kernel’s cache footprint.

87

CHAPTER 5. INTERRUPT LATENCY IN NON-PREEMPTIBLE KERNELS

Running the kernel with interrupts enabled by default means that special care must

be taken to ensure that such errata cases cannot occur, typically by disabling inter-

rupts before issuing the offending operations. Note that this is no different from the

level of care which would be required when implementing a fully-preemptible kernel.

A note on verifiability

The first two approaches align with the existing seL4 verification, as the single-

threaded nature of the kernel is maintained, and the interrupt-specific functions

are modelled as non-deterministic inputs. In fact, the second approach is what is

currently used by the verified seL4 kernel.

It is not clear how to integrate the third approach into the high-assurance verification

of the seL4 kernel, as the verification assumes that all code executes sequentially.

Enabling interrupts during execution breaks a fundamental assumption of the proof.

Despite that, it could be proven that the interrupt handler itself has no visible effects

on the state of the system (beyond the pending interrupt flag). Combined with a

proof of kernel correctness that assumes single-threaded execution, this gives a strong

guarantee that the system still behaves as specified.

Of course, as described earlier, it is possible that hardware bugs and errata may

partly undermine these guarantees, but this remains a problem for any system,

notably fully-preemptible systems.

For the analysis performed in this chapter and presented in Section 5.5, we imple-

ment the third approach in the seL4 microkernel.

5.3.2 Preserving the fastpath

In order to achieve good performance, microkernel-based systems rely on very fast

IPC operations, typically provided by IPC fastpaths (Liedtke et al., 1997; Blackham

and Heiser, 2012). A fastpath usually improves IPC times by orders of magnitude, as

it handles only the most commonly executed operations, deferring other operations

to the conventional slowpath. As adding preemption points in a code path generally

increases its uninterrupted execution time, making the IPC fastpath preemptible

would degrade average-case performance.

88

5.3. A NON-PREEMPTIBLE KERNEL

The IPC fastpath in seL4 has already been heavily optimised for fast context switch-

ing. Given this, we can aim to reduce the kernel’s overall interrupt latency down

to that of the WCET of the fastpath, as there is little benefit from going further.

There may be other limitations on how low the interrupt latency can be made, but

the WCET of the fastpath certainly marks the point beyond which there will be

diminishing returns.

5.3.3 Removing capability addressing

Our previous analysis of seL4 identified the longest execution path being a worst-case

IPC operation. As described in Section 4.6.1, seL4’s flexible capability addressing

creates a worst case of hundreds of cache misses on certain IPC operations.

The WCET for seL4 is improved drastically by forgoing its flexible capability ad-

dressing scheme, ensuring that all capabilities can be resolved by traversing only a

single level within the capability space (not 32 as was previously possible). Most

RTOSes do not offer anything comparable to the flexible addressing scheme of seL4.

At worst this makes seL4’s addressing on par with other RTOSes, where a single

level of indirection is typically used to address kernel objects.

By limiting the lookup depth to just one level, we reduce the number of potential

cache misses caused by address lookups by a factor of 32.

5.3.4 Global kernel mapping copy

The seL4 kernel is mapped into virtual memory in the top 256 MiB of every address

space on the system. This mapping is represented by 1 KiB of data in every page

directory, which must be copied each time a new page directory is created. The

process of copying these mappings was non-preemptible and therefore a contributor

to potentially long execution times. The seL4 proof depends on having a flat 1:1

mapping of physical memory, as it cannot reason about the safety of mapping or

unmapping kernel pages in which seL4 itself may be executing. However, beyond

the proof, the kernel is not intrinsically linked to this model.

Possible solutions to overcome the copy latency include:

1. simply adding preemption points to the copy operation;

89

CHAPTER 5. INTERRUPT LATENCY IN NON-PREEMPTIBLE KERNELS

2. moving the entire seL4 kernel into its own 32-bit address space;

3. lazily populating the address space as the kernel faults on memory accesses

within the kernel mapping; or

4. reducing the size of the global kernel mapping.

The first solution impacts many parts of the kernel, as address space objects must

now be checked for completeness before being used, or alternately an intermediate

object type could be added. Either approach increases the complexity of kernel

invariants, and therefore the verification process. The second solution simplifies the

kernel, avoiding the address space copy entirely. However, it also impacts negatively

on overall performance, as a context switch is then required for every kernel entry

and exit.

The third solution is very difficult to verify within the seL4 proof, as the proof

assumes that faults do not occur inside the kernel. It is relatively straightforward to

implement though, and has negligible run-time overhead. However it does increase

the worst-case execution time, as memory accesses can now induce an additional

fault. We chose to implement this option. As the code to map a kernel page on

fault is hand-coded in assembly, it runs very efficiently and its impact can be easily

bounded.

The final possible solution, reducing the size of global kernel mapping, requires

dynamically mapping and unmapping memory frames containing kernel objects as

they are required. This allows the size of the global kernel mapping to shrink to only

a few megabytes—the kernel code itself and all its internal global data structures

sum to at most a few hundred kilobytes. This approach is effectively equivalent to

the third solution (lazily populating the address space), as the kernel maps pages

only as they need to be accessed. However, the average-case performance and kernel

complexity suffer, because mapping operations must be done explicitly on every

access to any kernel object.

5.3.5 Breaking long code paths

Despite making all loops within seL4 preemptible using preemption points, there are

still large sections of loop-free code which contribute to long worst-case execution

times (over 100µs). We analysed the offending code paths, and found that none of

90

5.3. A NON-PREEMPTIBLE KERNEL

the long paths required atomicity—they were simply performing multiple operations,

which could theoretically be implemented as separate calls.

For example, seL4 offers a system call which configures several independent aspects

of a thread—its address space, its capability space, its IPC buffer and its priority.

Calls such as this exhibit the incremental consistency property, because they perform

several small updates, whilst retaining global consistency of kernel data structures

between changes. It is easy to make them preemptible by adding preemption points

between each of the steps, and we do so for the analysis described later in Section 5.5.

5.3.6 Non-preemptible IPC

Another contributor to worst-case interrupt latency was the seL4 IPC slowpath,

which is used for copying messages between communicating processes. We do not

wish to make the slowpath preemptible, as this would require adding complexity

to the IPC fastpath, which would significantly impact average-case system perfor-

mance.

With non-preemptible IPC, the maximum length of an IPC message is a convenient

variable which can be tuned to alter the kernel’s worst-case latency. Shorter IPCs

will reduce the bandwidth between communicating processes, but for applications

requiring high-bandwidth communication, shared memory regions are a more ap-

propriate choice. Of course, there is some minimum message length required to

maintain reasonable system performance, which is application-dependent.

To minimise latency, the maximum IPC length should be chosen so that the WCET

of an IPC is equal to the largest WCET of any other kernel operation. Reducing

it below this value provides no benefit, while raising it above this value directly

increases the worst-case latency. Given this, we reduce the maximum message length

of seL4 to from 480 bytes to 240 bytes.

If every other kernel operation’s WCET could be made fast enough that the equiva-

lent IPC lengths were too short (and causing performance issues), then preemptible

IPC may need to be reconsidered. Otherwise it is a premature optimisation.

Another issue affecting seL4 was a specific IPC operation known as ReplyWait, which

atomically performs the functionality of two operations commonly called together:

Reply (send) and Wait (receive). The IPC fastpath relies on the atomicity of these

operations to significantly improve performance, as no scheduler interactions are

91

CHAPTER 5. INTERRUPT LATENCY IN NON-PREEMPTIBLE KERNELS

required. We expect that if an IPC operation falls back to the slowpath, there is

a negligible penalty in adding a preemption point between the send and receive

phases. Doing so effectively halves the WCET of this path.

There is still room for improvement in seL4 by making the copy operation more

efficient (e.g. with multi-word copies, using preloading tricks, etc). Doing so would

allow for longer IPCs, but would not reduce the worst-case latency of the kernel,

assuming the kernel adheres to the above rule to determine IPC length.

5.3.7 L2 cache pinning

Although CPUs have increased in performance by several orders of magnitude in

the past 30 years, memory latencies have not kept the same pace (Patterson, 2004).

Operations which are inherently memory-intensive and have unpredictable access

patterns have seen almost no benefit from newer technologies. The increased dis-

parity between CPU and memory speeds have pushed hardware manufacturers to

include one or more levels of caches even in embedded systems.

CPU caches can be accessed significantly faster than main memory. For example,

the KZM ARM11 platform has two levels of caches—the first can be accessed in

a single cycle and the second in 26 cycles, compared with external memory access

latencies of 96 cycles (with the L2 cache enabled).

Considering the effect of caches is a challenge for hard real-time systems as it in-

creases the gap between the worst case (which must be allowed for) and the average

case (which is the common operating point). To mitigate the unpredictability caused

by caches, many platforms provide the ability to pin data or instructions into the

cache. Pinned data and instructions are never evicted from the cache, and therefore

guarantee a shorter bound on access times.

As fast caches are typically much smaller than main memory, the choice of what to

pin must normally be made with great care. Pinning data into the cache precludes

the pinned portion of cache from being used for the rest of the system, where it may

actually be better utilised to improve average-case performance.

As microkernels are intended to provide the bare minimum functionality for ensuring

security of a system, they are typically very small. Our modified seL4 microkernel

executable can fit into 29.5 KiB. The L2 cache on our platform is 128 KiB, which

92

5.4. A FULLY-PREEMPTIBLE KERNEL

means that the entire kernel code fits into 1/4 of the L2 cache.2 It would be unlikely,

if not impossible, for monolithic kernels to fit into this space, nor even many larger

microkernels.

Given that we have gone to great lengths to make loops in the kernel preemptible,

the remaining non-preemptible code is likely to only ever execute once. There-

fore without cache pinning the worst-case execution time is never improved by the

cache—in the worst case, none of the kernel’s instructions are in the cache, and so

every execution path will encounter a swarm of cache misses.

By pinning the instructions into the L2 cache, the latency of L1 instruction cache

misses is reduced by 73 % on our platform. This drops the upper bound on CPU

time that is wasted waiting for memory, and therefore significantly improves the

worst-case execution time.

Furthermore, the interrupt delivery path can be pinned into the L1 cache to reduce

interrupt latency further, as was shown in Section 4.4.

Note that a fully-preemptible microkernel, if sufficiently small, could also employ

the same approach. However, we argue that because interrupt delivery paths in

both the fully-preemptible and non-preemptible designs are significant contributors

to response time, the improvements gained when applied to either approach would

be comparable.

5.4 A fully-preemptible kernel

As we know by now, the latency of userspace interrupt delivery on a kernel is de-

termined by two independent factors:

• the in-kernel dispatch latency: the latency between the arrival of an interrupt

to the CPU hardware and executing the in-kernel interrupt handler; and

• the kernel-userspace dispatch latency: the time taken between the in-kernel

interrupt handler executing and the start of the userspace interrupt handler.

For a “fully-preemptible” kernel, the in-kernel dispatch latency is determined by

all code paths where interrupts are disabled—these are mostly between interrupt

2 The L2 cache on our platform permits pinning in multiples of 1/8 of the size of the cache, so
falling just under 1/4 of the cache minimises the amount of wasted memory.

93

CHAPTER 5. INTERRUPT LATENCY IN NON-PREEMPTIBLE KERNELS

disable/enable pairs used for concurrency control, but they can also arise where

the hardware may disable interrupts (e.g. on the transition from user mode into

kernel mode upon an exception). A carefully designed fully-preemptible kernel can

minimise this latency for many operations; however, the critical aspect is the worst

case—i.e. the longest of any such paths. Most importantly, avoiding unbounded

non-preemptible loops is crucial for bounding interrupt latency.

The kernel-userspace dispatch latency is affected by both the design of the kernel and

inherent limitations of the hardware’s context switching and interrupt processing

time. These considerations are shared by fully-preemptible and non-preemptible

kernel designs alike.

There are several commercial fully-preemptible, general-purpose kernels used in real-

time systems today, such as QNX Neutrino (QNX), VxWorks (Wind River) and

INTEGRITY (Green Hills Software). Most high-performance microkernels are com-

mercial endeavours and the cost of obtaining binaries for these is often substantial.

Their sources are considered to be of great commercial value, thus getting access to

the source for independent analysis is nearly impossible.

One we were able to get access to was the QNX Neutrino microkernel. The QNX

sources were made publicly available in 2008, and binaries are also available. Al-

though our WCET analysis works on the compiled binary, the availability of source

code was crucial—the analysis required a significant amount of manual intervention,

which benefited substantially from the understanding of QNX’s internals gleaned

from the source code.

We analyse the QNX Neutrino microkernel and use it as a representative of the

fully-preemptible approach due to its maturity and broad real-world adoption.

5.4.1 “Fully-preemptible” vs “fully-preemptible”

In the traditional RTOS mindset, a fully-preemptible kernel can execute an interrupt

handler with very short latencies because interrupts are rarely disabled. However,

this ability generally extends only to interrupt handlers that run within the kernel.

In a mixed-criticality system, in-kernel interrupt handlers are unacceptable, as an

error in an interrupt handler can crash the entire system. In order for the kernel

of a mixed-criticality system to be considered fully-preemptible, not only must the

kernel run with interrupts enabled, but upon receiving an interrupt, it must be able

94

5.4. A FULLY-PREEMPTIBLE KERNEL

to dispatch that interrupt to userspace immediately.

We note that the design of QNX is not actually suited to mixed-criticality systems—

although QNX is fully-preemptible by the traditional RTOS definition, the schedul-

ing of a userspace interrupt handler can be delayed, not just by regions where inter-

rupts are disabled, but also by any code that “locks” the kernel.

In QNX, the kernel must be locked before performing any non-idempotent modi-

fication to the kernel state (e.g. a heap allocation). When the kernel is executing

unlocked, any interrupt can preempt the current operation to schedule a userspace

thread. The preempted operation is simply restarted later. However, if an interrupt

arrives when the kernel is locked, a userspace thread cannot be scheduled until the

kernel operation is completed.

A brief inspection of QNX shows that several code paths which execute when locked

contain unbounded loops that are dependent on system state (e.g. paths which

are affected by the amount of heap fragmentation). The worst-case response time

must consider all such code paths in the kernel, significantly complicating a worst-

case execution time analysis. This design is perfectly reasonable for the traditional

RTOS model where interrupts are largely handled within the kernel. However, for

mixed-criticality systems, userspace interrupt delivery must have bounded interrupt

latency guarantees.

Despite not being suitable for mixed-criticality systems, we use QNX Neutrino as a

conservative representative of the fully-preemptible approach. We assume that the

kernel could be made fully-preemptible to userspace, and focus only on the userspace

interrupt delivery path of QNX as a measurable data point. This underestimates

the WCET that can be achieved by a true fully-preemptible kernel, as the overheads

of making a kernel support full preemption to userspace are not considered. As this

chapter proposes that the non-preemptible model can be competitive with fully-

preemptible kernels, this conservatism is in favour of the fully-preemptible kernel.

5.4.2 Analysis details

Our analysis is based on a binary of the QNX 6.5.0 kernel (the latest available at the

time), compiled for ARMv6 systems (QNX). We were guided by an older snapshot

of the source code from July 2009, as QNX sources are unfortunately no longer

available to the general public. Despite the disparity in versions, we were able to

95

CHAPTER 5. INTERRUPT LATENCY IN NON-PREEMPTIBLE KERNELS

use the sources to glean sufficient understanding of the binary for analysis.

Our analysis tools were originally designed for analysing seL4, and as such they

made some assumptions about the structure of analysed code. Some of these as-

sumptions proved to be invalid when analysing QNX, and required us to modify our

tools to support them. We found that many of the techniques employed by QNX

made static analysis more difficult. In particular, the presence of function pointers,

exception-defined control flow (e.g. instructions or memory accesses which are per-

mitted to cause exceptions) and dynamically-generated code required some manual

intervention in the analysis.

Control-flow graph extraction

Our analysis tools are able to automatically extract the control flow graph of seL4,

because there are no function pointers in the C code, and all branch instructions in

the binary can be resolved easily using simple symbolic execution. QNX, on the other

hand, uses function pointers extensively, making automated extraction infeasible.

Instead, we manually specified the targets of function pointers. Determining the

destination addresses of various function pointers was (unsurprisingly) significantly

easier with access to the source code.

As the QNX code base is far larger than seL4’s, we found the generated CFG

was prohibitively large and complex for our WCET analysis. To overcome this,

we limited the analysis to the smaller relevant fragments of the CFG, by forcing

specific branches to be marked as taken or ignored. We maintained the soundness

of our analysis by ensuring that the subset analysed contained the critical path for

interrupt delivery.

Our tools are still limited in what they can analyse, and we had to take a few short-

cuts. To ensure the validity of our hypothesis, our analysis always underestimates,

where necessary, the worst-case interrupt response time of QNX.

For instance, we ignored QNX’s support for sporadic scheduling, as this would have

significantly complicated our analysis; not ignoring this would only increase the

worst-case response time of QNX further. Furthermore, we found that QNX has

a suboptimal implementation of a priority queue (a sorted linked list with O(n)

complexity); we ignored this as there is obviously a better O(log n) implementation.

In addition to manually forcing specific branches as taken, it is also possible to au-

96

5.4. A FULLY-PREEMPTIBLE KERNEL

tomatically prune some infeasible branches using symbolic execution. Our existing

symbolic execution engine was previously only sufficient for determining the des-

tination address of branches. We have enhanced it to also take into account the

results of prior arithmetic operations (when known with certainty) so that it can

determine if a conditional branch will always be taken (or always not taken).

Analysing runtime-generated code

The QNX Neutrino RTOS follows a generic pattern in its design. For each supported

processor architecture (ARM, x86, etc.), QNX provides a single kernel binary named

procnto. QNX also provides generic board support package (BSP) code. System

integrators provide their own machine-specific code (for booting, hardware control,

etc.) using the QNX BSP code as a base.

A large proportion of the interrupt-handling code depends on the specifics of the ma-

chine. Unfortunately, QNX accomplishes this in a way that complicates the static

analysis process. At boot time, the interrupt vector code is dynamically gener-

ated based on the system’s interrupt topology, and is interspersed with integrator-

provided code to interface with the interrupt controllers. While this has allowed

QNX to ship a single binary that does not need static relocation or other build-

time transformations, it also means that the interrupt vector code is not directly

available.

We had observed that the generated interrupt vector code in memory did not change

after booting and so we were able to simply dump the generated code from a running

system. We proceeded with our analysis by re-assembling and linking the dumped

code with the rest of the procnto image. In this way, we were able to preserve

symbols, aiding in the maintenance of our manual annotations.

Event handling

QNX provides a number of different event delivery methods:

• Simply ignoring the event.

• Sending a POSIX signal to a given process or thread.

• Executing a given routine in a new thread.

97

CHAPTER 5. INTERRUPT LATENCY IN NON-PREEMPTIBLE KERNELS

• Forcing a blocked thread to resume (returning an ETIMEOUT error).

• Resuming a thread that was waiting on a MsgReceive system call.

• Resuming a thread that was waiting on an InterruptWait system call.

We chose only to consider the last of these methods, and then only the Interrupt-

Wait case (SIGEV INTR) in our analysis. This mechanism is functionally equivalent

to that used in seL4. More importantly, of the different interrupt delivery methods

available, it represents a best case and therefore a lower bound on the time required

to dispatch an interrupt to userspace code. Other methods, such as signal delivery

or thread creation, require significantly more work to process an interrupt, compared

with waking an existing blocked thread.

5.5 Results and analysis

5.5.1 Limits of a non-preemptible kernel

We compute the worst-case interrupt response time of the modified seL4 kernel

binary using our static analysis framework. The analysis method is similar to that

used in the previous chapter, but has been improved to incorporate the infeasible

path detection algorithm described in Chapter 7.

Also, unlike in the previous analyses, we do not treat preemptible loops as though

they have an iteration count of 1. Although this is a sound approximation, it

overestimates the interrupt response time of any path containing multiple loops. In

the case of a pending interrupt, only the first loop would execute in practice, whereas

our analysis assumed that both loops would execute once. The approach also fails

if preemption points are used outside of loops. These cases did not arise previously,

but with the proliferation of preemption points through seL4, our previous analysis

methods are no longer suitable.

In this analysis, we instead consider each preemption point separately. For each

preemption point, we compute the worst-case execution time between the preemp-

tion point and the beginning of a userspace interrupt handler thread (running at

the highest priority). These correspond to the worst-case scenarios of an interrupt

arriving immediately after a preemption point has found no pending interrupts. We

98

5.5. RESULTS AND ANALYSIS

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100 120

W
o
rs

t-
c
a
s
e
 e

x
e
c
u
ti
o
n
 t
im

e
 (

c
y
c
le

s
)

Figure 5.4: The worst-case execution times for all 125 non-preemptible regions in our
modified seL4 kernel (including duplicates from virtual inlining). Each bar
measures the time from the start of the non-preemptible region to the
beginning of a userspace handler thread. The blue (dotted) lines identify
points which may present significant hurdles to further reducing WCET.

also compute the WCET starting from the entry point of the kernel and ending

at a userspace interrupt handler. For all of these scenarios, we assume that any

encountered preemption points are always taken (i.e. that the “interrupt pending”

flag, described in Section 5.3.1, is always true).

Although there are only 23 preemption points in total within the seL4 code, our

analysis sees many more (124, in fact) due to all functions being virtually inlined.

The WCET from each preemption point, and kernel entry, are shown in Figure 5.4,

sorted in descending order of execution time. The maximum of all these is 25 850 cy-

cles. On our 532 MHz ARM platform, this corresponds to a hypothetical worst-case

execution time of 48.6µs (hypothetical because our system model is conservative).

Worst-case breakdown: The longest paths that remain after our modifications to

seL4 are related to the deletion of objects. Resource deletion and revocation mecha-

99

CHAPTER 5. INTERRUPT LATENCY IN NON-PREEMPTIBLE KERNELS

nisms are often the most complicated part of any resource management system3 and

are common sources of system-state-dependent execution times (Colin and Puaut,

2001b; Singal and Petters, 2007).

The worst case for our modified seL4 is a specific instance of a deletion operation

for deleting a thread, which begins at the entry point of the kernel. As such, the

longest path includes (re-)validation of the arguments passed to the kernel, and

ensures that all relevant objects exist. In seL4, one stage of thread deletion requires

turning the thread into a zombie, which prevents the thread from executing or being

further manipulated by the user, and allows the deletion of any resources held by

the thread to proceed preemptibly. It is this scenario which incurs the worst-case.

The computed worst-case execution time of this operation is 25 850 cycles. A break-

down of the time spent in this operation is roughly as follows:

• 25% is devoted to decoding the system call and validating arguments from the

user;

• 30% is control code which decides what actions need to be taken (e.g. ensuring

there are no other references to the thread to be deleted);

• 12% is devoted to actually modifying kernel state (updating scheduler data

structures and turning the thread into a zombie); and

• 33% is spent dispatching the userspace interrupt handler.

The state modifications need to be done atomically, and they contribute a relatively

small fraction of the overall cost. Thus this path cannot be easily made shorter by

introducing a preemption point. Instead, one would need to micro-optimise the code

paths to reduce the cost of the validation and checks required for deletion.

Other operations which also exhibit a WCET of ∼ 25 000 cycles include unmapping

a frame from an address space, and replacing a thread’s IPC buffer. These have

similar execution profiles to thread deletion—i.e. small (non-preemptible) changes

to the kernel state, accompanied by lots of book keeping for deletion.

As described in Section 5.3.6, the length of an IPC was chosen in order to exhibit a

WCET of under 25 000 cycles.

3 It is interesting to note that the original seL4 object deletion code had to be rewritten a
number of times, when the formal verification process identified subtle flaws in several iterations
of the design. Preemptible deletion, it turns out, hides a lot of corner cases for the unwary.

100

5.5. RESULTS AND ANALYSIS

Focusing on interrupt delivery: The computed worst-case interrupt response time

when already running in userspace (i.e. no kernel preemption) is 9 217 cycles. Both

this case, and the global worst-case could be improved by integrating scheduling deci-

sions into the body of the kernel—at present, the decision to execute the high-priority

interrupt handler is only made once the kernel is about to return to userspace. For

the scenario where a high-priority interrupt is being processed, this entails more

manipulation of the run-queue than is strictly required.

The case of IRQ delivery during userspace execution can be improved by implement-

ing a fastpath, much like the existing IPC fastpath. Although we did not implement

an IRQ fastpath, the WCET of the existing IPC fastpath provides a good indica-

tion of what may be achievable. Removing the message copy from the IPC fastpath

reduces its WCET to 2 571 cycles. Without a message copy, what remains is simply

a context switch and the checks to ensure the target thread is ready to receive a

message—this is also what is required for a fastpath IRQ delivery. We claim this

is a reasonable target for what worst-case interrupt latency may be achievable with

either a non-preemptible or a preemptible kernel. Yet, it could still be reduced

further by pinning critical carefully chosen instructions and data into the L1 cache

(which we have not done in this analysis).

Possible further improvements: It would be possible to expend more work to elimi-

nate the remaining longest execution paths. Many deletion paths could be improved

by caching some information or using an alternate representation—one specific ex-

ample is determining whether or not any references to an object remain. Other

micro-optimisations such as avoiding stack unwinding on preemption would also be

beneficial.

During our analysis, we found that the results for several preemption points which

are clustered together are often attributed to the same code path. Reducing the

execution time of one such code path improved the results for many of these pre-

emption points. There are several such clusters visible in Figure 5.4. Also worth

noting is that only 4 % of the preemption points are above 20 000 cycles, and 25 %

of the preemption points are above 17 000 cycles.

Extrapolating: Our intuition suggests that reducing the worst-case execution time

below 17 000 cycles will require significantly more effort again than getting to 17 000

101

CHAPTER 5. INTERRUPT LATENCY IN NON-PREEMPTIBLE KERNELS

Modified seL4

seL4 (est. target)

Userspace preemption

seL4 IPC fastpath

QNX

 0 10000 20000

 25850

 17000

 9217

 2571

 17413

Figure 5.5: The worst-case response time (to userspace) of (1) our modified seL4, (2)
our prediction of further modifications, (3) our modified seL4 interrupting
userspace (no kernel preemption) and delivering an interrupt to a waiting
thread, (4) seL4’s IPC fastpath, and (5) our fully-preemptible representa-
tive, QNX (a lower bound using a subset of the code paths for interrupt
delivery). All results are measured in cycles on the KZM11 platform.

cycles. Given that the worst-case execution times are dominated by cache misses, at

96 cycles per cache miss, this translates to an estimated worst-case cache footprint

of roughly 180 cache lines (recall that, although the kernel code is locked into the

L2 cache, the kernel data being manipulated is not). These estimates are reflected

in the second bar of Figure 5.5.

5.5.2 Comparison to a fully-preemptible kernel

As noted earlier, QNX is not designed for mixed-criticality systems, as the worst-case

interrupt response time to userspace depends on large amounts of code within the

kernel, including many potentially long-running loops. However, we were optimistic

that it may still give a useful data point with regard to interrupt delivery to userspace

in the design of a fully-preemptible kernel.

The results of our analysis on QNX’s interrupt delivery path, shown in the last

bar of Figure 5.5, have subsequently removed our optimism. As can be seen, this

number is significantly larger than seL4’s interrupt delivery time. It appears that

the QNX kernel simply has not been optimised for userspace interrupt delivery.

Manual inspection of the path shows numerous detours that the kernel may take

when delivering a userspace interrupt, including updating kernel bookkeeping to

102

5.6. CONCLUSION

support re-entrancy.

We are unable to draw conclusive results from the analysis of QNX, particularly

as it does not support bounded preemption latencies to userspace when running

inside the kernel. However, we assert that a fully-preemptible kernel could achieve

similar worst-case userspace interrupt latencies to non-preemptible kernels for the

case when userspace is preempted, by using a non-preemptible IRQ delivery fast-

path. A non-preemptible fastpath means that the overall kernel interrupt latency

is at least double the worst-case latency of this fastpath (the worst-case is at least

that of the interrupt fastpath beginning execution when a higher priority interrupt

arrives, therefore needing to execute again). It remains to be seen if all other non-

preemptible kernel paths can be made this short.

5.6 Conclusion

This chapter has explored the limits of interrupt latency for a non-preemptible

kernel design. We also attempted a comparison with a fully-preemptible kernel,

which did not turn out to be fruitful as the selected kernel was not optimised for

mixed-criticality applications.

We made a number of changes to reduce the interrupt latency of the non-preemptible

seL4 microkernel from 100 000s of cycles, down to 25 850 cycles. The results suggest

that further improvements could reduce this to approximately 17 000 cycles. Using

low-overhead preemption points, this can be done without incurring any significant

performance penalty. To reduce this further requires rethinking the data structures

used for bookkeeping in the kernel. This is an opportunity for future research

directions.

We provide a lower bound on what may be achievable even by fully-preemptible ker-

nels, based on the worst-case execution time of a heavily optimised fastpath for IPC.

The difference between this limit and what was achieved with a non-preemptible ker-

nel differs by a factor of 10, but only by a factor of 6.6 to what may be achieved

with extra effort.

On a modest embedded processor such as our 532 MHz ARM11, our results provide

a guaranteed worst-case latency of 48.6µs. This would suffice for many applications

including standard industrial motion control applications. Our evidence suggests

103

CHAPTER 5. INTERRUPT LATENCY IN NON-PREEMPTIBLE KERNELS

that there is room to reduce this even further with careful kernel design.

Although we have forgone the immediate possibility of formal verification in order

to achieve these results, traditional validation methods, such as testing, code in-

spection, and model checking, can still be used. Even if not formally verified, the

resulting non-preemptible kernel is much less complex, and thus easier to assure

than a fully-preemptible one.

104

Chapter 6

Checking properties on binaries

This chapter is based on work published at RTAS 2013 in which I was the primary author

(Blackham and Heiser, 2013a).

6.1 Overview

Through the previous three chapters, we have performed a number of worst-case

execution time analyses on the seL4 code base. As noted in Section 3.4.5, a precise

timing analysis of non-trivial programs such as seL4 running on modern processors

is infeasible due to the need to consider the exponential number of states of both

the program and the machine. These analyses therefore required that conservative

over-approximations be made in order to reduce the number of states considered

and make the problem tractable. In general, the longer the execution paths the

more pessimistic the approximations become.

As seL4 is a non-preemptible kernel, we need to analyse much longer code paths

than in the case of a fully-preemptible kernel, where only short sections of code

run with interrupts disabled. To mitigate the over-approximation in computing

seL4’s WCET, our analyses added manual annotations for excluding paths which

were deemed infeasible, reducing our computed WCET by 68 %. Additionally, we

manually annotated the binary with bounds of the number of iterations of each loop.

However, these manual annotations are tedious to construct and error-prone. For

a hard real-time system, these annotations become part of the trusted computing

base. Errors threaten the soundness of the analysis, and undermine the real-time

105

CHAPTER 6. CHECKING PROPERTIES ON BINARIES

Baseline

Validated

Optimal

 0 100 200 300 400 500 600 700

657

481

213

Figure 6.1: Computed WCET (in thousands of cycles) of the seL4 microkernel on
the ARM1136 CPU. The baseline figure uses no infeasible-path analysis,
optimal is the best result achieved with manual annotations, while validated
only eliminates paths confirmed infeasible by sequoll.

guarantees desired from a high-assurance kernel.

This chapter describes a framework called sequoll,1 which aims to fully automate

this analysis and thus eliminate the need to trust hand-specified annotations. We

show that sequoll can compute most of the loop bounds in seL4 automatically,

detect some unreachable code paths (in the form of “0” loop bounds), and validate

hand-specified infeasible path information.

Sequoll performs model checking on a control flow graph (CFG) derived from the

binary. We restrict sequoll to analysing single-threaded code as our motivating ap-

plication of non-preemptible kernels is inherently single threaded. Using a symbolic

model checker, we can validate properties of the code such as loop bounds, infeasible

paths and more general invariants of functions. We utilise an existing high-fidelity

specification of the ARM instruction set created by Fox and Myreen (2010), which

avoids the tedious and error-prone task of expressing semantics of instructions.

The main contribution of this chapter is the use of symbolic model checking on

binaries to automatically compute both simple and more complex loop bounds, as

well as to verify infeasible path information without additional compiler assistance.

We describe the approach in detail in Section 6.4. The second contribution is the

demonstration that our approach is applicable to a real-world, highly-optimised

yet non-preemptible kernel, where we show (Section 6.5.1) that sequoll determines

the bound of the majority of loops, eliminates most manual interference in the

1 Sequoll is the successor to our previous analysis tool, quoll.

106

6.2. BACKGROUND

WCET analysis, and improves the WCET estimate of seL4 by 27 % over the baseline

(Figure 6.1). We also evaluate sequoll on the Mälardalen WCET benchmark suite

(Gustafsson et al., 2010), and show that it computes 64 % of the loop counts, without

any source-level analysis or manual annotations (Section 6.5.2). We finally discuss

the limitations which currently prevent the remaining loops and annotations from

being analysed (Section 6.6).

6.2 Background

There is a large body of research related to the ideas behind sequoll—computing

loop bounds, modelling instruction set architectures, reasoning about behavioural

guarantees of systems, and reverse-engineering binaries to obtain control flow graphs.

This section highlights the state-of-the-art in each of these areas.

The specific problem of computing loop bounds on binaries has received much at-

tention, particularly from WCET researchers for whom it is a fundamental hurdle.

Manual annotation is a common but error-prone approach, where annotations are

specified at the source code level, and compilers must ensure these annotations are

carried through to the generated assembly (Metzner, 2004). Pattern matching on

the binary can be used to search for common loop structures, but is fragile and

compiler-specific. The aiT WCET analyser uses dataflow analysis to identify loop

variables and loop bounds for simple affine loops in binary programs (Cullmann and

Martin, 2007). Abstract interpretation, polytope modeling and symbolic summation

have also been used to compute loop bounds on high level source code (Lokuciejew-

ski et al., 2009; Blanc et al., 2010). The SWEET toolchain for WCET computation

uses abstract execution to compute loop bounds on binaries, and is aided by tight

integration with the compiler toolchain which improves the knowledge of memory

aliasing (Gustafsson et al., 2006b). The r-TuBound tool uses pattern-based recur-

rence solving and program flow refinement to compute loop bounds, and also requires

tight compiler integration (Knoop et al., 2012).

Rieder et al. (2008) has shown that it is straight-forward to determine loop counts at

the C source-code level through model checking. Attempting to automatically find

a correspondence between source code and its compiled binary, in the presence of

arbitrary compiler optimisations, is a difficult challenge. Although not fully solved

by any single approach (Narasamdya and Voronkov, 2005), significant progress has

107

CHAPTER 6. CHECKING PROPERTIES ON BINARIES

been made recently on finding such a correspondence using an SMT solver (Sewell

et al., 2013).

Model checking is significantly harder to apply to binaries than to source code, as

there is less syntactic information available such as data types and structure layout,

and there is limited information on what memory can potentially alias. Our work has

similarities to Cassez’s methods to compute WCET (2011), but we do not attempt

to compute the overall WCET using a model checker. Although seL4 is a small

microkernel (∼ 8 000 LoC), using model checking for WCET computation does not

(yet) scale to programs of this size.

Eliminating infeasible paths is also crucial for WCET analysis, as such paths may

dramatically worsen the pessimism of WCET estimates. Several techniques have

been proposed to detect infeasible paths, including abstract execution (Gustafsson

et al., 2006b), conflict detection (Suhendra et al., 2006) and pattern matching (Ngo

and Tan, 2007). In the following chapter, we also build upon the sequoll framework

to detect infeasible paths. However, the work presented in this chapter focuses

specifically on the problem of validating manually-specified infeasible paths. This

is computationally less expensive in the general case, whereas many techniques for

detecting infeasible paths do not scale for larger programs.

Model checkers can be used to perform static analysis of high-level languages, with

a number of popular free and commercial tools available. For example, BLAST

performs model checking on C sources using counter-example guided abstraction

refinement (CEGAR) in order to check for desired safety properties (Beyer et al.,

2007). Goanna also uses model checking but tests for common violations, such as

use-after-free bugs (Fehnker et al., 2006).

Closely related to our work is that of Thakur et al. on the McVeto framework

for directed proof generation (Thakur et al., 2010). They use model checking on an

abstraction of arbitrary program binaries to determine if specific target instructions

are reachable. Sequoll instead reasons about paths which may be infeasible in order

to refine WCET analysis.

In addition to model checking, symbolic execution is becoming a popular option for

exploring paths through a program. Symbolic execution groups together all inputs

which may take the same path through a program. This technique is employed by

TRACER (Jaffar et al., 2012) to analyse C code and also by S2E (Chipounov et al.,

2012), a selective symbolic execution platform. These techniques aim to analyse the

108

6.3. THE PROBLEM

properties and behaviour of a program or system under all possible input conditions.

Although symbolic execution would be a suitable alternative for our analysis, we still

chose to write sequoll based upon model checking as we ultimately intend to integrate

invariants based on formal proofs of the code. Model checking supports a more

natural expression of such invariants, and has previously been used in conjunction

with formal proof (Daum et al., 2005).

Conceptually, both loop bounds and infeasible paths could be proven within the

verification of seL4. In practice, seL4’s proofs heavily rely on a functional model

of the code in which “paths” are ill-defined. Termination of the specification is

proven (and must be for the specification to be well-defined), but this does not

require explicit loop bounds. Although proving loop bounds is possible, it is not

immediately useful, as compiler optimisations can (and do) affect these in the binary.

To reconstruct control flow graphs from binaries, various solutions have been pre-

sented and implemented in static analysis frameworks for binaries such as Jakstab

(Kinder and Veith, 2008), BINCOA (Bardin et al., 2011a) and McVeto (Thakur

et al., 2010). These frameworks implement an intermediate assembly language, for

which translators are written for each architecture. To date, none exist for the ARM

architecture.

6.3 The problem

Sequoll was motivated by the desire to validate user-provided annotations about

local code properties which were needed to perform a WCET analysis. Without

independent (and, ideally, automatic) validation, such manual annotations signifi-

cantly weaken the high degree of dependability we expect from the kernel.

Specifically, we seek to (a) automatically compute loop counts, and (b) verify claims

of path infeasibility. We focus on binaries in order to avoid limiting compiler opti-

misations and to remain independent of any specific toolchain.

6.3.1 Loop bounds

The difficulty in determining loop counts in binaries depends heavily on the structure

and invariants on the loops. Compilers may perform optimisations such as loop

109

CHAPTER 6. CHECKING PROPERTIES ON BINARIES

int movs r3, r0

popcount(uint32_t x) moveq r0 , r3

{ bxeq lr

int c = 0; mov r0, #0

while (x != 0) { loop:

if (x & 1) tst r3 , #1

c++; addne r0 , r0 , #1

x = x >> 1; lsrs r3, r3 , #1

} bne loop

return c; bx lr

}

Figure 6.2: A sample C function with no explicit loop variable, and the function com-
piled to ARM assembly.

unrolling, rotation or reversal; loop variables may be saved to and restored from

global memory; and loops may not have explicit or obvious loop counters. An

example of this last issue can be seen in the code of Figure 6.2. This function counts

the number of bits which are set in a word. It can be shown that the loop executes

no more than 32 times, despite there being no explicit loop counter. We aim to

compute loop bounds using only knowledge available from the binary.

6.3.2 Infeasible paths

Adding infeasible path information can improve the precision of WCET analyses

considerably. By using knowledge that specific paths are infeasible, seL4’s WCET

estimate can be reduced by 68 %. Previously, we obtained this information by iter-

atively examining the worst-case path reported by our WCET toolchain manually.

If we determined that it was infeasible, we constructed a constraint annotation to

eliminate it. We repeated this until the worst-case path represented a valid execu-

tion.

The infeasible path constraints are used to augment the system of integer linear

equations which is solved to find the WCET. We consider constraints expressed in

one of the following two forms:

• a conflicts with b in f : specifies that the instructions at addresses a and b

are mutually exclusive, and will not both execute during an invocation of the

110

6.4. ANATOMY OF SEQUOLL

ARM formalisation

Symbolic execution, SSA

Simplification, Slicing

Property of Interest

Sequoll

SSA Representation

Symbolic Model

Semantic

Representation

r1_2 <− r3_2 + 4

Model checker

True/False

next(r1_2) := case

011011...

r1 <− r3 + 4

Program Binary

Reduced CFG

Figure 6.3: An overview of the steps performed by sequoll.

function f . If f is invoked multiple times, a and b can each be executed under

different invocations.

• a is consistent with b in f : specifies that the instructions at addresses a and

b will execute the same number of times during an invocation of the function

f .

The process of creating these annotations is error-prone, yet it is a trusted part of

the WCET computation. Being able to validate these annotations will substantially

increase the confidence in the WCET results, improving suitability for critical hard

real-time applications.

6.4 Anatomy of sequoll

The primary inputs to sequoll are a program binary and a property of interest such

as a loop bound or an infeasible path constraint. From this we generate a model

which is tested by a model checker. Figure 6.3 gives an overview of the key steps

111

CHAPTER 6. CHECKING PROPERTIES ON BINARIES

required to produce this model. In this section, we cover the techniques we use in

sequoll to generate a suitable model from the binary.

Our motivation stems from WCET analysis of the seL4 microkernel, whose code

has some restrictions that make verification tractable. We carry some of these

restrictions to sequoll, because they simplify our implementation. In particular, we

assume that program binaries:

• do not contain recursive functions;

• do not contain self-modifying code;

• do not make use of function pointers; and

• are not affected by interrupts, signals, or other asynchronous control flow.

These hold for a large class of programs, particularly critical code running on top of

the real-time OS. For example, the OS shields applications from the visible effects

of interrupts (other than the rate of progress).

We have implemented sequoll in around 10 000 lines of code, excluding external tools

such as the model checker.

6.4.1 Decoding instruction semantics

A prerequisite to performing static analysis on binary code is a representation of the

semantics of instructions. Producing this is typically a complex, error-prone task

and requires careful validation, as any inconsistencies can impact the soundness of

our analysis.

We mitigate these issues and reduce engineering effort by reusing Fox & Myreen’s

formalisation of the ARM instruction set written in the HOL4 theorem prover (2010).

This formalisation has been extensively tested against hardware. It is used in a

number of other projects (Zhao et al., 2011), including within the verification team

at NICTA to prove that a compiled seL4 binary correctly implements the seL4

specification (Sewell et al., 2013).

For a given instruction and system state, it can generate a precise set of semantics.

We handle conditional instructions by adding any conditions to a set of preconditions

112

6.4. ANATOMY OF SEQUOLL

Machine code: E2813002

Disassembly: add r3, r1, #2

Semantics: r3 ← r1 + 2

r15 ← r15 + 4

Machine code: E8AD0028

Disassembly: stmia r13!, {r3, r5}
Semantics: mem r13 ← r3<7:0>

mem (r13 + 1) ← r3<15:8>

mem (r13 + 2) ← r3<23:16>

mem (r13 + 3) ← r3<31:24>

mem (r13 + 4) ← r5<7:0>

mem (r13 + 5) ← r5<15:8>

mem (r13 + 6) ← r5<23:16>

mem (r13 + 7) ← r5<31:24>

r13 ← r13 + 8

r15 ← r15 + 4

Figure 6.4: Example instruction semantics from the formalisation of the ARM instruc-
tion set. Note that ARM maps the program counter onto general-purpose
register r15.

under which the instruction may execute. We can obtain a simple representation

even for quite complex instructions, as the example in Figure 6.4 shows.

Due to the use of this formalisation, we currently only support binaries for the ARM

architecture. However, specifications of other architectures could be substituted, as

all other concepts used in sequoll are architecture-independent.

6.4.2 Control flow graph reconstruction

Extracting the control flow graph of a program is a difficult task in the general case.

However, the restrictions listed above considerably simplify the task.

Given the entry point to the program, sequoll explores all reachable instructions.

Although we preclude the use of function pointers at the source level, the binary may

still contain indirect branches (i.e. those via a register) which require extra work to

resolve. Computing the possible destinations of function pointers is a much more

challenging task as it requires reasoning globally across the entire binary, whereas

the indirect branches generated by compilers can almost always be resolved locally.

113

CHAPTER 6. CHECKING PROPERTIES ON BINARIES

We use a simple symbolic execution engine to determine the destination of indirect

branches. It performs value analysis and tracks loads and stores into memory. This

allows us to resolve:

• function returns—these typically involve storing the function’s return address

into stack memory and later reading it back either directly into the program

counter, or via another register;

• indirect branches via literal loads—i.e. where the destination address is stored

as data, interspersed within the instruction stream in the binary;

• switch statements—these presently require compiler-specific pattern matching

to decode, as in the general case this is also a difficult problem.

We expand function calls in the control flow graph through virtual inlining. This

is necessary in order to compute loop bounds that are dependent on function argu-

ments or calling context (e.g. in memcpy).

Although this analysis normally works for compiled programs, more sophisticated

compiler optimisations or hand-crafted assembler code can conceivably result in

binaries where our simple symbolic execution engine fails. More comprehensive

analyses exist and these could be implemented and substituted within sequoll if

required (Thakur et al., 2010; Kinder et al., 2009; Bardin et al., 2011b).

Figure 6.5 shows the control-flow graph for our simple example from Figure 6.2.

6.4.3 Loop identification

Given the control flow graph of a program, we can identify loops and classify them

as reducible or irreducible. A reducible loop has a single entry point from outside the

loop body, whereas irreducible loops may have multiple entry points (Tarjan, 1974).

Irreducible loops are problematic for any WCET analysis that relies on specifying

loop bounds relative to a unique entry point. They also lead to ambiguity in program

structure, such as the relationship between nested loops (Havlak, 1997).

We currently restrict sequoll to analysing reducible loops and failing when an ir-

reducible loop is encountered. If required, irreducible loops could be handled by

duplicating them in the CFG—once for each entry edge. We have not done this in

sequoll as it adds unnecessary complexity for our use cases.

114

6.4. ANATOMY OF SEQUOLL

1 start

2 movs r3, r0 r3_1 ← r0_0
psrZ_1 ← (r3_1 = 0)

3 moveq r0, r3 r0_1 ← if (psrZ_1, r3_1, r0_0)

4 bxeq lr

0 return

5 mov r0, #0 r0_2 ← 0

6 tst r3, #1
r0_3 ← Φ(r0_4, r0_2)
r3_2 ← Φ(r3_3, r3_1)
psrZ_2 ← (r3_2 & 1) = 1

7 addne r0, r0, #1 r0_4 ← if (!psrZ_2, r0_3 + 1, r0_3)

8 lsrs r3, r3, #1 r3_3 ← r3_3 << 1
psrZ_3 ← (r3_3 = 0)

9 bne -#12

10 bx lr

Figure 6.5: The control flow graph of the assembly code in Figure 6.2, and its SSA
representation. The nodes outlined in (thick) red are those in the computed
slice to deduce the upper bound of the iteration count of the loop at node
6.

115

CHAPTER 6. CHECKING PROPERTIES ON BINARIES

Given a node E as a possible candidate for a loop entry point, we define a loop

as the largest strongly connected component (SCC) that includes E, such that E

dominates all other nodes within the loop. If no such SCC exists, then E does not

induce a loop. This gives a one-to-one relationship between entry points and loops

(under the reducibility criterion).

Sequoll finds reducible loops via a depth-first search, identifying for every instruction

its inner-most loop, and reconstructing the loop nests of the program.

6.4.4 SSA transformation

We convert the program to single static assignment (SSA) form, as this simplifies

later stages of our analysis. A program in SSA form has the property that each

variable is assigned to at most once. Using SSA makes it much simpler to track

the dependencies between variables. Where program paths merge with potentially

different values for a variable, a special function known as a φ (“phi”) function is

used to represent the choice of values based on path.

The primary advantage of using SSA representation is that it can greatly reduce

the number of states required for model-checking; we describe this further in Sec-

tion 6.4.7. We use standard techniques to convert the program’s representation into

SSA form (Cytron et al., 1991).

Figure 6.5 shows the SSA representation of our example from Figure 6.2 (with the

irrelevant portions elided). Multiple edges reach node 6 in this diagram, and hence

φ functions define the values of r0 and r3.

6.4.5 Simplification

Once transformed to SSA form, there are many opportunities to simplify expres-

sions within the analysis. For example, a program increments and decrements the

stack pointer as it pushes or pops data on and off the stack. As Figure 6.6 shows,

constant propagation often allows us to condense these chains of arithmetic to a

simple expression, specifying the offset against the original stack pointer.

The φ functions generated by SSA transformation can also be simplified if all possible

values are equivalent. This is particularly pertinent for the stack pointer, which

generates a significant number of φ functions as its value is frequently modified.

116

6.4. ANATOMY OF SEQUOLL

sp1 ← sp0 + 8 sp1 ← sp0 + 8
sp2 ← sp1 + 16 sp2 ← sp0 + 24
sp3 ← sp1 + 16 =⇒ sp3 ← sp0 + 24
sp4 ← φ(sp2, sp3) sp4 ← sp0 + 24
sp5 ← sp4 − 24 sp5 ← sp0

Figure 6.6: Using constant propagation, sequoll can convert all stack pointer references
to precise offsets relative to an initial stack pointer. This enables the stack
to be treated independently from memory in the analysis of seL4.

However, the value of the stack pointer at any given program point is typically a

fixed offset from its value at function entry, regardless of execution history or any

other program state. With virtual inlining of functions, the offset is fixed relative to

the initial stack pointer value of the program. The only case where this condition

may be violated is when dynamically sized arrays are allocated on the stack (e.g.

using the alloca function). This does not occur in seL4.

If all pointer accesses were to known addresses, we could convert all accessed mem-

ory locations into simple variables, allowing us to track and simplify them further.

Unfortunately, memory addresses cannot always be determined, and they frequently

depend on function inputs. This impacts even on those memory addresses which

we can determine, due to the possibility of pointer aliasing: a write to an unknown

address may affect a later read from a known address.

However, there are cases where we may know that memory accesses do not alias. For

example, C/C++ compilers provide the restrict keyword, which lets programmers

hint that a memory region has no aliases. Similarly, the formal verification of seL4

guarantees that the C code will never take a pointer to a local variable (Klein et al.,

2009b). This ensures that stack memory will never alias with any other pointers.

Using this knowledge about seL4, we can treat each byte of stack memory as a

local variable, thereby eliminating all accesses to stack memory from our model.

This allows sequoll to track and analyse parameters passed via the stack. It also

eliminates the pushing and popping of callee-saved registers, frequently emitted in

function prologues and epilogues, from later analysis.

We also resolve accesses to read-only memory, such as constants loaded using PC-

relative addressing.

117

CHAPTER 6. CHECKING PROPERTIES ON BINARIES

6.4.6 Program slicing

Often, the property we wish to check involves a small portion of the entire pro-

gram. We can speed up the analysis significantly by computing a smaller, equivalent

program which preserves the property of interest, precisely what the technique of

program slicing achieves (Weiser, 1984). Given a property of interest, known as the

slice criterion, we recursively follow all data-flow and control-flow dependencies to

compute an equivalent program with respect to this property.

We select the slice criteria based on the variables or control flow nodes relevant to

our desired property. For instance, to compute loop bounds, we count the maximum

number of times that the head of a loop may execute. Here the slice criterion simply

consists of the loop head node (containing the first instruction in the loop). The

slicing algorithm will begin by finding the control-flow dependencies for the loop

head. This will include any conditional statements outside the loop which may

prevent its execution, as well as any nodes inside the loop which may conditionally

exit it.

It is possible that we over-approximate the slice, however it is guaranteed to be

equivalent with regard to the slice criteria. Slices that are too large can make model

checking prohibitively expensive. The simplification step described in Section 6.4.5

helps to minimise the size of the slice.

Some loops are bounded only because of earlier conditions on the path leading to

them. Consider the code below—the loop is only bounded because it does not

execute if the preceding condition fails. The slicing algorithm will identify the

relevant parts of the execution history and preserve those in the slice.

if (c < 100) {

for (i = 0; i < c; i++) {

...

}

}

The trail of dependencies leading up to the head of the loop can be quite long,

with much of it irrelevant for a tight bound. Consider a loop with two possible

exit conditions—one exits the loop when an iteration count variable exceeds a hard-

coded upper bound, while a second tests the iteration count variable against a

complex expression computed before the loop. If we only care about the hard-coded

118

6.4. ANATOMY OF SEQUOLL

1 2,4

2 6,8,9

3 0

Figure 6.7: The reduced control flow graph, equivalent to the slice shown in Figure 6.5.
Each node also list the nodes of Figure 6.5 which it represents.

upper bound then we can prune the slice to ignore the computation of the complex

expression, significantly speeding up the analysis.

For this purpose, we allow the user to pass in a parameter specifying a region of

interest—this is a subset of nodes of the control-flow graph that are considered

by the slice, excluding statements outside the region. We convert variables that

are modified outside the region of interest, but used inside, into non-deterministic

inputs.

In order to preserve soundness, the chosen region of interest must maintain an

important property: the region must have a unique entry node and this node must

be a dominator of all other nodes in the region. If this property is not met, it

may be possible to execute the region of interest without executing the entry node,

invalidating any results established by the model checker.

We construct a reduced control flow graph representing only the nodes in the pro-

gram slice, and collapse all consecutive nodes into one node where possible (i.e. any

sequence of nodes with no branches originating from or destined for any nodes in

between).

For loops with a fixed iteration count, the reduced control flow graph can have as

few as three nodes. Figure 6.7 shows the reduced control flow graph of our example

119

CHAPTER 6. CHECKING PROPERTIES ON BINARIES

code from Figure 6.2; in this case, 11 nodes were reduced to three. More complex

loop structures will obviously introduce more nodes, but our evaluation (Table 6.1)

shows that in most cases the graph remains very small.

6.4.7 Translation to a symbolic model

The final step in processing the binary is to convert the reduced graph of our program

slice into a symbolic model, which can be checked by a model checker. We use the

NuSMV model checker (Cimatti et al., 2002) which supports assertions expressed

in temporal logic such as linear temporal logic (LTL) or computational tree logic

(CTL). These logics are able to express useful properties such as “the value of

some variable is always less than k” or “state A is not reachable until state B has

occurred”.

We convert variables in our SSA representation into one of three types of expressions

in the model:

• stateful variables: these variables are updated by transitions in the model and

contribute to the state space which the model checker must explore;

• frozen variables: these variables retain their value throughout the program,

and also contribute to the state space which must be explored; and

• definitions: these incur no state of themselves (much like C preprocessor

macros), and act merely as syntactic sugar for building larger models.

We translate the variables of the reduced control flow graph into a symbolic model

as follows:

• Variables that are used but not defined anywhere in the SSA representation

are inputs to the program. These are converted to frozen variables.

• Both φ functions and memory reads are converted to stateful variables in the

model.

• All other SSA variables become definitions, as they themselves do not need to

incur any state in the model.

120

6.4. ANATOMY OF SEQUOLL

The key observation here is that there are only two cases in which the program’s

execution may diverge, requiring the model checker to explore multiple states. The

first is at memory reads when the result is unknown, either due to potential aliasing

or otherwise being unable to identify a corresponding memory store.

The second case is when multiple paths can be taken through the control flow graph.

Perhaps somewhat unintuitively, we only need to consider points where program

paths converge rather than diverge. Given a node with multiple incoming edges, the

choice of incoming edge implicitly defines which outgoing edges were taken earlier in

the execution. This fits naturally with the SSA representation of φ functions which

assign variables only at converging nodes.

For the example in Figure 6.5, we only need to create a single stateful variable for

the expression r3 2← φ(r3 3, r3 1). This is defined in the model checker as follows:

next(r3_2) := case

n=1: r3_1;

n=2: r3_3;

TRUE: r3_2;

esac;

This intuitive syntax states that when visiting node 1 (in the reduced control flow

graph of Figure 6.7), r3 1 should be assigned to r3 2; similarly at node 2, r3 3

should be assigned. The variable retains its value at all other nodes.

The input variable r0 0 is specified as a frozen variable. All other information

needed for the program slice is specified as definitions which incur no additional

state.

psrZ_3 := r3_3 = 0;

psrZ_1 := r3_1 = 0;

r3_3 := r3_2 >> 1;

r3_1 := r0_0;

In addition to the SSA variables, we represent the reduced control flow graph of the

program slice as an additional stateful variable. The transitions between nodes are

represented in the model by conditional assignments to this stateful variable. For

example, the reduced control flow graph in Figure 6.7 becomes:

121

CHAPTER 6. CHECKING PROPERTIES ON BINARIES

init(n) := 1;

next(n) := case

n=1 & !psrZ_1: 2;

n=1 & psrZ_1: 3;

n=2 & !psrZ_3: 2;

n=2 & psrZ_3: 3;

n=3: 3;

esac;

6.4.8 Loop bound checking

To solve the example loop bound from Figure 6.2, we assign a stateful variable

C in the model checker which counts the number of times the loop entry node

executes. The variable is reset to zero at nodes outside the loop that are immediate

predecessors of the loop entry node.

Although the model checker cannot directly compute the loop bound for us, we can

ask the model checker a statement of the form “is C ≤ k?”. We can then perform

a binary search to find the smallest value of k for which the statement holds true.

This value is the maximum number of times that the loop may iterate.

6.4.9 Path feasibility testing

As described in Section 6.3.2, we express the path infeasibility constraints in terms

of pairs of instructions which either conflict with each other (are mutually exclusive),

or are consistent with each other (both execute the same number of times).

These constraints translate naturally to expressions suitable for model checking,

as follows. For conflict constraints, we create boolean flags a and b for the two

instructions of interest. These flags are set to true when the respective node is

visited. We can then express the infeasibility condition as the assertion that a

and b are never simultaneously true. For consistency constraints, we use execution

counters instead of flags, and assert that all paths finish with both counters equal.

122

6.5. EVALUATION

6.5 Evaluation

6.5.1 seL4

Our primary motivation for developing sequoll was to validate annotations on our

timing analysis of the seL4 microkernel, hence this is the obvious test case.

We use sequoll to automatically compute the loop bounds on all loops within the

seL4 binary, which contains 32 loops in 11 functions. Regions of interest were spec-

ified on many of these loops—in particular, loops where there were exit conditions

with long chains of data dependencies that have no effect on the worst-case itera-

tion count. Sequoll succeeds in computing precise bounds on 18 loops (56 %). The

analysis on the remaining loops presently fails for one of several reasons, which we

discuss in detail in Section 6.6:

• one loop is only bounded thanks to an invariant maintained by its environ-

ment ;

• one loop sequoll cannot analyse due to complex exit conditions ;

• on 12 loops, all of identical structure, sequoll fails to determine a bound due

to poor memory aliasing analysis ;

Of the 18 loops, 13 loop bounds are computed within 10 seconds each, three further

loops within one minute, and two more complex bounds in 28 minutes—99% of

which is spent performing SSA transformation and simplification. This step is slow

primarily because of the expensive live variable analysis on the inlined control flow

graph, which consists of over one million nodes. The analysis of seL4 used at most

6 GiB of memory.

Our best (manual) analysis eliminated 35 infeasible paths by manually adding appro-

priate constraint annotations, reducing the computed WCET bound from 657 000

cycles to 213 000 cycles, a 67 % improvement. Of these, sequoll validated 4, which

was sufficient to reduce the bound to 481 000 cycles (a 26 % improvement), see Fig-

ure 6.1.

One of our manual constraints turned out to be wrong, as we found through sequoll!

Fortunately, this somewhat embarrassing fact had no effect on the WCET estimate,

123

CHAPTER 6. CHECKING PROPERTIES ON BINARIES

but serves as a clear warning about the fickle nature of annotations derived from

path inspections.

Of the remaining 30 constraints,

• 11 relate to infeasible paths which depend on values read from memory that

can potentially alias. The loss of information makes it impossible to determine

if these paths are truly infeasible.

• 19 depend on invariants which are not possible to ascertain from the binary.

6.5.2 WCET benchmarks

We use the Mälardalen WCET benchmark suite (Gustafsson et al., 2010) to fur-

ther evaluate sequoll’s ability to deduce loop bounds. We compile the C sources

for the ARMv6 architecture, using gcc 4.4.1 and the -O2 optimisation level. We

omit benchmarks using floating-point arithmetic, as the ARM formalisation does

not presently support the instructions used for hardware floating point (Fox and

Myreen, 2010). We also omit the recursion benchmark, as our analysis does not

presently support recursive functions. Finally, we do not analyse two programs

containing irreducible (multiple-entry) loops, as “iteration count” is ill-defined on

these structures. However, this does not preclude them from being checked for other

properties.

Table 6.1 presents the results. Because of the compiler’s aggressive optimisation,

loops present in the C code were sometimes partially unrolled, completely unrolled

or occasionally duplicated. Hence, the total number of loops listed in Table 6.1

differs in many cases from those evident in the C code.

The benchmark binaries we analysed have a total of 66 loops. Of these, sequoll

computed the bounds of 41 automatically (62 %). Sequoll could compute the bound

of one further loop (in expint) after specifying a region of interest, as described in

Section 6.4.6.

Analysis of the remaining 24 loops fails for a number of reasons. We assume failure

when the model checker either exhausts system memory or shows no signs of progress

within 12 hours. Note that some loops fail for multiple causes, and we count those

under each cause:

124

6.5. EVALUATION

max max
Benchmark # successful state vars CFG nodes
adpcm 5/6 6 12
bs 1/1 10 10
bsort100 2/3 17 21
cnt 1/1 6 5
compress 1/7 4 3
cover 3/3 4 122
crc 2/2 6 10
duff irreducible loops
edn irreducible loops
expint 2/3 4 8
fac 2/2 8 12
fdct 1/1 4 3
fibcall 1/1 4 3
fir 1/2 4 4
insertsort 1/2 4 3
janne complex 0/2 4 3
jfdctint 2/2 4 3
lcdnum no loops (unrolled by gcc)
matmult 5/5 9 7
ndes 6/6 9 12
ns 0/1
nsicheu 1/1 4 3
prime 0/4
statemate 0/1
ud 5/9 5 7

Table 6.1: Results of evaluating sequoll on programs from the Mälardalen WCET
benchmark suite. Each benchmark lists the number of successfully com-
puted loop bounds, and the maximum number of stateful variables and
control flow graph nodes required.

125

CHAPTER 6. CHECKING PROPERTIES ON BINARIES

• Memory accesses: 9 failures are due to loop bounds subject to memory aliasing,

as discussed above.

• Complex early exits: 7 loops clearly have fixed upper bounds, but can exit early

in certain cases. The conditions for early exit depend on complex expressions,

such as tests for divisibility in the prime benchmark. These expressions gen-

erate dozens of stateful variables, preventing the model checker from solving

them in a timely fashion.

• Complex loop bounds: 8 loops have bounds which are complex expressions.

Most of these are inner loops, where the state of the outer loop determines

the iteration count. Our model checker fails to determine these loop bounds

within several hours.

• Software division: 6 loops fail because their loop bounds depend on the result

of an integer division—on our ARM platform, integer division is emulated in

software, and the routines are far too complex for our model checker.

Analysis time: 28 of the 41 loops are computed by the model checker within five

seconds each, and 39 within one minute. Two computations take significantly longer

to run: analysis of one loop in bsort100 takes 14 minutes, and one loop in adpcm

requires 9 hours. Both of these cases are due to a loop exit condition which requires

the model checker to explore the state space across two nested loops simultaneously.

The loop in adpcm also has an upper bound of 999—the largest of any of our

benchmark results.

As the loop bounds increase, the model checker requires more time to explore the

state space, and the binary search for the loop bound requires more iterations. Thus,

in general, smaller loop bounds will inherently be faster to compute.

Note that these durations do not include the time required by the ARM formalisation

to generate the instruction semantics. This step is particularly slow in its current

version, taking around one second per instruction. We mitigate this by caching the

instructions as they are generated so that subsequent analyses of the same binary

are much faster.

The analysis phase of sequoll used at most 300 MiB of memory for all benchmarks,

whilst the NuSMV model checker consumed up to 1.5 GiB.

126

6.6. DISCUSSION

6.6 Discussion

While the results so far are encouraging, we would ideally like to automate all loop

analysis. Here we take a closer look at what we can do to improve the success rate.

• Potentially aliasing memory accesses affect loops and infeasible paths fairly

frequently. In the problematic loops, the binary computes the upper bound

and stores it into memory, where it vanishes from the view of our analysis.

Improved alias analysis may resolve this and result in the automatic compu-

tation of the bounds of all affected loops (12 in seL4 and 11 in the WCET

benchmarks). Applied to infeasible path detection on seL4, this alone would

improve the WCET estimate from 27 % to 54 % over the baseline. Techniques

such as those developed for McVeto (Thakur et al., 2010) are appropriate

candidates, as they can be used to identify aliasing conditions relevant to

specific properties of interest, and operate on compiled binaries.

• Complex early exits within single loop nests we could handle by considering

each exit edge individually—the lowest result of any successfully analysed exit

edge can be used as a safe upper bound. This works in single loop nests, as

following any exit edge precludes the loop from iterating further. It is also

suitable for simple inner loops where there are no dependencies on variables

defined by outer loops, as the iteration count of an inner loop can be computed

without regard to outer loop iterations. However, it is unsound for inner loops

with dependencies on the outer loops, as the exit edge taken may vary with

each execution of the loop.

• Complex loop bounds may be out of reach of model checkers for now, notwith-

standing advances in model checking technology. Other techniques such as

symbolic execution may be more appropriate to solve these.

• We could deal with software division by catching calls to the software emu-

lation routines and replacing them with the model checker’s native division

operator.

• Loop bounds and infeasible paths which depend on invariants maintained in

the code’s environment cannot be computed by local static analysis. A good

example of this (from seL4) is equivalent to the following C code:

127

CHAPTER 6. CHECKING PROPERTIES ON BINARIES

uint32_t i = 1 << b;

if (i > 256)

i = 256;

while (i != 0) {

/* ... */

i -= 4;

}

Although there appears to be a loop variable with an upper bound, there exist

values of the input b for which this loop will never terminate (b ≤ 1 or b ≥ 32).

An invariant from the seL4 proof states that b is always in the range [4, 31].

Thus the loop is safe in its context of use, but our analysis tool is unable to

deduce this fact. In fact, any sound method of detecting infeasible paths could

not discover this without effectively reproducing a substantial part of the seL4

proof.

In principle we can address such cases by importing invariants from the formal

verification of the kernel into sequoll. Using such information is an interesting

challenge for future research. On top of what is achievable by alias analysis,

this would achieve a near-optimal WCET (68 % better than baseline) with a

very strong level of confidence.

Finally we observe that there are very few infeasible paths in the Mälardalen bench-

marks, as these are mostly single-path programs. However, sequoll in fact detected

some infeasible paths as loops with an iteration count of 0 (due to virtual inlining,

some loops became unreachable).

6.7 Summary

We have presented sequoll, a framework for verifying local properties of binaries such

as loop counts and path infeasibility information. Using symbolic model checking on

program binaries can avoid a major source of human error, and in turn strengthens

the assurances on a WCET analysis.

We evaluated sequoll on the seL4 microkernel, a challenging target due to its non-

preemptible design, resulting in long code paths to be analysed. We were able to

automatically compute the majority of loops and found that almost all failures could

128

6.7. SUMMARY

be avoided by the use of a more sophisticated memory aliasing analysis. We also

validated several of the infeasible path constraints, gaining a 27 % improvement in

WCET, without trusting any user annotations.

We also used the Mälardalen benchmark suite, where sequoll computes 64 % of

the loop bounds from the binary alone, alias analysis being again the dominating

limitation. However, some issues still remain on complex loops.

The speed of the ARM formalisation is problematic for larger programs, contribut-

ing to the majority of the computation time (although its results can be cached).

Future versions of the ARM formalisation aim to improve its speed, however the

construction within an LCF-style theorem prover inherently limits its performance.

Work is under way to formalise the ARMv7 instruction set using a domain-specific

language, which can be retargeted for different environments such as theorem provers

and other analysis tools (Fox, 2012). Once this work comes to fruition, we can easily

substitute the results into sequoll, or indeed any other formalisation.

Opportunities for future research directions include eliminating further sources of

human error, improving memory alias analysis, and incorporating formally-proven

invariants of the source code into the model. In the following chapter, we build upon

the framework of sequoll and extend it to automatically detect infeasible paths.

129

Chapter 7

Automated infeasible path detection

The ideas and algorithms behind this chapter were partly inspired by conversations with Mark

Liffiton, creator of the CAMUS algorithm. The integration of CAMUS into the WCET analysis

and evaluation presented is entirely my own work.

7.1 Overview

Infeasible paths in WCET analyses are a source of overestimation and thus inac-

curacy. Such paths arise when an abstraction of a program is too coarse, and can

be eliminated by refining the abstraction to remove the infeasible paths. The pro-

cess of refining the abstraction can be done manually, but this is often tedious and

error-prone. In the WCET analyses performed in this thesis, a significant amount of

effort was spent eliminating infeasible paths manually in order to eventually arrive

at a feasible path. In the previous chapter, we demonstrated how the correctness of

some infeasible path constraints could be validated using a model checker. While

this helps to avoid errors introduced by manual annotations, it does not reduce the

amount of developer effort required to construct the constraints.

There are two categories of infeasible paths eliminated from our WCET analyses:

those that rely on knowledge of global invariants, and those which can be deduced

through local reasoning. The first category can generally be identified quickly by a

developer with an understanding of the code base, but is significantly more difficult

to automate. This is because automatically deducing global invariants is compu-

tationally expensive—although some techniques exist to “guess” possible program

131

CHAPTER 7. AUTOMATED INFEASIBLE PATH DETECTION

int f(int a) {

if (a < 0)

slow ();

else

fast ();

if (a >= 0)

slow ();

else

fast ();

}

if (a < b)

slow() fast()

if (a >= b)

slow() fast()

Figure 7.1: A program with a typical “double diamond” control flow graph. There
are two infeasible paths in this program as the if statements are mutually
exclusive. This is not our motivating example.

invariants (Ernst et al., 2007). It is much easier to automatically detect infeasible

paths which fall into the second category (i.e. due to local reasoning). It is these

paths which we focus on in this chapter.

In this chapter, we present a method which automatically refines the abstraction

used by IPET-based WCET analyses. We build upon Sequoll (Chapter 6) and its

ability to reason about binaries. Instead of model checking, we utilise an SMT solver,

and integrate the CAMUS algorithm for identifying unsatisfiable subsets within a

system of constraints. This algorithm automates the process of eliminating infeasible

paths by hand, speeding up computation of the worst-case execution time, as well

as removing potential for human error.

The method we present has two key advantages over past approaches: (1) unlike

many traditional abstraction-refinement techniques, this method is well-suited to

IPET-based WCET analyses, as the structure of the infeasible paths found can be

expressed precisely as integer linear equations; and (2) this method can detect in-

feasible paths attributable to the interaction of an arbitrary number of mutually

unsatisfiable conditions, whereas some techniques are limited to only pairwise con-

flicts.

132

7.2. MOTIVATING EXAMPLE

int f(int a, b) {

if (a == 0)

...;

if (a == b)

...;

if (b == 1)

...;

}

Figure 7.2: Our motivating example: a program containing a “3-diamond”. Any two
conditionals can be simultaneously satisfied, but all three cannot.

7.2 Motivating example

There has been a significant amount of past research on finding infeasible paths, es-

pecially for WCET analysis (described further in Section 7.6). Many algorithms are

framed in the context of a common construction known colloquially as the “double

diamond”. Such a case arises from two mutually exclusive conditional statements,

such as the example shown in Figure 7.1. However, that is not our motivating

example.

Instead, consider the program in Figure 7.2 with the control flow graph shown in

Figure 7.3. No pair of conditionals in this program are mutually exclusive, however

all three conditionals cannot be simultaneously satisfied. One distinct advantage

of the approach presented in this chapter is that it generalises naturally to infeasi-

ble paths involving an arbitrary number of conflicting edges, such as those arising

from n-diamonds. An infeasible n-diamond configuration consists of n conditionals

such that any strict subset may be simultaneously satisfiable, but the set of all n

conditionals are not.

7.3 Background

This section summarises the relevant background behind the implicit path enu-

meration technique used to compute worst-case execution time, and introduces the

CAMUS algorithm developed by Liffiton and Sakallah (2008).

133

CHAPTER 7. AUTOMATED INFEASIBLE PATH DETECTION

b0 if (a == 0)

b1

e01

b2

e02

b3 if (a == b)

e13 e23

b4

e34

b5

e35

b6 if (b == 1)

e46 e56

b7

e67

b8

e68

b9

e79 e89

Figure 7.3: Control flow graph corresponding to the program in Figure 7.2, showing
variables for the execution counts of each basic block and edge.

134

7.3. BACKGROUND

7.3.1 WCET computation by IPET

As described in Section 2.4.1, there are many approaches to computing the worst-

case execution time of a program, each with their own advantages and drawbacks.

Computing precise WCET on large programs executing on modern CPU architec-

tures requires using abstractions of the program and/or CPU. The choice of abstrac-

tion selects a compromise between accuracy and scalability. Here, we only focus on

refining the program abstraction, not the CPU.

We use the implicit path enumeration technique pioneered by Li et al. (1995) and

implemented in Chronos (Li et al., 2007). Recall from Section 2.4.2 that IPET

computes the WCET by viewing it as a linear optimisation problem. It formulates

a set of integer linear equations where variables are used to represent the execution

counts of each basic blocks, as well as each edge between blocks. The flow constraints

from the control flow graph of the program are encoded as linear equations in an

integer linear programming problem, as are the constraints on loop bounds.

In its primitive construction, the equations encode only the structure of the control

flow graph and ignore the flow of any data through the program. It is entirely pos-

sible for a worst-case path found in this construction to be infeasible in practice, for

example, because of conditional branches that cannot be satisfied. If the constraints

which cause a path to be infeasible can be expressed as a linear equation, then we

can add the equation to the ILP problem to exclude it. Note that not all infeasible

paths can be expressed this way—for example, any constraint involving non-linear

arithmetic.

In the remainder of this chapter, we use bi to both identify the basic block, and

as a variable denoting the execution count when part of an equation. Similarly eij

identifies the edge from bi to bj, as well the variable denoting the number of times

that edge is taken.

Given our example in Figure 7.3, we can express the fact that all three conditionals

are mutually unsatisfiable by the following equation:

e01 + e34 + e67 ≤ 2

This equation states that the sum of execution counts of the three “true” edges in

the CFG is at most two, therefore no path will take all three edges. Note that this

expression is only correct if this fragment of the control flow graph only executes

135

CHAPTER 7. AUTOMATED INFEASIBLE PATH DETECTION

once (i.e. if it is not part of a loop). We address loops in Section 7.4.

7.3.2 Computing all minimal unsatisfiable subsets

Satisfiability Modulo Theories (SMT) solvers can be used to determine if a given

set of constraints is satisfiable. Modern SMT solvers can reason about constraints

expressed as formulae over booleans, integers, bitvectors, lists and more. If the

constraints are not satisfiable, many SMT solvers simply return the unenlightening

result “unsatisfiable”. However, some will endeavour to provide a smaller unsatis-

fiable subset of the original problem to explain why the problem is unsatisfiable,

weeding out irrelevant information.

In the context of worst-case execution time, every edge of a loop-free control flow

graph can be viewed as a boolean formula of the conditions that must hold for the

edge to be traversed. By expressing a set of edge conditions to an SMT solver,

it can answer if the edge conditions can be simultaneously satisfied. If not, the

unsatisfiable subset can be used as an additional constraint to eliminate a class of

infeasible paths.

A minimal unsatisfiable subset (MUS), or unsatisfiable core, is an unsatisfiable subset

of constraints of which removing any individual constraint allows the others to be

satisfied. A set of formulae may contain multiple MUSes, which themselves may be

disjoint or overlap. The problem of finding MUSes has seen an increased interest

recently due to its increasing importance in formal verification (Nadel, 2010). Two

approaches have been proposed for finding all minimal unsatisfiable subsets (Bailey

and Stuckey, 2005; Liffiton and Sakallah, 2008).

In this chapter, we apply the compute all minimal unsatisfiable subsets (CAMUS)

algorithm developed by Liffiton and Sakallah (2008). The full details of the algorithm

are given in their paper, however we will present a brief overview here to give an

understanding of the limitations when applied to WCET analysis.

An MUS is closely related to the concept of a minimal correction subset (MCS). An

MCS is a minimal subset of constraints in an infeasible constraint system such that

when the MCS is removed, the remaining constraints are feasible. Each MCS is the

set-wise complement of a maximal satisfiable subset (MSS)—a satisfiable subset of

the constraints which cannot be expanded any further without making it unsatisfi-

able.

136

7.4. DETAILS

Let Ω be a collection of sets of elements from some domain D. H ⊆ D is a hitting

set of Ω iff every set within Ω is “hit” by an element of H—i.e. each set of Ω shares

a common element with H. An irreducible hitting set of Ω is a hitting set where

no element can be removed without losing the hitting set property. For example,

let Ω = {{A,D}, {B,C,D}} (and our domain D = {A,B,C,D}). Then H1 =

{A,B,C} and H2 = {A,B} are both hitting sets of Ω but only H2 is irreducible.

A duality exists between the MUSes and MCSes of an infeasible constraint system:

every MUS is an irreducible hitting set of the set of all MCSes. Similarly, every MCS

is an irreducible hitting set of the set of all MUSes. The CAMUS algorithm leverages

this duality to compute all MUSes, by first computing the set of all MCSes (as the

MCSes are easier to compute). Only once all MCSes are found can the MUSes be

computed.

This method of construction gives rise to some challenges in managing the compu-

tational complexity when trying to compute MUSes. In particular, given a set of

disjoint MUSes, the number of MCSes is the combined product of the cardinalities of

each MUS—i.e. given the disjoint MUSes {M1,M2, . . . ,Mn}, the number of MCSes

is given by |M1| × |M2| × . . .× |Mn|. This is a worst case for the CAMUS algorithm

as the number of MCSes grows exponentially with the number of MUSes.

The CAMUS algorithm builds upon an existing constraint solver. It searches for all

maximal satisfiable subsets, giving all minimal correction sets as their complement,

which in turn are used to compute all minimal unsatisfiable subsets as their hitting

sets. The CAMUS algorithm has been applied to both boolean satisfiability (SAT)

and SMT solvers. Our work builds upon the SMT implementation of CAMUS using

the Yices SMT solver (Dutertre and de Moura, 2006).

7.4 Details

The outline of our algorithm is shown in Figure 7.4. Using the sequoll framework,

we first precompute the edge conditions of every edge in the control flow graph. An

edge condition is a boolean expression corresponding to a condition which must hold

in order for that edge to be traversed. For example, the edge condition on e34 from

Figure 7.3 is a = b, and similarly for e35 is a 6= b. As sequoll has transformed our

program into SSA form (Section 6.4.4), all edge conditions relate to SSA variables,

making them natural to express to an SMT solver.

137

CHAPTER 7. AUTOMATED INFEASIBLE PATH DETECTION

Precompute edge conditions

Generate ILP via IPET

Combine ILP with
extra constraints

Solve ILP

Reconstruct worst-case path

For each loop body,
run CAMUS

Generate new constraintsDone

No MUSes found MUSes found

Figure 7.4: An outline of our algorithm

Using standard IPET techniques, we generate a set of integer linear equations which

encode the structure of the control flow graph. This is generated using the Chronos

tool (Li et al., 2007), as described in Chapter 3. As Chronos also models the in-

struction and data caches, the resulting ILP equations are more complex, but have

the same inherent structure as produced by the standard IPET approach.

By solving the ILP equations, we obtain an assignment of values to our basic block

138

7.4. DETAILS

and edge count variables. From these values, we can reconstruct the path through

the program using an Eulerian path algorithm. Such a path is guaranteed to exist

due to the flow constraints for each node.

Given the longest path through the control flow graph, we can collect all edge

conditions of all edges on this path. This gives us our set of constraints which we

can then pass to the CAMUS algorithm. The CAMUS algorithm will return a set

of MUSes (which may be the empty set) corresponding to all sets of edge conditions

that are mutually unsatisfiable. Each such set describes a class of paths which are

infeasible.

If the CAMUS algorithm returns no MUSes, then the SMT solver is unable to find

any infeasible paths. In this case, there may still be infeasible paths in the control

flow graph, but these cannot be reasoned about using SMT. Such paths may arise

due to loops (discussed below), non-linear arithmetic, unresolvable memory accesses,

or invariants on the code which are not expressed to the SMT solver. If no MUSes

are found, we terminate and return the most recent worst-case path.

On the other hand, if the CAMUS algorithm returns sets of infeasible constraints,

we convert each set (MUS) into an equation and augment the existing ILP in order

to refine our abstraction. For example, consider the program listed in Figure 7.2,

with its control flow graph shown in Figure 7.3. Assume that the worst-case path

detected so far included the edges e01, e34 and e67 (and possibly others beyond

the graph shown). The CAMUS algorithm would detect that these edges are not

satisfiable and return the single MUS {e01, e34, e46}. This can be converted into a

constraint of the form:

e01 + e34 + e67 ≤ 2

In general, any such MUS on a loop-free control flow graph M = {e1, e2, . . . , en} can

be converted into an ILP constraint of the form:

e1 + e2 + · · ·+ en ≤ |M | − 1

We repeat the process again using the original set of ILP equations, augmented

with any constraints derived from MUSes, until no further MUSes are found. By

eliminating the class of all paths containing any MUS found, the ILP solver will not

find them on subsequent iterations, guaranteeing progress.

139

CHAPTER 7. AUTOMATED INFEASIBLE PATH DETECTION

1

2

3

4

e12

e23 e32

e34

e41

Figure 7.5: An example CFG with nested loops

Now we have seen the general idea behind the algorithm, there are some details to

be addressed.

Loops: The approach presented is intrinsically tied to loop-free control flow graphs.

The reason for this limitation is two-fold: first, SMT solvers cannot natively reason

about loops except by explicitly unrolling them, or by incorporating loop invariants

(Leino, 2012); second, even if we could find infeasible paths across loop iterations,

constructing a corresponding ILP constraint is difficult, if not impossible.

However, we can detect infeasible paths if they lie within a single iteration of a loop.

Our approach considers each loop within a program separately. For each loop L (a

strongly connected component in the CFG), we select the edges that are contained

in L, but are not a part of any nested loops within L. In the example CFG shown

in Figure 7.5, there are two loops, one nested within the other. We consider the

set of edges of the outer loop {e12, e34, e41}, and the set of edges of the inner loop

{e23, e32}. As we do not consider irreducible loops in our analysis, the nesting of

loops is always well-defined (see Section 6.4.3).

Model checkers are better suited to exploring iterations of a loop, however any

resulting infeasible paths may not be expressible as ILP constraints. One simple

method to simultaneously overcome the limitation of loops in SMT solvers, and the

140

7.4. DETAILS

x
1
← ... x

2
← ... x

3
← ...

x4 ← ɸ(x1, x2, x3)

(a) a φ-variable in the CFG

x
1
← ... x

2
← ... x

3
← ...

x4=x1 x4=x3x4=x2

(b) CFG after transforming edge conditions

Figure 7.6: An example of φ-elimination

1 if (a == x)

2 if (a < b)

3 c = a;

4 else

5 c = b;

6 if (c != x)

7 ...

Figure 7.7: An example of C code which is improved by φ-elimination

problem of constructing corresponding ILP constraints, is to (partly or fully) unroll

loop iterations. We have not done so in our analysis, but this is an area for future

work.

φ-elimination: In SSA representation, φ-functions (and the φ-variables to which

they are assigned) are used to represent a value that depends on the path taken

through the program. They are located at nodes in the control flow graph with

multiple incoming edges. For example, Figure 7.6a shows part of a control flow graph

where a φ-function is used. In the general case, the value of x4 here depends on which

incoming edge was taken. However, as our algorithm evaluates the feasibility of a

specific path, we can transform the φ-function into edge conditions on the incoming

edges, as shown in Figure 7.6b. This allows the SMT solver to track the variable

through the path.

This process of φ-elimination actually gives rise to some of the “triple-diamond”

scenarios described in Section 7.2 (although such scenarios can exist without φ-

141

CHAPTER 7. AUTOMATED INFEASIBLE PATH DETECTION

elimination). To see how this arises in practice, consider the code in Figure 7.7. Any

loop-free path that executes both lines 3 and 7 is infeasible. We have not shown the

full control flow graph for this example, but there are three edge conditions in the

infeasible set: {a = x, c = a, c 6= x}.

Curbing complexity: Due to the inherently exponential nature of SMT solving, and

the exponential complexity of the CAMUS algorithm in the presence of multiple

MUSes, we must choose our candidate edges to test with CAMUS carefully. For

programs with longer paths (e.g. 200 edges), there may easily be 10 or more MUSes

on a given worst-case path.

To reduce the complexity of finding these MUSes, we use the observation that con-

flicting edges are generally in close proximity. Given this, we use a small sliding

window over the edges of the candidate path, and use CAMUS to find conflicts over

smaller segments. The sliding window begins with a fixed initial size s0, and moves

forward incrementally by d for each query to CAMUS, partially overlapping with the

previous query. This detects many of the common conflicts quickly. The variables

s0 and d can be tuned based on the efficiency of the SMT solver.

If no conflicts are found after the first pass with the sliding window, we repeat the

process but increasing the size of the sliding window until it either contains an MUS,

or covers the entire path (at which point we know the SMT solver has deemed the

path feasible). In extreme circumstances, the SMT solver may take too long as it

performs a computationally expensive search. In this case, the impatient user can

abort the SMT solver. This construction gives a suitable anytime algorithm, where

the result returned is valid even if interrupted by the user prematurely.

As an example, consider a worst-case path that follows the sequence of edges:

e1, e2, e3, e4, e5, e6, e7, e8

with an initial window size of s0 = 4, and increment of d = 2. We first run

CAMUS over {e1, e2, e3, e4}, followed by {e3, e4, e5, e6}, followed by {e5, e6, e7, e8}.
If no MUSes are found, we then expand to {e1, e2, . . . , e6} and finally, {e1, e2, . . . , e8}.

Note that we may not find all MUSes along a specific path, but it is not necessary.

For example, if a path contains one MUS with edges close together (close enough

to fit within a small sliding window), as well as a second MUS where the conflicting

142

7.5. EVALUATION

edges are far apart, we will only find the first MUS. This eliminates the path in

question (and any such paths containing the MUS) and guarantees forwards progress.

We may later encounter the second MUS on a different worst-case path and can

eliminate it then.

Using the sliding window technique, this approach can also be parallelised easily by

processing different fragments of the sliding window on separate cores or machines.

A further optimisation is to remove redundant clauses before applying the CAMUS

algorithm. Many paths often share the same edge condition amongst several edges.

In such cases, only one instance of the edge condition needs to be passed to the

SMT solver.

7.5 Evaluation

7.5.1 seL4

We demonstrate the applicability of our approach by applying it to a worst-case

interrupt response time analysis of the seL4 microkernel. This approach is used

for the analysis performed in Chapter 5, which searches for the path with longest

execution time within the seL4 kernel, beginning at one of the 125 non-preemptible

regions of the kernel, and ending at the exit point of the kernel. In essence, we are

running 125 separate WCET analyses—one for each entry preemption point, and

one for the entry point of the kernel.

Infeasible paths are detected in 45 of the 125 cases. Where infeasible paths are

found, our algorithm arrives at a feasible path after one iteration in 31 cases, after

two iterations in a further 14 cases, and up to 7 for the remaining 3 cases. In two

cases, it reduces the WCET automatically by 23% (from 17 912 cycles to 13 800)

using two iterations and 5 MUSes. The improvements in WCET for all 45 cases

where infeasible paths are detected are shown in Figure 7.8.

Our algorithm detects 252 MUSes when applied to seL4. Note that these are only the

MUSes required to identify specific worst-case execution paths as infeasible. Many

more may exist in the program, but they do not affect our WCET computation. Of

the MUSes found, 20 % are a single-element MUS (an infeasible basic block), 44 %

are pair-wise conflicts, 30 % are 3-way conflicts, and 6 % are 4-way conflicts.

143

CHAPTER 7. AUTOMATED INFEASIBLE PATH DETECTION

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40 45

%
 i
m

p
ro

v
e
m

e
n
t

Figure 7.8: Percentage improvement of the 45 cases where our algorithm improved
the worst-case execution time estimates by eliminating infeasible paths

In previous analyses (those presented in Chapter 3 and Chapter 4), the process of

identifying infeasible path constraints was purely manual. The paths eliminated

were manually identified as infeasible because of either local constraints, or global

kernel invariants. Our automated infeasible path detection only automates the for-

mer category, and as such the largest tangible benefit is the reduced human effort.

This automation also made it feasible to perform the WCET analysis over all 125

preemption points.1

To compare the improvements over our manual analysis, we applied our algorithm

to the kernel binary used in Chapter 4, with the infeasible path information that

was validated in Chapter 6. The results are shown in Figure 7.9.2 Beginning with no

infeasible path information, the reduction in WCET from our automated analysis

is similar to what was obtained manually and previously validated by sequoll (“val-

idated” from Figure 6.1), but with much less tedium. Our algorithm was unable to

improve upon our best manual efforts to eliminate infeasible paths.

Pairwise-conflict comparison: We briefly explore the effectiveness of sequoll’s ability

to find MUSes of size greater than 2. We found that for the main kernel entry point,

1 Running 125 individual analyses manually was always theoretically feasible, but not a partic-
ularly exciting proposition for the author, and therefore unlikely to ever have happened.

2 As we did not use cache pinning for this analysis, the numbers are slightly larger than those
presented in Chapter 6.

144

7.5. EVALUATION

Baseline

With detected paths

Optimal

With detected paths

 0 100 200 300 400 500 600 700

668

240

518

240

Figure 7.9: Reduction in WCET (in thousands of cycles) through applying automated
infeasible path detection. The baseline figure uses no infeasible-path infor-
mation, while optimal is the best result achieved with manual annotations.

using only pair-wise edge conflicts gave a 4.7% improvement in computed WCET

(compared with no infeasible path detection), whereas using n-way conflicts gave a

10.7% improvement. This difference indicates that eliminating infeasible paths with

n-way conflicts can give notable improvements to WCET estimates.

7.5.2 Comparing CAMUS vs built-in unsat core

We can demonstrate the effectiveness of the CAMUS algorithm by comparing it

with the single unsatisfiable core generated by our SMT solver (Yices 1.0.37). With

either the CAMUS-generated MUSes, or the single “unsat” core provided by Yices,

we are guaranteed to arrive at the same result, assuming that there are no bugs in

the SMT solver.3 What we can evaluate is how much faster we arrive at a feasible

path.

Applying the CAMUS algorithm to seL4 required 67 refinements of the control

flow graph. In comparison, using the unsat core generated by Yices required 152

refinement iterations. However, the number of refinement iterations alone does not

necessarily imply a faster result, as it does not account for the extra runtime of the

CAMUS algorithm. Unfortunately, our implementation (for either approach) is far

3 We encountered one bug in Yices which caused it to crash on certain inputs. The Yices
developers swiftly fixed this bug in the 1.0.37 release.

145

CHAPTER 7. AUTOMATED INFEASIBLE PATH DETECTION

original new %
Benchmark # conflicts # iterations WCET WCET improvement
cover 3 1 20781 18283 12.0%
crc 5 1 177586 176072 0.9%
statemate 7 2 51768 51614 0.2%
ndes 2 1 447116 447097 0.0%

Table 7.1: Infeasible paths detected in Mälardalen WCET benchmark suite

from optimal in this regard,4 and as such it is difficult to quantify the difference

between CAMUS and a single unsat core. As a data point, the seL4 analysis with

the CAMUS algorithm ran for 3 hours and 45 minutes, whereas using the single

unsat core took 5 hours and 15 minutes. However, due to our current overheads

of running an SMT instance, these timing results are skewed in favour of CAMUS’

fewer iterations.

In the future, we plan to improve the implementation so that these can be more

accurately quantified.

7.5.3 WCET benchmarks

We applied our algorithm to detect infeasible paths in programs from the Mälardalen

WCET benchmark suite (Gustafsson et al., 2010). Like in our previous results in

Section 6.5.2, we had to omit benchmarks using floating-point arithmetic, irreducible

loops and recursion, due to lack of tool support. Due to shortcomings in our imple-

mentation we were also unable to analyse several other benchmarks.

We detected infeasible paths in four benchmarks, shown in Table 7.1. Depending

on the benchmark, the number of infeasible paths detected and the improvement

in WCET vary dramatically, and most have little impact. We note that although

many of the benchmarks are single-path programs, they can still exhibit infeasible

paths due to the abstractions used. Infeasible paths are much more likely in larger

programs, where they can cause significant overestimation.

We see much larger improvements in seL4’s WCET than in these benchmarks be-

cause of the increased complexity of the code being analysed in seL4. The size and

4 Due to implementation details, a C program encoding the SMT problem is compiled for each
SMT instance. A sizable proportion of the execution time is spent in the C compiler. An optimised
implementation would not incur these overheads.

146

7.6. RELATED WORK

structure of the seL4 code means that there are many infeasible paths which can

be eliminated. For example, the repeated use of switch statements as described in

Section 4.6 creates many infeasible paths which are detected and eliminated by our

algorithm.

7.6 Related work

The issue of infeasible path detection in static analysis arises not only in the worst-

case execution time domain, but also when generating test vectors (Ngo and Tan,

2008), detecting programming errors (Huuck et al., 2012), and in other general data

flow analyses (Bod̀ık et al., 1997). As such, there has been much research into finding

infeasible paths. However, the domain of worst-case execution time analysis, and

specifically using IPET-based analyses, places many limitations on what infeasible

path information can be utilised. As such, not all techniques for finding infeasible

paths are applicable to IPET.

Engblom and Ermedahl (2000) demonstrate how various types of flow information

can be converted to equations suitable for IPET-based analyses. They divide a

program into “scopes”, which are loop-free subsets of code, and express a number

of different constraint types as ILP equations. These include the same construction

we use for expressing conflicting edges. Their method also supports the ability to

restrict constraints to specific loop iterations. They do not detect any constraints,

but allow a user to provide these annotations more easily.

Suhendra et al. (2006) developed an algorithm to find infeasible paths for WCET

analyses, based on detecting pairwise conflicts between assignments and conditional

branches. Like our approach, they are also limited to finding such conflicts within

loop-free CFGs, and thus treat each loop individually. As they only search for

pairwise conflicts, their algorithm would not detect the case given in our motivating

example.

Gustafsson et al. (2006a) have shown that abstract interpretation can be combined

with symbolic execution to find infeasible paths. Their approach is able to detect

paths with more than two conflicting edges, and is similarly limited to loop-free

segments of code. Their evaluation was only on a single deterministic set of input

values, whereas we are able to support unspecified inputs. Otherwise, their method

shares many similarities with ours—they are limited by the reasoning ability of their

147

CHAPTER 7. AUTOMATED INFEASIBLE PATH DETECTION

symbolic execution engine, whereas we are limited by the reasoning ability of our

SMT solver.

The model-checking-based approach taken by Cassez (2011) to compute WCET

inherently eliminates infeasible paths, as it is guaranteed to find a concrete worst-

case (if the analysis terminates). However, the technique does not scale to programs

the size of seL4.

Huuck et al. (2012) present a method to eliminate infeasible paths for reducing false

positives in static analysis of source code. They use a model checker to identify a

path to an error condition, compute a weakest precondition from the path, and use

an SMT solver to test the validity of the precondition. If the SMT solver shows that

the precondition is unsatisfiable, they augment the model with an “observer” which

encodes the unsatisfiability information and eliminates the path from subsequent

model checking runs. Their approach works on loops, as the loop is detected by

the model checker, and unrolled inside the weakest precondition expression given

to the SMT solver. However, the infeasible path information they detect cannot be

incorporated into an IPET-based WCET analysis.

Banerjee et al. (2013) demonstrate a method to incorporate information from in-

feasible path analysis into the micro-architectural model of the system. They use a

SAT solver to identify infeasible paths in parallel with the micro-architectural mod-

elling phase in order to eliminate spurious machine states which arise due to the

merging of paths in abstract interpretation, thereby reducing overestimation. This

technique complements an existing infeasible path detection algorithm.

Our approach shares conceptual similarities with counterexample-guided abstraction

refinement (CEGAR) algorithms for model checking (Clarke et al., 2003), which were

later extended to software verification (Beyer et al., 2007). CEGAR-style algorithms

use counterexamples to refine the abstraction of a system in order to arrive at a

model with the required precision to solve the problem. C̆erný et al. (2013) have

applied CEGAR-like algorithms to general quantitative properties such as WCET.

They demonstrate automated abstraction-refinement schemes of cache behaviour,

using standard CEGAR techniques for eliminating infeasible paths. Their approach

does not however easily integrate into IPET-based analyses.

148

7.7. SUMMARY

7.7 Summary

Eliminating infeasible paths is necessary to obtain good worst-case execution time

estimates on large programs. We have demonstrated a method to automatically

detect infeasible paths within a control flow graph using an SMT solver. We use the

CAMUS algorithm for finding all subsets of mutually unsatisfiable constraints to

speed up the detection of feasible paths, and have shown how to integrate CAMUS

effectively in the context of infeasible path detection.

Our method can detect arbitrary sets of conflicting edges on a control flow graph.

The information about infeasible paths can be easily integrated with an IPET-based

WCET analysis. Being based on an SMT solver, it can detect more complex conflicts

relations than other approaches.

We have evaluated our detection method by applying it to a worst-case execution

time analysis of seL4, where we demonstrate that it can reduce the WCET estimate

by 23%. By using the CAMUS algorithm, we can achieve these results with fewer

iterations than using a single unsatisfiable core obtained from an SMT solver. We

also significantly reduce the amount of labour, and potential for error, that arises

from performing infeasible path elimination manually.

149

Chapter 8

A look at verification and performance

This chapter is based on work presented at APSys 2012 in which I was the primary author

(Blackham and Heiser, 2012).

8.1 Overview

The majority of this thesis has focused on worst-case execution and response times,

in order to provide temporal guarantees. However, overall system performance is still

an important factor in system design. This chapter addresses the interaction between

formal verification and the limits of code optimisation in higher level languages.

Code optimisation plays a large role in overall system performance. Systems de-

signers must pay particular attention to the performance of typical workloads (i.e.

average-case performance), as this directly impacts on power usage (and therefore

battery life), latency, throughput, as well as the hardware cost required to meet

design goals. Code that is shorter or faster can significantly improve performance

across all these factors.

Targeted code optimisation has the greatest impact when applied to the common

case. In many systems, this is often inner loops used for computation, or mundane

but frequent tasks such as copying memory. In microkernel-based systems, the

common case is message-passing inter-process communication (IPC). As a result,

there has been a strong focus on improving the performance of IPC in microkernel-

based systems (Liedtke et al., 1997; Gray et al., 2005).

151

CHAPTER 8. A LOOK AT VERIFICATION AND PERFORMANCE

Many microkernels achieve good performance by providing fastpaths for IPC, which

can improve the performance of IPC operations by an order of magnitude. Fastpaths

are created in order to perform a specific operation for the most common set of

conditions. If any of these conditions do not hold, a fastpath reverts back to the

standard code path through the kernel (referred to as the slowpath). A key property

of a fastpath is that the kernel’s behaviour should be functionally identical with or

without it.

The first L4 microkernels were coded entirely in assembly, in order achieve the

best possible performance from the hardware (L4IMPL). Later versions such as

Hazelnut, Pistachio and Fiasco were written in C or C++, however performance-

critical sections such as the IPC fastpaths were still coded in assembly.

As assembly does not need to comply with any ABIs (other than at the system-call

interface), more opportunities for optimisation are available. For example, all regis-

ters may be utilised, including normally sacred registers such as the stack pointer.

By hand-crafting fastpaths for specific CPUs, authors can minimise pipeline stalls

by careful instruction scheduling, avoid cache misses using strategic prefetching,

and craft the control flow to minimise costly branches. Using these techniques, im-

pressive IPC times have been achieved—e.g. 151 cycles on the ARMv5-based Intel

XScale PXA255 (L4HQ) and 36 cycles on Itanium (Gray et al., 2005).

However, these results challenge maintainability and formal verification. Assembly

code is generally more difficult to read, write and maintain; combined with the non-

conformance to any standard ABIs, fastpaths are extremely fragile, requiring full

knowledge of the system to confidently make any modifications. Even modifications

of seemingly unrelated C code elsewhere in the kernel may impact upon the fastpath.

seL4 similarly has a fastpath which improves the performance of IPC by an order

of magnitude.1 However the fastpath is written in C, as the verification infrastruc-

ture could only formally verify C code, not assembly.2 As a result, we expected a

performance penalty, but estimated it to be less than 10 %.

We have observed that modern C compilers for RISC architectures are becoming

competitive with assembly crafted by a talented and skillful programmer. Using the

1 Efforts have also been devoted to improve seL4’s slowpath performance. This has reduced the
gap between slowpath and fastpath performance, but it is still large enough to provide significant
benefit.

2 Recently, researchers at NICTA have achieved formal verification of the assembly code from
binaries compiled with -O1 and most of the binary compiled with -O2 (Sewell et al., 2013).

152

8.2. RELATED WORK

gcc compiler on ARM, we have been able to optimise the compiled machine code by

modifying only the C source code.

We have improved the speed of the fastpath by 35 % through tuning of the C code to

aid compiler optimisations. Our fastpath is competitive with hand-crafted assembly,

and with other microkernels on the same architecture. In this chapter, we explore

various techniques for optimising the assembly output of the compiler by refining the

C code used for IPC. We show that modern compilers can obtain almost all of the

gains attainable with hand-optimised assembly, even for low-level kernel code. The

key insight from this result is that formal verification, and the need to use higher level

languages such as C, does not necessarily require compromising on performance.

8.2 Related work

The debate over the merits of optimisation in assembly code vs C (or other higher-

level languages) dates back to the 1970s and continues on today (Hyde).

Clearly, a knowledgeable and talented assembly developer, given enough time and

resources, can outperform a compiler. However there is the secondary issue of main-

tainability. One can argue that highly-optimised C code requires just as careful

maintenance as an equivalent assembly implementation in order to preserve correct-

ness and performance. We contend that a greater level of skill, knowledge and care

is required to maintain an assembly version.

Whether compilers would ever catch up to the level of a talented assembly devel-

oper is an old question. Massalin (1987) investigated the idea of finding not just

an optimised sequence of instructions, but an optimal sequence for a given loop-free

construct. He wrote a brute-force compiler called a superoptimiser to exhaustively

search for the optimal sequence. Given the exponential nature of the superoptimiser,

it is limited to short sequences of code (a dozen instructions in Massalin’s work).

However the technique has been applied to peephole-optimisations in standard op-

timising compilers (Bansal and Aiken, 2006).

Liedtke (1993a) states that a microkernel should place emphasis on IPC performance

above all other considerations. Optimising for the most common case will clearly

result in the largest gains and for microkernel-based systems that is the IPC path.

For the Pentium, MIPS and Alpha architectures, the inherent architectural costs of

153

CHAPTER 8. A LOOK AT VERIFICATION AND PERFORMANCE

IPC have been shown to range between 45 and 121 cycles (Liedtke et al., 1997). On

the ARM architecture, IPC times as low as 151 cycles have been demonstrated on

the ARMv5 Intel XScale PXA255 (L4HQ). Our experiments focus on the ARM1136

(ARMv6) CPU core, which has a deeper 8-stage pipeline. On this core, previous L4

kernels have achieved 206 cycles for a one-way IPC (Klein et al., 2009b).

Gray et al. (2005) describe their experience optimising the IPC fastpath for the

Itanium processor, with a complex VLIW pipeline. They could reduce their IPC

time from 508 cycles to 36 cycles by hand-optimising their assembly. Due to the

complex VLIW-based pipeline, their compilers struggled to generate efficient code.

Their initial attempt at a hand-crafted assembly path gained a 3x improvement over

the compiled C version. Further refinements, through better instruction scheduling

and eliminating pipeline stalls, resulted in an additional 4.7x improvement and their

final 36 cycle one-way IPC. We believe that on simpler pipelines common to RISC

architectures, modern compilers can achieve closer to optimal output.

8.3 Microkernel IPC

IPC is often provided in both synchronous and asynchronous forms, and seL4 is no

exception. Synchronous IPC transfers a message only when both the sender and

receiver are at a “rendezvous” point – specifically, the sender must be ready to send

and the receiver must be ready to receive. This allows for a direct transfer of data

from sender to receiver. On the other hand, asynchronous IPC does not require the

coordination of threads, as messages are buffered in the kernel until the receiver is

ready receive.

In L4-derived microkernels, synchronous IPC is typically provided by five basic

primitives:

• Send is a one-way message transfer to another thread. The send will block

until the recipient thread is ready to receive.

• Wait receives a message from any thread that is ready to send data to it, or

blocks if no threads are ready to send.

• Call is a combined send and receive operation to another thread, and will run

to completion or fail with an error. It is often used by a client to request an

154

8.3. MICROKERNEL IPC

� Are we only transferring data?
� Are we (not) responding to an exception?
� Decode address of destination
� Is the destination a valid endpoint?
� Is the endpoint ready to receive?
� Does the receiver thread have a valid address space?
� Can we schedule the receiver thread immediately?
� Can this endpoint be used for Call operations?

� Dequeue receiver thread from endpoint
� Block sender thread
� Copy message from sender to receiver
� Context switch to receiver thread
� Return to user

Figure 8.1: Anatomy of a fastpath Call IPC in seL4. Conditional checks are denoted by
a � symbol whereas actions and computations are marked with a � symbol.

operation be performed by a server. These semantics guarantee to the server

that it can respond without waiting or needing to buffer the response.

• Reply is a non-blocking send, used to a respond to a message received with

Wait. If the sender had used Call, then it is guaranteed to be blocked and

ready to receive the response.

• ReplyWait combines the effects of Reply and Wait together. This sequence is

frequently used by servers, and in most cases allows for a direct context switch.

This synchronous IPC model is best suited to a priority hierarchy such that servers

always have a higher priority than their clients. This allows both Call and Reply-

Wait operations to directly transfer data and control flow from clients to servers and

vice-versa, significantly improving IPC efficiency. As a result, optimising these two

operations offers the largest benefit to real systems. The remainder of this chap-

ter focuses on optimising these two synchronous IPC operations within the seL4

microkernel.

8.3.1 seL4’s IPC path

Anatomy of an IPC fastpath In many performance-critical applications, the focus of

optimisation is commonly on tight loops found in computation kernels or memory

155

CHAPTER 8. A LOOK AT VERIFICATION AND PERFORMANCE

Slowpath

Fastpath

 0 500 1000 1500

gcc

armcc

1776

308

1441

281

Figure 8.2: One-way cycle counts of the IPC slowpath compared to the original IPC
fastpath.

copying. However, in a microkernel-based system, the IPC path, unlike typical

hotspots, has very few tight loops and is largely composed of conditional branches.

This precludes many of the usual optimisation techniques.

Although there are a large number of branches, the majority of these handle ex-

ceptional circumstances. The most common scenario for a synchronous IPC, and

the one that reaps the most benefit in optimising for, is where a thread A sends a

message to a thread B, and:

• thread B is ready and waiting for a message;

• thread B can begin executing immediately under the current scheduling disci-

pline; and

• no error conditions occur.

In such a case, we can pass control flow directly from thread A to thread B, copying

the message directly between the two threads with no buffering.

There are numerous steps and checks involved in handling a common IPC operation

in seL4, such as testing that all objects involved in the operation are valid and in

the correct state for the fastpath. These are shown in Figure 8.1, denoted by a

diamond. If any of the checks fail seL4 reverts to the slowpath. Assuming all the

checks succeed, the fastpath can proceed to transfer the data and control to the new

thread.

Figure 8.2 shows the performance difference between the slowpath and the fastpath

in seL4—the fastpath is 5.6 times faster. Figure 8.3a shows the control flow graph

of the slowpath and offers some insight into why it takes so much time to perform

156

8.3. MICROKERNEL IPC

(a) (b)

Figure 8.3: Control flow graphs of the slowpath (left) and fastpath (right) of seL4.
Each node in the graph is a basic-block or a call to a function. The shaded
node in the fastpath leads into the slowpath.

precisely the same operation as the fastpath: it must handle all exceptional circum-

stances, which results in a larger cache footprint as well as incurring many branches

and potential branch mispredictions.

Focusing on the common case, we obtain a fastpath with the control flow graph

shown in Figure 8.3b. The shaded node represents a call out to the IPC slowpath.

There are two loops to decode the address of the destination and to transfer the

message data, identified by L1 and L2 on the loops’ entry nodes. A typical IPC in

this fastpath would have almost no branching, except in the message copy. Even

decoding the address requires only a single loop iteration in most systems. We use

this fastpath as our starting point for further optimisation.

157

CHAPTER 8. A LOOK AT VERIFICATION AND PERFORMANCE

8.4 Optimisation techniques

There is a plethora of “collective wisdom” for optimising C code, often given as

simple tips or rules which may allow a compiler to generate better performing code.

These techniques should obviously not be applied blindly, as what performs better

on some architectures may be detrimental on others. Additionally, many of these

techniques, such as loop reversal and unrolling, are performed automatically by

modern compilers.

Our improvements focused on using the gcc compiler (4.6.1), from Mentor Graphics’s

CodeBench Lite 2011.09-69. We also evaluated our improvements with ARM’s own

compiler (armcc 5.01).

The essence of our fastpath optimisation work is to analyse the compiled machine

code from the C compiler and search for missed optimisation opportunities. Op-

portunities may arise in the form of pipeline stalls, redundant calculations, or sub-

optimal data packing. We found that almost all of these can be resolved by modifi-

cations to the C code which gave the compiler more scope for optimisation.

In doing this step-by-step comparison, we performed several simple optimisations

which are commonly a part of the collective wisdom of optimisation, including:

• avoiding unnecessary use of char, short, and signed types to avoid superfluous

sign-extension and zero-extension;

• avoiding unnecessary bit-masking, e.g. when it is known that unused bits will

be zero;

• giving branch hints to achieve straight-line code for the common case;

• avoiding complex expressions which may result in many live registers, leading

to stack spilling.

We also employed some lesser known techniques, described in the following sections,

in order to assist the compiler. We note that even a “smarter” compiler could not

have performed most of these optimisations automatically, as they depend on code

invariants which cannot be detected by static code analysis.

One necessary optimisation for the fastpath was to ensure that all leaf functions were

inlined, in order to avoid unnecessary branching. As both the Call and ReplyWait

158

8.4. OPTIMISATION TECHNIQUES

fastpaths total around 120–130 instructions each, this does not result in a significant

code bloat.

It is also interesting to note that sometimes individual optimisations would not

result in any improvement in performance, as it could be masked by some other

inefficiency. In several cases, gains were only seen after two or more complementary

optimisations being applied together.

8.4.1 Avoiding pipeline stalls

The IPC fastpath is heavily control-oriented—there are many conditional branches

to ensure the conditions for the fastpath are satisfied. Many of these branches

depend on values loaded from memory, and form load-test sequences that create

pipeline stalls.

For example, Figure 8.4 lists a portion of the seL4 fastpath that contains consecutive

branches. Each test depends on loading a value from memory. The generated

assembly code is shown in Figure 8.6. On the ARM1136, each load instruction

(LDR) has a 3-cycle latency for its result. As the results here in r0 and r3 are

required immediately, the CPU is stalled for two cycles after both loads.

With knowledge of the pipeline and the intent of the C code, a human can observe

that the second load can be issued earlier. This speculative loading cannot be

performed by the compiler, as there is no hint to suggest that it is safe to do so—

the validity of the second pointer could depend on the result of the branch.

By “lifting” the load for the second memory access above the first branch, we tell

the compiler that it is safe to issue the memory access earlier. This is shown in

Figure 8.5. The compiler may still choose to defer the load until it is required.

However in this case, the compiler can see the optimisation opportunity to avoid

the pipeline stall, and has sufficient spare registers which can be utilised. The

resulting assembly code in Figure 8.7 has only one stall cycle, saving three cycles off

the execution of the fastpath.

In some cases this type of reordering may slow down a specific path through the

code (e.g. if the value of a lifted load is never used because a branch is taken first).

However, such effects are insignificant compared to the typical execution time of the

slowpath, and it has a net gain on all other paths through a fastpath. We do not

159

CHAPTER 8. A LOOK AT VERIFICATION AND PERFORMANCE

see this effect in Figure 8.7 because the lifted load is inserted where the pipeline was

already stalled.

We discovered many places where this simple optimisation could be used in the

fastpath, giving the compiler more flexibility to schedule instructions.

It should be noted that lifting accesses may not always offer better optimisation

opportunities to the compiler. Due to the possibility of pointer aliasing, a compiler

is not always able to safely reorder a read and a write to memory, even if the

developer knows it to be safe.3 Therefore, lifting a memory load may actually result

in increased register pressure, so this optimisation should be used with care.

8.4.2 Optimised choice of constants

In the ARMv6 architecture, only certain constants can be loaded in a single in-

struction, without the use of literal loads (reading the constant out of memory).

In particular, constants must be expressible as an 8-bit value, shifted left by an

arbitrary offset, and optionally bitwise-negated.

One heavily used constant in seL4 represents an index into the virtual address space

at which some per-address space data is stored. Changing this constant from 0xffe

to 0xff0 allowed this constant to be loaded immediately, avoiding a literal load,

saving both cycles and cache-line usage off the fastpath.

8.4.3 Expressing memory layout

In seL4, the thread object is composite, formed of two smaller objects which are

positioned adjacently in memory—a CNode and a thread control block (TCB), each

256 bytes. Thread objects are always aligned to their size (512 bytes). Often, seL4

is required to access the CNode given a pointer to the TCB. The address for the

CNode was computed by clearing the 8th bit of the TCB address.

This can be optimised by instead of clearing the 8th bit, simply subtracting 28. By

doing so, the compiler is made aware of the actual memory layout of these objects,

which it could not infer when we only cleared the bit (it is possible that the bit may

3Many compilers support strict aliasing, which guarantees that pointers of different types will
never overlap, however the possibility for aliases of pointers of the same type still exists. The
restrict keyword can assist in excluding aliases in this case.

160

8.4. OPTIMISATION TECHNIQUES

/* Check endpoint is not in send state. */

endpoint = *endpointPtr;

if ((endpoint & 0x3) == 0x1) goto slowpath;

/* Check that the caller cap is valid. */

callerCap = *callerCapPtr;

if (callerCap == 0) goto slowpath;

Figure 8.4: An example of C code without lifting optimisation

endpoint = *endpointPtr;

callerCap = *callerCapPtr;

/* Check endpoint is not in send state. */

if ((endpoint & 0x3) == 0x1) goto slowpath;

/* Check that the caller cap is valid. */

if (callerCap == 0) goto slowpath;

Figure 8.5: Code with callerCap load lifted

ldr r0, [r4]

and r3, r0, #3

cmp r3, #1

beq slowpath

ldr r3, [ip, #-208]

cmp r3, #0

beq slowpath

Figure 8.6: Generated assembly without lifting optimisation

ldr r0, [r4]

ldr r3, [ip, #-208]

and r5, r0, #3

cmp r5, #1

beq slowpath

cmp r3, #0

beq slowpath

Figure 8.7: Generated assembly with callerCap load lifted

161

CHAPTER 8. A LOOK AT VERIFICATION AND PERFORMANCE

not have been set in the first place). In particular, it can optimise memory loads

from the CNode given the TCB address by negatively-indexing the TCB address

when performing the memory load. In ARM assembly, this can be expressed as

ldr r0, [r1, #-256], where r1 is the TCB address. Although this only saves one

cycle, it also reduces register pressure, allowing the compiler to use the register for

other optimisations.

8.4.4 Usage of inline assembly

We use assembly code only for hardware-specific operations which cannot be ex-

pressed in C. As the IPC fastpath entails a context switch, it requires accessing

CPU-specific registers which have no C equivalent.

On the ARM11, the kernel must change the page directory and address space iden-

tifier, flush any virtually-addressed caches4, clear the “exclusive monitor” (for syn-

chronisation purposes) and return control back to userspace.

By utilising inline assembly instead of function calls to external assembly routines,

the compiler is not constrained to use the C ABI at these boundaries. This allows for

better register allocation, stack usage and alias analysis. As we inline all assembly

routines, including the return to userspace, the resulting code has no branches in

the case of a 0-length IPC.

8.4.5 Limitations of compiled C

Almost all of the optimisations that we were able to identify could be expressed

equivalently at the C level. Some further optimisations required using assembly,

yet did not give a measurable gain to the IPC fastpath. In particular, we were

able to remove the need for a valid stack. This potentially saves several cycles,

by avoiding unnecessary register loads and memory accesses, and reduces register

pressure. However, despite removing all these superfluous instructions, the overall

cycle count of the IPC fastpath was not reduced, as removing these instructions left

bubbles in the pipeline where it was already stalled.

The register gained (sp) was not useful in the fastpath either, as there were already

4On the ARM1136, although the L1 caches use physical addresses, the branch prediction unit
uses virtual addresses and thus requires cache flushing on each context switch.

162

8.5. EVALUATION

Original

C-optimised

Asm-optimised

Theoretical limit

 0 100 200 300

g
c
c

308

200

200 a
rm

c
c

281

246

240

163

Figure 8.8: Cycle counts of a one-way IPC via the fastpath for a 0-length IPC message
between threads in different address spaces.

two registers going unutilised. For code with more register pressure, the results may

be quite different.

All attempts to further reduce the cycle count of the IPC fastpath resulted in changes

which could easily be expressed in C. There still remained 14 cycles in which the

pipeline was stalled due to data dependencies, however it became increasingly diffi-

cult to eliminate these stalls without significantly penalising non-fastpath IPC op-

erations. Although we do not claim our final assembly to be optimal, the time spent

optimising it further had well and truly reached the point of diminishing returns.

8.5 Evaluation

We evaluated the results of our optimisations by measuring the execution time

on an ARM11 core on the Freescale i.MX31 processor. We used the performance

monitoring unit to measure precise cycle counts for 160 000 iterations of a ping-pong

benchmark between two address spaces. We computed the one-way IPC as half the

average round-trip time. The results are shown in Figure 8.8.

The “theoretical limit” is what we would achieve if we could eliminate all unnecessary

pipeline stalls in the existing assembly, assuming it is otherwise optimal. There are

practical limitations to achieving this, but this number is a lower bound, given the

design of seL4. The difference between “C-optimised” and “Asm-optimised” reflects

163

CHAPTER 8. A LOOK AT VERIFICATION AND PERFORMANCE

optimisations which could not be performed at the C level (e.g. discarding the stack

and repurposing the stack pointer).

The best results were obtained using the gcc compiler. Although armcc often gen-

erates better optimised code than gcc, it was unable to optimise our fastpath as

effectively. We found that this occurred for the following reasons:

• armcc did not order code optimally, despite hints using __builtin_expect().

As a result, there were 7 more branch mispredictions in the armcc version

compared to the result from gcc. These mispredictions account for over 90 %

of the difference between gcc and armcc fastpaths.

• armcc saves most registers onto the stack, as it does not use the noreturn

attribute as a hint that it can be avoided. This contributes two extra cycles

to the armcc-compiled fastpath.

• armcc’s inline assembler does not support the instructions to directly return

to userspace. Instead, a call to an external function must be used. This

contributes four extra cycles to the armcc-compiled fastpath.

We also measured the effect of compiling seL4 for ARM’s size-optimised Thumb

instruction set. Thumb reduced the size of the compiled fastpath (in bytes) by

20 %, but increased the cycle count by over 80 %, as significantly more instructions

were needed.

8.6 Discussion

Using optimisations at the C level has allowed us to reduce the one-way IPC times by

35 %. Using modifications to the assembly code, we were able to remove superfluous

instructions, but we were unable to reduce the execution time further. Given our

experiences, we claim that for heavily control-oriented code such as the fastpath,

and for our register-rich RISC platform, human-guided compilers can achieve almost

as good a result as hand-optimised assembly.

Our experiments were performed on a single-issue pipeline, common to many embed-

ded systems. Multiple-issue (e.g. superscalar or VLIW) pipelines pose interesting

optimisation challenges both for compilers and humans.

164

8.6. DISCUSSION

There may be situations where the compilers are not aware of (or are unable to

generate) instructions that would lead to more optimised output. Inline assembly

may be able to assist in some of these cases, whilst keeping the majority of the code

in C.

Optimisation effort We dedicated around two person-weeks of work to optimising

the C fastpath. Like many optimisation efforts, we achieved the majority of our

gains within the first 30 % of the work, rapidly reaching the point of diminishing

returns. We estimate that optimising an assembly implementation would require

at least twice as much effort, and significantly increase the subsequent maintenance

burden.

Maintenance There are two distinct aspects to maintaining code such as the fast-

path: performance and correctness. One disadvantage of a C-optimised fastpath is

that the performance is highly sensitive to changes in the compiler. Vigilant perfor-

mance regression testing is required to ensure that the optimisation efforts do not

bit rot.

However, we claim that C code is significantly easier to understand, and to main-

tain correctness of, than the equivalent assembly implementation. Changes to data

structures are much easier to incorporate into C than in assembly.

Portability The majority of our optimisations do not target a specific architecture or

compiler—they simply present further optimisation opportunities for the compiler.

For example, if there existed a superoptimiser capable of scaling to produce optimal

machine code for the fastpath, it too would be assisted by our optimisations.

Verification The IPC fastpath is a verified part of the seL4 microkernel—i.e. there

is a machine-checked formal proof that it adheres to the functional specification and

preserves all invariants within the kernel. By limiting our optimisations to the C

code, we retain the ability to verify the fastpath.

Cache layout The majority of IPC benchmarks are focused on hot-cache perfor-

mance. Ideally, all memory accesses are in the L1 cache, which on our platform can

165

CHAPTER 8. A LOOK AT VERIFICATION AND PERFORMANCE

be accessed in a single cycle. However, even for hot-cache performance, pathological

memory layouts may lead to conflict misses and significantly degrade performance.

There are approximately 120 unique instructions executed by a one-way IPC, giving

an instruction-cache footprint of 18 cache lines. Due to the compactness of the

IPC fastpath, and the ease with which code placement in the microkernel can be

manipulated, it is simple to avoid instruction-cache conflicts.

The data-cache footprint of the IPC fastpath is 22 cache lines. However, due to

the nature of object alignment in seL4, there is very little entropy in the lower

address bits of some objects. For example, a thread object in seL4 is 29 bytes, and a

single way of the 4-way set-associative L1 cache on our processor is 212 bytes. This

means that given two different threads in seL4, there are only three bits available

that determine the possible cache lines for the thread object, greatly increasing the

chances of cache collisions, even in hot-cache scenarios.

8.7 Summary

We have demonstrated that for heavily control-oriented code, it is possible to per-

form significant optimisations at the C level. Modern compilers are sufficiently

advanced that they can recognise many optimisation opportunities. Where optimi-

sations are missed by the compiler, it is often due to a lack of insight available to

the compiler, and can be resolved through modifications to the C sources.

Using carefully guided optimisations on the IPC fastpath, we were able to attain all

of the possible optimisations we could conceive without resorting to hand-crafting

assembly code. On RISC platforms such as ours, the need to write fastpaths in

assembly to get maximum performance is questionable when modern compilers can

achieve similar results in C.

Although these are preliminary results on two specific code paths, we believe that

the techniques here can generalise to hot code paths in both kernels and general

userspace code. We also note that this approach is heavily used in the high-

performance commercial OKL4 microvisor (Heiser and Leslie, 2010) and its deriva-

tives to ease portability and maintainability.

Maximising the benefits of compiler optimisations often requires an intricate under-

standing of the details of the microarchitecture and closely inspect the generated

166

8.7. SUMMARY

assembly code. This is no different to the depth of knowledge required to optimise

an assembly implementation. However, by performing optimisations at the C level,

we retain expressiveness, reduce maintenance overhead, and can make use of current

formal verification techniques.

167

Chapter 9

Conclusion

9.1 Summary

In this thesis, we have explored several aspects of building trustworthy mixed-

criticality real-time systems. Mixed-criticality systems are a promising approach

for reducing design and production costs by integrating mission-critical function-

ality with convenience features on the same CPU. In order to make such systems

trustworthy, we need strong guarantees on both their functional and temporal be-

haviour.

We propose that a verified microkernel such as seL4 is well suited to fulfill these

guarantees. The formal verification of seL4 ensures that the C source code, and

also the compiled binary, behave as specified. Additional proofs also show that

seL4 preserves integrity and confidentially, guaranteeing that separated components

cannot affect each other.

We have focused on complementing these functional guarantees with timing guar-

antees. Safe bounds on seL4’s interrupt response time allow hard real-time systems

to be constructed on top of the seL4 microkernel, with unprecedented levels of as-

surance. To achieve this, we have investigated the worst-case interrupt response

time of seL4, and explored what is required to make it suitable for a wider class of

real-time systems.

169

CHAPTER 9. CONCLUSION

9.2 Contributions

The contributions of this thesis are summarised as follows.

In Chapter 3, we adapted state-of-the-art tools to compute safe upper bounds on the

WCET of the complete seL4 microkernel. This is the first such published WCET

analysis of any protected general-purpose operating system kernel, and we believe it

to be the largest code base on which a fully context-aware WCET analysis has been

performed. The computed interrupt latencies were well over a millisecond—well

beyond the acceptable limits for some real-time systems—thus raising the issue of

how they could be improved.

We found that modifications to reduce the interrupt latency needed to be done

with care in order to ensure the resulting kernel could still be formally verified. In

Chapter 4 we explored how this could be achieved, and described the design principle

of incremental consistency which simultaneously enables small bounded execution

times and aids formal verification. Applying this principle to seL4, and guided by

our WCET analysis, we managed to reduce the interrupt latency of seL4 by an order

of magnitude, down to several hundred microseconds.

As many application domains require even shorter latencies, in Chapter 5 we ex-

plored the limits of how short the latency of a non-preemptible kernel such as seL4

could be made. To achieve this, we had to forgo the requirement of formal verifi-

cation on seL4, but we maintained a design which was still amenable to reasonably

comprehensive testing and analysis by avoiding concurrency. With some targeted

improvements, we were able to reduce seL4’s interrupt latency by a further order

of magnitude, to tens of microseconds. This satisfies the majority of hard real-time

application domains, though there is still scope to reduce this further.

In the pursuit of computing safe bounds on seL4’s interrupt latency, we created

a framework which could analyse compiled binaries in order to validate manual

annotations used for the earlier WCET analyses. In Chapter 6, we presented the

sequoll framework which used model checking in order to automatically compute

the loop bounds of loops in the seL4 binary, as well as test the validity of some

infeasible path constraints.

We further improved the utility of sequoll in Chapter 7, where we presented a

technique to automatically detect infeasible path constraints. The resulting analysis

method efficiently and effectively eliminated a substantial amount of human effort

170

9.3. FUTURE WORK

in performing a tight WCET analysis.

Finally, in Chapter 8 we have shown that performance-critical code such as the

IPC fastpath does not need to be written in low-level assembly to achieve good

performance. The implication of this for trustworthy real-time systems is that such

code can be written in C and thereby be formally verified using existing verification

tools. This demonstrates that it is possible to write fast, maintainable and provably

correct code. Trustworthy mixed-criticality systems require this ability in order to

deliver acceptable performance.

9.3 Future work

The ideas and results of this thesis integrate many different areas of research—

that of formal verification, program analysis, real-time systems, kernel design, and

program optimisation. The directions in which these lead are equally, if not more,

diverse.

One area of improvement is the accuracy of our WCET analyses. As we have

noted, some WCET analysis methods promise much more precise estimates, but

scale poorly in the face of several thousand lines of code (such as the seL4 micro-

kernel). Thus we used techniques with coarser approximations which provide better

scalability in order to compute seL4’s WCET. There is scope to improve this by, for

example, using precise model-checking-based approaches for computing basic blocks

or even larger sections of code, and using scalable IPET-based solutions for com-

puting the global WCET, as suggested by Huber and Schoeberl (2009). This is the

most promising approach for tighter analyses of non-preemptible OS kernels, where

the analysed code paths can be relatively long.

Another direction to improve the WCET analysis of a verified microkernel such as

seL4, is to make use of formally-verified invariants in computing the WCET. In

particular, many infeasible paths can only be detected with knowledge of global

program invariants. Many of these invariants exist within the proof, but are not

presently available to the WCET analysis. The sequoll framework lays down the

foundations to support reasoning about these infeasible paths, using either model

checkers or SMT solvers. A significant challenge is expressing the high-level invari-

ants on abstract objects in terms of bytes, registers and memory words. Sewell

et al. (2013) have recently shown how to compute a correspondence between C and

171

CHAPTER 9. CONCLUSION

optimised machine code, thereby guaranteeing that the machine code maintains the

high-level invariants. Their work may assist significantly in reusing the invariants

at the machine-code level.

Following the formal verification thread, we could gain even stronger confidence in

the timing guarantees of seL4 by also integrating time itself into a formal proof

framework. At present, our timing guarantees are based on implementations of

various algorithms. Although the algorithms and theories are considered sound,

bugs in the implementation can easily undermine any such guarantees. Integrating

WCET execution time into the formal proof is a logical progression for a high-

assurance kernel. This idea has been explored by Fidge et al. (1997), who present

a software development methodology where execution time is a first-class concept.

There remain many hurdles and much effort required to realise this for a complex

code base such as seL4.

From Chapter 5, it remains to be seen as to how small the worst-case interrupt

latency (to userspace) of a non-preemptible kernel can be. Similarly, it also remains

open as to what the worst-case interrupt latency of an equivalent fully-preemptible

kernel would be. We propose that they could be within an order of magnitude, but

a deeper analysis is required.

Finally, an aspect largely untapped by this thesis has been the extension to multi-

core mixed-criticality real-time systems. As multi-core processors are becoming

the norm, even on embedded hardware, multi-core mixed-criticality systems have

become an active research area spanning a wide variety of issues including WCET

estimation (Chattopadhyay et al., 2012), scheduling (Mollison et al., 2010), kernel

design (Baumann et al., 2009) and formal verification (von Tessin, 2012). There are

still many open problems in delivering high-performance and high-assurance systems

on top of multi-core architectures.

172

References

Eyad Alkassar, Mark Hillebrand, Wolfgang Paul, and Elena Petrova. Automated verifi-
cation of a small hypervisor. In Gary Leavens, Peter O’Hearn, and Sriram Rajamani,
editors, Proceedings of Verified Software: Theories, Tools and Experiments 2010, vol-
ume 6217 of Lecture Notes in Computer Science, pages 40–54. Springer, 2010. ISBN
978-3-642-15056-2.

ARINC, 2012. Avionics application software standard interface, November 2012. ARINC
Standard 653.

ARM1136JF-S and ARM1136J-S Technical Reference Manual. ARM Ltd., R1P1 edition,
2005.

Ben Avison. ARM Cortex-A8 instruction timings. http://www.avison.me.uk/ben/

programming/cortex-a8.html, 2010. Visited 17 March 2013.

James Bailey and Peter J. Stuckey. Discovery of minimal unsatisable subsets of constraints
using hitting set dualization. In Proceedings of the 7th International Symposium on
Practical Aspects of Declarative Languages, pages 174–186, Long Beach, CA, 2005.
Springer-Verlag.

T. P. Baker. Stack-based scheduling for realtime processes. Journal of Real–Time Systems,
3(1):67–99, 1991.

Abhijeet Banerjee, Sudipta Chattopadhyay, and Abhik Roychoudhury. Precise micro-
architectural modeling for WCET analysis via AI+SAT. In Proceedings of the 19th
IEEE Real-Time and Embedded Technology and Applications Symposium, Philadelphia,
USA, April 2013.

Sorav Bansal and Alex Aiken. Automatic generation of peephole superoptimizers. In Pro-
ceedings of the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems, New York, NY, USA, 2006. ACM.

Sébastien Bardin, Philippe Herrmann, Jérôme Leroux, Olivier Ly, Renaud Tabary, and
Aymeric Vincent. The BINCOA framework for binary code analysis. In Proceedings
of the 23rd International Conference on Computer Aided Verification, pages 165–170,
Snowbird, UT, 2011a. Springer-Verlag.

Sébastien Bardin, Philippe Herrmann, and Franck Védrine. Refinement-based CFG recon-
struction from unstructured programs. pages 54–69, Berlin, Heidelberg, 2011b. Springer-
Verlag.

173

http://www.avison.me.uk/ben/programming/cortex-a8.html
http://www.avison.me.uk/ben/programming/cortex-a8.html

REFERENCES

Sanjoy Baruah and Gerhard Fohler. Certification-cognizant time-triggered scheduling of
mixed-criticality systems. In Proceedings of the 32nd IEEE Real-Time Systems Sympo-
sium, pages 3–12, Dec 2011. doi: 10.1109/RTSS.2011.9.

S.K. Baruah, A. Burns, and R.I. Davis. Response-time analysis for mixed criticality
systems. In Proceedings of the 32nd IEEE Real-Time Systems Symposium, pages 34–43,
Dec 2011. doi: 10.1109/RTSS.2011.12.

Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca Isaacs,
Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania. The mul-
tikernel: A new OS architecture for scalable multicore systems. In Proceedings of the
22nd ACM Symposium on Operating Systems Principles, Big Sky, MT, USA, October
2009. ACM.

Christoph Baumann, Bernhard Beckert, Holger Blasum, and Thorsten Bormer. Ingredients
of operating system correctness. In Embedded World Conference, Nuremberg, Germany,
March 2010.

Christoph Baumann, Bernhard Beckert, Holger Blasum, and Thorsten Bormer. Lessons
learned from microkernel verification: Specification is the new bottleneck. In Proceedings
of the 7th Systems Software Verification, 2012.

Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on UPPAAL. In Marco
Bernardo and Flavio Corradini, editors, Formal Methods for the Design of Real-Time
Systems, volume 3185 of Lecture Notes in Computer Science, pages 200–236. Springer,
Berlin, Heidelberg, 2004.

Gerd Behrmann, Agnès Cougnard, Alexandre David, Emmanuel Fleury, Kim G. Larsen,
and Didier Lime. UPPAAL-Tiga: Time for playing games! In Proceedings of the 19th
International Conference on Computer Aided Verification, pages 121–125. Springer,
Berlin, Heidelberg, 2007.

Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The software
model checker BLAST: Applications to software engineering. International Journal on
Software Tools for Technology Transfer, 9(5):505–525, 2007.

Sven Beyer, Christian Jacobi, Daniel Kröning, Dirk Leinenbach, and Wolfgang J. Paul.
Putting it all together—formal verification of the VAMP. International Journal on
Software Tools for Technology Transfer (STTT), 8(4):411–430, 2006.

Bernard Blackham and Gernot Heiser. Correct, fast, maintainable – choose any three!
In Proceedings of the 3rd Asia-Pacific Workshop on Systems (APSys), pages 13:1–13:7,
Seoul, Korea, July 2012. doi: 10.1145/2349896.2349909.

Bernard Blackham and Gernot Heiser. Sequoll: a framework for model checking binaries.
In Eduardo Tovar, editor, IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 97–106, Philadelphia, USA, April 2013a. ISBN 978-1-4799-0184-5.

Bernard Blackham and Gernot Heiser. Sequoll: a framework for model checking binaries.
In Proceedings of the 19th IEEE Real-Time and Embedded Technology and Applications
Symposium, Philadelphia, USA, April 2013b.

174

REFERENCES

Bernard Blackham, Yao Shi, Sudipta Chattopadhyay, Abhik Roychoudhury, and Gernot
Heiser. Timing analysis of a protected operating system kernel. In Proceedings of the
32nd IEEE Real-Time Systems Symposium, pages 339–348, Vienna, Austria, November
2011a. doi: 10.1109/RTSS.2011.38.

Bernard Blackham, Yao Shi, and Gernot Heiser. Protected hard real-time: The next
frontier. In Proceedings of the 2nd Asia-Pacific Workshop on Systems (APSys), pages
1:1–1:5, Shanghai, China, July 2011b. doi: 10.1145/2103799.2103801.

Bernard Blackham, Yao Shi, and Gernot Heiser. Improving interrupt response time in a
verifiable protected microkernel. In Proceedings of the 7th EuroSys Conference, pages
323–336, Bern, Switzerland, April 2012a. doi: 10.1145/2168836.2168869.

Bernard Blackham, Vernon Tang, and Gernot Heiser. To preempt or not to preempt, that
is the question. In Proceedings of the 3rd Asia-Pacific Workshop on Systems (APSys),
pages 8:1–8:7, Seoul, Korea, July 2012b. doi: 10.1145/2349896.2349904.

Régis Blanc, Thomas A. Henzinger, Thibaud Hottelier, and Laura Kovács. ABC: algebraic
bound computation for loops. In Proceedings of the 16th International Conference on
Logic for Programming, Artificial Intelligence and Reasoning, pages 103–118, Berlin,
Heidelberg, 2010. Springer-Verlag.

Rastislav Bod̀ık, Rajiv Gupta, and Mary-Lou Soffa. Refining data flow information using
infeasible paths. In Mehdi Jazayeri and Helmut Schauer, editors, Software Engineering
ESEC/FSE’97, volume 1301 of Lecture Notes in Computer Science, pages 361–377.
Springer Berlin Heidelberg, 1997.

Manfred Broy, Samarjit Chakraborty, Dip Goswami, S. Ramesh, M. Satpathy, Stefan
Resmerita, and Wolfgang Pree. Cross-layer analysis, testing and verification of automo-
tive control software. In Proceedings of the 11th International Conference on Embedded
Software, pages 263–272, New York, NY, USA, 2011. ACM.

Claire Burguière and Christine Rochange. History-based schemes and implicit path enu-
meration. In Proceedings of the 6th Workshop on Worst-Case Execution-Time Analysis,
2006.

Marti Campoy, A. Perles Ivars, and J. V. Busquets Mataix. Static use of locking caches in
multitask preemptive real-time systems. In Proceedings of IEEE/IEE Real-Time Em-
bedded Systems Workshop, 2001. Satellite of the IEEE Real-Time Systems Symposium.

Martin Carlsson, Jakob Engblom, Andreas Ermedahl, Jan Lindblad, and Björn Lisper.
Worst-case execution time analysis of disable interrupt regions in a commercial real-
time operating system. In Proceedings of the 2nd International Workshop on Real-Time
Tools, 2002.

Franck Cassez. Timed games for computing WCET for pipelined processors with caches.
In Proceedings of the 11th International Conference on Application of Concurrency to
System Design, pages 195–204. IEEE Computer Society, June 2011.

175

REFERENCES

Franck Cassez, Ren Rydhof Hansen, and Mads Olesen. What is a timing anomaly?
In Tullio Vardanega, editor, 12th International Workshop on Worst-Case Execution-
Time Analysis (WCET), pages 1–12, Pisa, Italy, July 2012. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik. ISBN http://dx.doi.org/10.4230/OASIcs.WCET.2012.1.

Roderick Chapman, Andy Wellings, and Alan Burns. Integrated program proof and worst-
case timing analysis of spark ada. In Proceedings of the Workshop on Language, Com-
piler, and Tool Support for Real-Time Systems, June 1994.

Sudipta Chattopadhyay and Abhik Roychoudhury. Unified cache modeling for WCET
analysis and layout optimizations. In Proceedings of the 30th IEEE Real-Time Systems
Symposium, 2009.

Sudipta Chattopadhyay, Chong Lee Kee, and Abhik Roychoudhury. A unified WCET
analysis framework for multi-core platforms. In Proceedings of the 18th IEEE Real-
Time and Embedded Technology and Applications Symposium, 2012.

Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham,
Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, and Tadayoshi Kohno.
Comprehensive experimental analyses of automotive attack surfaces. In Proceedings of
the 20th USENIX Security Symposium, 2011.

Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. The S2E platform: Design,
implementation, and applications. ACM Transactions on Computer Systems, 30(1):2:1–
2:49, February 2012. ISSN 0734-2071.

Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pi-
store, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. NuSMV version 2:
An opensource tool for symbolic model checking. In Proceedings of the 14th Interna-
tional Conference on Computer Aided Verification, volume 2404 of LNCS, Copenhagen,
Denmark, July 2002. Springer.

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. Journal
of the ACM, 50(5):752–794, September 2003.

Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Micha l Moskal,
Thomas Santen, Wolfram Schulte, and Stephan Tobies. VCC: A practical system for
verifying concurrent C. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and
Markus Wenzel, editors, Proceedings of the 22nd International Conference on Theorem
Proving in Higher Order Logics, volume 5674 of Lecture Notes in Computer Science,
pages 23–42, Munich, Germany, 2009. Springer.

Antoine Colin and Isabelle Puaut. A modular and retargetable framework for tree-based
WCET analysis. In Proceedings of the 13th Euromicro Conference on Real-Time Sys-
tems, pages 191–198, Delft, Netherlands, June 13–15 2001a.

Antoine Colin and Isabelle Puaut. Worst case execution time analysis of the RTEMS real-
time operating system. In Proceedings of the 13th Euromicro Conference on Real-Time
Systems, pages 191–198, Delft, Netherlands, June 13–15 2001b.

176

http://dx.doi.org/10.4230/OASIcs.WCET.2012.1

REFERENCES

Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proceed-
ings of the 4th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 238–252, Los Angeles, CA, USA, 1977. ACM Press.

Christoph Cullmann and Florian Martin. Data-flow based detection of loop bounds. In
Proceedings of the 7th Workshop on Worst-Case Execution-Time Analysis, 2007.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.
Efficiently computing static single assignment form and the control dependence graph.
ACM Transactions on Programming Languages and Systems, 13:451–490, October 1991.

Andreas Engelbredt Dalsgaard, Mads Chr. Olesen, Martin Toft, René Rydhof Hansen, and
Kim Guldstrand Larsen. METAMOC: Modular execution time analysis using model
checking. In Proceedings of the 10th Workshop on Worst-Case Execution-Time Analysis,
pages 113–123, Brussels, Belgium, July 2010.

Matthias Daum, Stefan Maus, Norbert Schirmer, and M. Nassim Seghir. Integration of a
software model checker into Isabelle. In Proceedings of the 12th International Conference
on Logic for Programming, Artificial Intelligence and Reasoning, pages 381–395, Berlin,
Heidelberg, 2005. Springer-Verlag. doi: 10.1007/11591191 27.

Matthias Daum, Jan Dörrenbächer, and Burkhart Wolff. Proving fairness and implemen-
tation correctness of a microkernel scheduler. Journal of Automated Reasoning: Special
Issue on Operating System Verification, 42(2–4):349–388, 2009a.

Matthias Daum, Norbert W. Schirmer, and Mareike Schmidt. Implementation correctness
of a real-time operating system. In IEEE International Conference on Software Engi-
neering and Formal Methods, pages 23–32, Hanoi, Vietnam, 2009b. IEEE Computer
Society.

Jack B. Dennis and Earl C. Van Horn. Programming semantics for multiprogrammed
computations. Communications of the ACM, 9:143–155, 1966.

Jean-François Deverge and Isabelle Puaut. Safe measurement-based WCET estimation.
In Proceedings of the 5th Workshop on Worst-Case Execution-Time Analysis, pages
13–16, 2005.

Richard P. Draves, Brian N. Bershad, Richard F. Rashid, and Randall W. Dean. Using
continuations to implement thread management and communication in operating sys-
tems. In Proceedings of the 13th ACM Symposium on Operating Systems Principles,
Asilomar, CA, USA, October 1991.

Bruno Dutertre and Leonardo de Moura. The Yices SMT solver. http://yices.csl.

sri.com/tool-paper.pdf, August 2006. Visited 17 March 2013.

Dhammika Elkaduwe, Philip Derrin, and Kevin Elphinstone. A memory allocation model
for an embedded microkernel. In Proceedings of the 1st International Workshop on
Microkernels for Embedded Systems (MIKES), pages 28–34, Sydney, Australia, January
2007. NICTA.

177

http://yices.csl.sri.com/tool-paper.pdf
http://yices.csl.sri.com/tool-paper.pdf

REFERENCES

Jakob Engblom and Andreas Ermedahl. Modeling complex flows for worst-case execution
time analysis. In Proceedings of the 21st IEEE Real-Time Systems Symposium, 2000.

Dawson R. Engler, M. Frans Kaashoek, and James O’Toole, Jr. Exokernel: An operat-
ing system architecture for application-level resource management. In Proceedings of
the 15th ACM Symposium on Operating Systems Principles, pages 251–266, Copper
Mountain, CO, USA, December 1995.

Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco,
Matthew S. Tschantz, and Chen Xiao. The Daikon system for dynamic detection of
likely invariants. Science of Computer Programming, 69(1–3):35–45, December 2007.

Ansgar Fehnker, Ralf Huuck, Patrick Jayet, Michel Lussenburg, and Felix Rauch. Goanna
— A Static Model Checker. In Proceedings of the 11th International Workshop on For-
mal Methods for Industrial Critical Systems (FMICS), pages 297–300, Bonn, Germany,
August 2006.

Xingu Feng, Zhong Shao, Yuan Dong, and Yu Guo. Certifying low-level programs with
hardware interrupts and preemptive threads. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 170–182, Tucson, AZ, USA,
June 2008.

Christian Ferdinand and Reinhold Heckmann. aiT: worst case execution time prediction
by static program analysis. In IFIP Congress Topical Sessions, pages 377–384, 2004.

Colin J. Fidge, Peter Kearney, and Mark Utting. A formal method for building concurrent
real-time software. IEEE Software, 14(2):99–106, 1997.

Bryan Ford, Mike Hibler, Jay Lepreau, Roland McGrath, and Patrick Tullmann. Interface
and execution models in the Fluke kernel. In Proceedings of the 3rd USENIX Symposium
on Operating Systems Design and Implementation, pages 101–115, New Orleans, LA,
USA, February 1999. USENIX.

Anthony Fox. Directions in ISA specification. In 3rd International Conference on Inter-
active Theorem Proving, Lecture Notes in Computer Science, Princeton, New Jersey,
August 2012. Springer.

Anthony Fox and Magnus Myreen. A trustworthy monadic formalization of the ARMv7
instruction set architecture. In Matt Kaufmann and Lawrence C. Paulson, editors, 1st
International Conference on Interactive Theorem Proving, volume 6172 of Lecture Notes
in Computer Science, pages 243–258, Edinburgh, UK, July 2010. Springer.

Alexey Gotsman and Hongseok Yang. Modular verification of preemptive OS kernels.
Proceedings of the 16th International Conference on Functional Programming, pages
404–417, 2011. doi: http://doi.acm.org/10.1145/2034773.2034827.

René Graf. Embedded systems in automation: Commodities and challenges. In 7th IEEE
International Symposium on Industrial Embedded Systems (SIES), Karlsrhue, Germany,
2012. Slides: http://www.iestcfa.org/presentations/sies2011/rene_graf.pdf.

178

http://www.iestcfa.org/presentations/sies2011/rene_graf.pdf
http://doi.acm.org/10.1145/2034773.2034827

REFERENCES

Charles Gray, Matthew Chapman, Peter Chubb, David Mosberger-Tang, and Gernot
Heiser. Itanium — a system implementor’s tale. In Proceedings of the 2005 USENIX
Annual Technical Conference, pages 264–278, Anaheim, CA, USA, April 2005.

Green Hills Software. INTEGRITY real-time operating system. http://www.ghs.com/

products/rtos/integrity.html. Visited 17 March 2013.

Jan Gustafsson. Analyzing Execution-Time of Object-Oriented Programs Using Abstract
Interpretation. PhD. thesis, Uppsala University, May 2000.

Jan Gustafsson, Andreas Ermedahl, and Björn Lisper. Algorithms for infeasible path cal-
culation. In Proceedings of the 6th Workshop on Worst-Case Execution-Time Analysis,
2006a.

Jan Gustafsson, Andreas Ermedahl, Christer Sandberg, and Björn Lisper. Automatic
derivation of loop bounds and infeasible paths for WCET analysis using abstract exe-
cution. In Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 57–66,
Washington, DC, USA, 2006b. IEEE Computer Society. doi: 10.1109/RTSS.2006.12.

Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The Mälardalen
WCET benchmarks – past, present and future. In Proceedings of the 10th Workshop
on Worst-Case Execution-Time Analysis, pages 137–147, Brussels, Belgium, July 2010.
OCG.

Hermann Härtig, Michael Hohmuth, and Jean Wolter. Taming Linux. In Proceedings of
the 5th Workshop on Power Aware Real-time Computing, 1998.

Paul Havlak. Nesting of reducible and irreducible loops. ACM Transactions on Program-
ming Languages and Systems, 19(4):557–567, July 1997. ISSN 0164-0925.

Gernot Heiser and Ben Leslie. The OKL4 Microvisor: Convergence point of microkernels
and hypervisors. In Proceedings of the 1st Asia-Pacific Workshop on Systems (APSys),
pages 19–24, New Delhi, India, August 2010.

André Hergenhan and Gernot Heiser. Operating systems technology for converged ECUs.
In 6th Embedded Security in Cars Conference (escar), Hamburg, Germany, November
2008. ISITS.

Wanja Hofer, Daniel Lohmann, Fabian Scheler, and Wolfgang Schröder-Preikschat. Sloth:
Threads as interrupts. In Proceedings of the 30th IEEE Real-Time Systems Symposium,
2009.

Michael Hohmuth. The Fiasco kernel: System architecture. Technical Report TUD-FI02-
06-Juli-2002, TU Dresden, Germany, July 2002.

Benedikt Huber and Martin Schoeberl. Comparison of implicit path enumeration and
model checking based WCET analysis. In Proceedings of the 9th Workshop on Worst-
Case Execution-Time Analysis, 2009.

179

http://www.ghs.com/products/rtos/integrity.html
http://www.ghs.com/products/rtos/integrity.html

REFERENCES

Ralf Huuck, Ansgar Fehnker, Maximillian Junker, and Alexander Knapp. SMT-based false
positive elimination in static program analysis. In ICFEM, Kyoto, Japan, November
2012.

Bach Khoa Huynh, Lei Ju, and Abhik Roychoudhury. Scope-aware data cache analy-
sis for WCET estimation. In Proceedings of the 17th IEEE Real-Time and Embedded
Technology and Applications Symposium, April 2011.

Randall Hyde. The great debate. http://web.archive.org/web/20080616110102/

http://webster.cs.ucr.edu/Page_TechDocs/GreatDebate/debate1.html. Visited
17 March 2013.

IEC 61508: Functional Safety of Electrical, Electronic and Programmable Electronic Safety
Related Systems. International Electrotechnical Commission, 1998.

Joxan Jaffar, Vijayaraghavan Murali, Jorge A. Navas, and Andrew E. Santosa. TRACER:
A symbolic execution tool for verification. In Proceedings of the 24th International
Conference on Computer Aided Verification, Berlin, Heidelberg, 2012. Springer-Verlag.

Johannes Kinder and Helmut Veith. Jakstab: A static analysis platform for binaries. In
Proceedings of the 20th International Conference on Computer Aided Verification, pages
423–427, Berlin, Heidelberg, 2008. Springer-Verlag.

Johannes Kinder, Florian Zuleger, and Helmut Veith. An abstract interpretation-based
framework for control flow reconstruction from binaries. In Proceedings of the 10th
International Conference on Verification, Model Checking and Abstract Interpretation,
pages 214–228, Berlin, Heidelberg, 2009. Springer-Verlag.

Raimund Kirner, Peter Puschner, and Ingomar Wenzel. Measurement-based worst-case
execution time analysis using automatic test-data generation. In Proceedings of the 4th
Workshop on Worst-Case Execution-Time Analysis, pages 67–70, 2005a.

Raimund Kirner, Ingomar Wenzel, Bernhard Rieder, and Peter Puschner. Using mea-
surements as a complement to static worst-case execution time analysis. In Intelligent
Systems at the Service of Mankind, volume 2. UBooks Verlag, December 2005b.

Gerwin Klein. Operating system verification — an overview. Sādhanā, 34(1):27–69, Febru-
ary 2009.

Gerwin Klein, Philip Derrin, and Kevin Elphinstone. Experience report: seL4 — formally
verifying a high-performance microkernel. In Proceedings of the 14th International Con-
ference on Functional Programming, pages 91–96, Edinburgh, UK, August 2009a. ACM.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Der-
rin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal verification of an OS kernel.
In Proceedings of the 22nd ACM Symposium on Operating Systems Principles, pages
207–220, Big Sky, MT, USA, October 2009b. ACM. doi: 10.1145/1629575.1629596.

180

http://web.archive.org/web/20080616110102/http://webster.cs.ucr.edu/Page_TechDocs/GreatDebate/debate1.html
http://web.archive.org/web/20080616110102/http://webster.cs.ucr.edu/Page_TechDocs/GreatDebate/debate1.html

REFERENCES

Eugene Kligerman and Alexander D. Stoyenko. Real-time Euclid: a language for reliable
real-time systems. IEEE Transactions on Software Engineering, 12(9):941–949, 1986.
ISSN 0098-5589.

Jens Knoop, Laura Kovàcs, and Jakob Zwirchmayr. r-TuBound: Loop bounds for WCET
analysis (tool paper). In Nikolaj Bjørner and Andrei Voronkov, editors, Logic for
Programming, Artificial Intelligence, and Reasoning, volume 7180 of Lecture Notes in
Computer Science, pages 435–444. Springer Berlin / Heidelberg, 2012. ISBN 978-3-642-
28716-9.

Hermann Kopetz. Event-triggered versus time-triggered real-time systems. In Proceedings
of the International Workshop on Operating Systems of the 90s and Beyond, pages
87–101, London, UK, 1991. Springer-Verlag.

L4HQ. The L4 headquarters. http://l4hq.org. Visited 17 March 2013.

L4IMPL. Implementations of the L4 µ-kernel interface. http://os.inf.tu-dresden.de/
L4/impl.html. Visited 17 March 2013.

Farah Lakhani and Michael J. Pont. Applying design patterns to improve the reliability
of embedded systems through a process of architecture migration. In Proceedings of the
14th IEEEInternational Conference on High-Performance Computing and Communica-
tions, 2012.

K. Rustan M. Leino. Automating induction with an SMT solver. In Proceedings of the 13th
International Conference on Verification, Model Checking and Abstract Interpretation,
pages 315–331, Berlin, Heidelberg, 2012. Springer-Verlag.

Xianfeng Li, Abhik Roychoudhury, and Tulika Mitra. Modeling out-of-order processors
for WCET analysis. Real-Time Systems, 34:195–227, 2006.

Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roychoudhury. Chronos: A timing
analyzer for embedded software. In Science of Computer Programming, Special issue
on Experimental Software and Toolkit, volume 69(1-3), December 2007.

Yau-Tsun Li and Sharad Malik. Performance analysis of embedded software using im-
plicit path enumeration. In Proceedings of the 32nd ACM/IEEE Design Automation
Conference, pages 456–461. ACM, June 1995.

Yau-Tsun Li, Sharad Malik, and Andrew Wolfe. Efficient microarchitecture modeling and
path analysis for real-time software. In Proceedings of the 16th IEEE Real-Time Systems
Symposium, pages 298–307, 1995.

Jochen Liedtke. Improving IPC by kernel design. In Proceedings of the 14th ACM Sympo-
sium on Operating Systems Principles, pages 175–188, Asheville, NC, USA, December
1993a.

Jochen Liedtke. A high resolution MMU for the realization of huge fine-grained address
spaces and user level mapping. Arbeitspapiere der GMD No. 791, German National
Research Center for Computer Science (GMD), Sankt Augustin, Germany, 1993b.

181

http://l4hq.org
http://os.inf.tu-dresden.de/L4/impl.html
http://os.inf.tu-dresden.de/L4/impl.html

REFERENCES

Jochen Liedtke. On µ-kernel construction. In Proceedings of the 15th ACM Symposium on
Operating Systems Principles, pages 237–250, Copper Mountain, CO, USA, December
1995.

Jochen Liedtke, Kevin Elphinstone, Sebastian Schönberg, Herrman Härtig, Gernot Heiser,
Nayeem Islam, and Trent Jaeger. Achieved IPC performance (still the foundation for
extensibility). In Proceedings of the 6th Workshop on Hot Topics in Operating Systems,
pages 28–31, Cape Cod, MA, USA, May 1997.

Mark H. Liffiton and Karem A. Sakallah. Algorithms for computing minimal unsatisfiable
subsets of constraints. Journal of Automated Reasoning, 40:1–33, 2008. doi: 10.1007/
s10817-007-9084-z.

Paul Lokuciejewski, Daniel Cordes, Heiko Falk, and Peter Marwedel. A fast and pre-
cise static loop analysis based on abstract interpretation, program slicing and polytope
models. In Proceedings of the 7th IEEE Symposium on Code Generation and Opti-
mization, pages 136–146, Washington, DC, USA, 2009. IEEE Computer Society. doi:
10.1109/CGO.2009.17.

Thomas Lundqvist and Per Stenström. A method to improve the estimated worst-case
performance of data caching. In Proceedings of the 6th International Conference on
Real–Time Computing Systems and Applications, Hongkong, ROC, December 13–15
1999. IEEE Computer Society Press.

Mingsong Lv, Nan Guan, Yi Zhang, Rui Chen, Qingxu Deng, Ge Yu, and Wang Yi. WCET
analysis of the µC/OS-II real-time kernel. In Proceedings of the 12th International Con-
ference on Computational Science and Engineering, pages 270–276, Vancouver, Canada,
August 2009a.

Mingsong Lv, Nan Guan, Yi Zhang, Qingxu Deng, Ge Yu, and Jianming Zhang. A survey
of WCET analysis of real-time operating systems. In Proceedings of the 9th IEEE
International Conference on Embedded Systems and Software, pages 65–72, Hangzhou,
China, May 2009b.

Henry Massalin. Superoptimizer: a look at the smallest program. SIGARCH Computer
Architecture News, October 1987.

Paul E. McKenney. Attempted summary of “RT patch acceptance” thread, take 2. http:
//lwn.net/Articles/143323/. Visited 17 March 2013.

Frank Mehnert, Michael Hohmuth, Sebastian Schönberg, and Hermann Härtig. RTLinux
with address spaces. In Proceedings of the 3rd Real-Time Linux Workshop, Milano,
Italy, Nov 2001.

Frank Mehnert, Michael Hohmuth, and Hermann Härtig. Cost and benefit of separate
address spaces in real-time operating systems. In Proceedings of the 23rd IEEE Real-
Time Systems Symposium, Austin, TX, USA, 2002.

Alexander Metzner. Why model checking can improve WCET analysis. In Rajeev Alur
and Doron Peled, editors, Computer Aided Verification, volume 3114 of Lecture Notes
in Computer Science, pages 298–301. Springer, 2004.

182

http://lwn.net/Articles/143323/
http://lwn.net/Articles/143323/

REFERENCES

Malcolm S. Mollison, Jeremy P. Erickson, James H. Anderson, Sanjoy K. Baruah, and
John A. Scoredos. Mixed-criticality real-time scheduling for multicore systems. In Pro-
ceedings of the 10th IEEE International Conference on Embedded Systems and Software,
2010.

Markus Müller-Olm, David A. Schmidt, and Bernhard Steffen. Model-checking: A tutorial
introduction. In Proceedings of the 6th Proceedings of the ACM Symposium on Applied
Computing, pages 330–354, London, UK, 1999. Springer-Verlag.

Alexander Nadel. Boosting minimal unsatisfiable core extraction. In Proceedings of
the 2010 Conference on Formal Methods in Computer-Aided Design, pages 221–229,
Lugano, Switzerland, 2010. FMCAD Inc.

Iman Narasamdya and Andrei Voronkov. Finding basic block and variable correspondence.
In Proceedings of the 12th international conference on Static Analysis, SAS’05, pages
251–267, Berlin, Heidelberg, 2005. Springer-Verlag.

Minh Ngoc Ngo and Hee Beng Kuan Tan. Detecting large number of infeasible paths
through recognizing their patterns. In Proceedings of the 6th joint meeting of the Euro-
pean Software Engineering Conference and ACM SIGSOFT International Symposium
on the Foundations of Software Engineering, pages 215–224, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-811-4.

Minh Ngoc Ngo and Hee Beng Kuan Tan. Heuristics-based infeasible path detection for
dynamic test data generation. In Information and Software Technology, volume 50,
pages 641–655, 2008.

David A. Patterson. Latency lags bandwidth. Communications of the ACM, 47(10):71–75,
October 2004.

Wolfgang Paul, Sabine Schmaltz, and Andrey Shadrin. Completing the automated ver-
ification of a small hypervisor — assembler code verification. In George Eleftherakis,
Mike Hinchey, and Mike Holcombe, editors, Proceedings of the 10th International Con-
ference on Software Engineering and Formal Methods, volume 7504 of Lecture Notes in
Computer Science, pages 188–202. Springer, 2012.

Stefan M. Petters, Patryk Zadarnowski, and Gernot Heiser. Measurements or static anal-
ysis or both? In Proceedings of the 7th Workshop on Worst-Case Execution-Time
Analysis, Pisa, Italy, July 2007. Satellite Workshop of the 19th Euromicro Conference
on Real-Time Systems.

Isabelle Puaut and David Decotigny. Low-complexity algorithms for static cache locking
in multitasking hard real-time systems. In Proceedings of the 23rd IEEE Real-Time
Systems Symposium, pages 114–123, 2002.

QEMU. QEMU: open source processor emulator. http://qemu.org/. Visited 17 March
2013.

QNX. Operating systems. http://www.qnx.com/products/neutrino-rtos/. Visited 17
March 2013.

183

http://qemu.org/
http://www.qnx.com/products/neutrino-rtos/

REFERENCES

Jan Reineke, Björn Wachter, Stephan Thesing, Reinhard Wilhelm, Ilia Polian, Jochen
Eisinger, and Bernd Becker. A definition and classification of timing anomalies. In
Proceedings of the 6th Workshop on Worst-Case Execution-Time Analysis, 2006.

Bernhard Rieder, Peter Puschner, and Ingomar Wenzel. Using model checking to derive
loop bounds of general loops within ANSI-C applications for measurement based WCET
analysis. In Intelligent Solutions in Embedded Systems, 2008 International Workshop
on, pages 1–7, July 2008.

Daniel Sandell, Andreas Ermedahl, Jan Gustafsson, and Björn Lisper. Static timing
analysis of real-time operating system code. In Proceedings of the 1st International
Symposium on Leveraging Applications of Formal Methods, October 2004.

Stefan Schaefer, Bernhard Scholz, Stefan M. Petters, and Gernot Heiser. Static analysis
support for measurement-based WCET analysis. In 12th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications, Work-in-Progress
Session, Sydney, Australia, August 2006.

Fabian Scheler and Wolfgang Schröder-Preikschat. Time-triggered vs. event-triggered:
A matter of configuration? In GI/ITG Workshop on Non-Functional Properties of
Embedded Systems, Nuremberg, Germany, 2006.

Jörn Schneider. Why you can’t analyze RTOSs without considering applications and vice
versa. In Proceedings of the 2nd Workshop on Worst-Case Execution-Time Analysis,
2002.

Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, Inc.,
New York, NY, USA, 1986. ISBN 0-471-90854-1.

Sanjit A. Seshia and Alexander Rakhlin. Quantitative analysis of systems using game-
theoretic learning. In ACM Transactions on Embedded Computing Systems, volume 11,
pages 55:1–55:27, August 2012.

Thomas Sewell, Simon Winwood, Peter Gammie, Toby Murray, June Andronick, and
Gerwin Klein. seL4 enforces integrity. In Marko C. J. D. van Eekelen, Herman
Geuvers, Julien Schmaltz, and Freek Wiedijk, editors, 2nd International Confer-
ence on Interactive Theorem Proving, volume 6898 of Lecture Notes in Computer
Science, pages 325–340, Nijmegen, The Netherlands, August 2011. Springer. doi:
http://dx.doi.org/10.1007/978-3-642-22863-6 24.

Thomas Sewell, Magnus Myreen, and Gerwin Klein. Translation validation for a veri-
fied OS kernel. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 471–481, Seattle, Washington, USA, June 2013. ACM.

Mohit Singal and Stefan M. Petters. Issues in analysing L4 for its WCET. In Proceedings
of the 1st International Workshop on Microkernels for Embedded Systems (MIKES),
Sydney, Australia, January 2007. NICTA.

184

http://dx.doi.org/10.1007/978-3-642-22863-6

REFERENCES

Jan Staschulat, Jörn C. Braam, Rolf Ernst, Thomas Rambow, and Rainer Schlör Rainer
Busch. Cost-efficient worst-case execution time analysis in industrial practice. In Pro-
ceedings of the 2nd International Symposium on Leveraging Applications of Formal
Methods, Verification and Validation, pages 204–211, Washington, DC, USA, 2006.
IEEE Computer Society.

Vivy Suhendra, Tulika Mitra, Abhik Roychoudhury, and Ting Chen. Efficient detection
and exploitation of infeasible paths for software timing analysis. In Proceedings of the
43rd Design Automation Conference (DAC), pages 358–363, New York, NY, USA, 2006.
ACM. ISBN 1-59593-381-6.

Dan Swartzendruber. A preemptible Mach kernel. ftp://ftp.ac.upc.edu/pub/

archives/gso/mach.OSF/os.coll.papers.Vol3/preemption_tech.ps, 1994. Visited
17 March 2013.

Robert Endre Tarjan. Testing flow graph reducibility. Journal of Computer and System
Sciences, 9(3):355–365, 1974.

Aditya V. Thakur, Junghee Lim, Akash Lal, Amanda Burton, Evan Driscoll, Matt Elder,
Tycho Andersen, and Thomas W. Reps. Directed proof generation for machine code.
In Proceedings of the 22nd International Conference on Computer Aided Verification,
pages 288–305, 2010.

Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. Fast and precise WCET
prediction by separated cache and path analysis. Journal of Real–Time Systems, 18:
157–179, 2000.

Pavol C̆erný, Thomas A. Henzinger, and Arjun Radhakrishna. Quantitative abstraction
refinement. In Proceedings of the 40th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, 2013.

NIST. Common Criteria for IT Security Evaluation. US National Institute of Standards,
1999. ISO Standard 15408. http://csrc.nist.gov/cc/.

Steve Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of
execution time assurance. In Proceedings of the 30th IEEE Real-Time Systems Sympo-
sium, 2009.

Michael von Tessin. The clustered multikernel: An approach to formal verification of
multiprocessor OS kernels. In Proceedings of the 2nd Workshop on Systems for Future
Multi-core Architectures, Bern, Switzerland, April 2012.

Matthew Warton. Single kernel stack L4. BE thesis, School of Computer Science and
Engineering, University of NSW, Sydney 2052, Australia, November 2005.

Mark Weiser. Program slicing. IEEE Transactions on Software Engineering, SE-10(4):
352–357, July 1984.

185

ftp://ftp.ac.upc.edu/pub/archives/gso/mach.OSF/os.coll.papers.Vol3/preemption_tech.ps
ftp://ftp.ac.upc.edu/pub/archives/gso/mach.OSF/os.coll.papers.Vol3/preemption_tech.ps
http://csrc.nist.gov/cc/

REFERENCES

Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and Peter Puschner. Measurement-
based worst-case execution time analysis. In Proceedings of the Workshop on Soft-
ware Technologies for Future Embedded and Ubiquitous Systems (SEUS)’05, pages 7–10,
Washington, DC, USA, 2005. IEEE Computer Society.

Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mi-
tra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström.
The worst-case execution-time problem—overview of methods and survey of tools. ACM
Transactions on Embedded Computing Systems, 7(3):1–53, 2008. ISSN 1539-9087.

Wind River. Wind River VxWorks RTOS. http://windriver.com/products/vxworks/.
Visited 17 March 2013.

Victor Yodaiken and Michael Barabanov. A real-time Linux. In Proceedings of the Linux
Applications Development and Deployment Conference, Anaheim, CA, January 1997.
Satellite Workshop of the 1997 USENIX.

Lu Zhao, Guodong Li, Bjorn De Sutter, and John Regehr. ARMor: fully verified soft-
ware fault isolation. In Proceedings of the 11th International Conference on Embedded
Software, pages 289–298, New York, NY, USA, 2011. ACM.

Michael Zolda, Sven Bünte, and Raimund Kirner. Towards adaptable control flow seg-
mentation for measurement-based execution time analysis. In Proceedings of the 17th
International Conference on Real-Time and Network Systems (RTNS), Paris, France,
2009.

186

http://windriver.com/products/vxworks/

	Title Page - Towards Verified Microkernels for Real-Time Mixed-Criticality Systems
	Thesis/Dissertation Sheet
	Abstract
	Acknowledgements
	List of Publications
	Table of Contents
	List of Figures

	Chapter 1 - Introduction
	On meeting deadlines
	On correct operation
	Research contributions and thesis outline

	Chapter 2 - Background
	Real-time application domains
	Designing trustworthy mixed-criticality systems
	The worst-case execution time problem
	Estimating the worst-case execution time
	Summary

	Chapter 3 - A preliminary WCET analysis of seL4
	Overview
	Related work
	seL4 design features
	Analysis method
	Initial WCET results
	Experimental results
	Summary

	Chapter 4 - Formal verification vs interrupt latency
	Overview
	Design considerations
	Areas of improvement
	L1 cache pinning
	Analysis method
	Results
	Related work
	Summary

	Chapter 5 - Interrupt latency in non-preemptible kernels
	Overview
	Related work
	A non-preemptible kernel
	A fully-preemptible kernel
	Results and analysis
	Conclusion

	Chapter 6 - Checking properties on binaries
	Overview
	Background
	The problem
	Anatomy of sequoll
	Evaluation
	Discussion
	Summary

	Chapter 7 - Automated infeasible path detection
	Overview
	Motivating example
	Background
	Details
	Evaluation
	Related work
	Summary

	Chapter 8 - A look at verification and performance
	Overview
	Related work
	Microkernel IPC
	Optimisation techniques
	Evaluation
	Discussion
	Summary

	Chapter 9 - Conclusion
	Summary
	Contributions
	Future work

	References

