
Components + Security = OS Extensibility

Antony Edwards Gernot Heiser

School of Computer Science and Engineering

University of NSW, Sydney 2052, Australia

fantonye,gernotg@cse.unsw.edu.au

Abstract

Component-based programming systems have shown

themselves to be a natural way of constructing extensible

software. Well-defined interfaces, encapsulation, late bind-

ing and polymorphism promote extensibility, yet despite this

synergy, components have not been widely employed at the

systems level. This is primarily due to the failure of exist-

ing component technologies to provide the protection and

performance required of systems software. In this paper we

identify the requirements for a component system to support

secure extensions, and describe the design of such a system

on the Mungi OS.

1. Introduction

Extensibility is revolutionising system construction. Tra-

ditional monolithic operating systems have evolved in an ad

hoc manner, making them large, complex, unreliable and

slow. Extensible operating systems replace this chaos with

a model for controlled evolution, resulting in smaller, faster

and more reliable systems. Current research into extensibil-

ity focuses on two approaches [20]:

� Allowing user-developed modules to be dynamically

added to the kernel. Modules then export an interface

that can be called by users. Such systems rely on ’safe’

languages (e.g. Modula 3 [19]), compile-time analysis

and dynamic reference checks for safety. Prominent

examples include SPIN [3] and VINO [22].

� Providing a trusted path [24, 17] mechanism, such as

a protected procedure call [8] or IPC. Extensions exe-

cute as user tasks, using the standard system protection

mechanisms for safety. Clients invoke extensions via

the trusted path. For example, Amoeba [18] used a

client/server model with an IPC based trusted path.

An extensibility mechanism requires flexibility, safety

and performance. It is now widely accepted that flexi-

bility and safety can be provided in user space. Kernel-

module based systems are therefore motivated solely by

performance, which has been acknowledged by the design-

ers of such systems [3]. Performance oriented research

on �-kernel construction, however, has resulted in trusted

path mechanisms with overheads of 100-200 cycles [16, 9].

Given the disappointing performance of kernel-modules

[3, 22], such systems are obsolete. Kernel-module based

systems also require programmers to use a specific ’safe’

language, and rely on a complex compiler for protection [5],

resulting in a large trusted computing base (TCB).

Trusted path based extensibility mechanisms are more

suitable for the current generation of �-kernel based oper-

ating systems. These systems provide flexibility, safety and

performance at user level, however, as yet there has been

limited investigation into the development of an extension

model using these mechanisms. Such a model is essential

for the interoperability of extensions. Without such interop-

erability, these systems simply translate the chaos of tradi-

tional systems to user level.

Components [23,6,7] are a natural model for extensibil-

ity, and can be securely implemented using a system sup-

plied trusted path. Due to the lack of protection and poor

performance of existing component architectures however,

components have not been widely embraced as a suitable

model for system extension. In particular, existing com-

ponent models do not support the protection requirements

introduced by system extensions, i.e. the ability to:

1. Execute their methods in an amplified protection do-

main. This allows extensions to provide secure access

to privileged resources.

2. Store privileged per-instance data (e.g. a spooler file).

Extensions must provide data-encapsulation.

3. Perform access control. A user must only be able to

invoke methods they have access to, on extensions they

have access to.

mailto:antonye@cse.unsw.edu.au

4. Build upon, and extend, existing services.

5. Add code to the base system which is then invoked

through an existing interface.

This paper describes how these requirements have been

addressed in the design of a component model for system

extension, currently being developed on the Mungi operat-

ing system. Section 2 provides an overview of Mungi, Sec-

tion 3 describes the protection features of the component

model and Section 4 presents performance measurements

of a prototype implementation.

2. Mungi

Mungi [13] is a single-address-space operating system

(SASOS), i.e. all processes on all computing nodes in the

system share the same virtual address space. The single ad-

dress space contains all data, transient as well as persistent.

Within this single-level store, data are identified through

their (64-bit) addresses.

Virtual memory is allocated in contiguous, page-aligned

segments called objects, which are also the unit of protec-

tion. A process is granted certain rights to all or none of an

object. Access is controlled via password capabilities [2];

when an object is created, the system returns a capability to

the user which contains the object’s base address and a pass-

word. Such a capability grants full (read, write, execute and

destroy) rights to the object and is called an owner capabil-

ity. A process holding an owner capability can register less

powerful capabilities for an object.

Capabilities can freely be stored or passed around with-

out system intervention. They are protected from forgery by

their password, which is registered in a global, distributed

data structure called the object table (OT). When validating

a capability the system compares the capability’s password

with the list of valid passwords stored in the OT, and grants

access if the requested operation is compatible with the ac-

cess mode stored with the password in the OT. Validations

in Mungi are cached for performance.

Extensibility is supported by a protected procedure call

mechanism called protection domain extension (PDX) [26].

Each thread in Mungi executes within a protection domain,

which is the set of objects accessible to the thread. Pro-

tection domains are implemented as a set of pointers to

capability lists (C-lists). Contrary to classical capability

systems, these C-lists are not system objects but are user

maintained. PDX allows a thread’s protection domain to

be extended, in a controlled manner, for the duration of a

procedure call using the system call:

int PdxCall(void *entry pt, void *param, cap t *ret, void *pd);

This invokes the method at entry_pt in a protection do-

main that is the union of the passed protection domain pd,

and a clist registered with the object. The entry point ad-

dress must be registered with the system, and the caller

must have a capability to this entry point. Figure 1 illus-

trates how the protection domain (shaded) associated with a

thread changes during a PdxCall(). The Mungi protec-

tion model is described in detail in [27].

Figure 1. PDX Protection Domains

3. Protected Components

This section describes the protection features of a com-

ponent model being developed on the Mungi SASOS.

3.1. Method Execution in an Amplified Domain

Figure 2 shows the basic architecture of the component

system, in which component implementations are contained

within Mungi PDX objects. As described in Section 2,

clients can only invoke such code using the PdxCall()

system call. The argument list of a procedure call contains

the component reference to be operated on, similar to the

this pointer implicitly passed to C++ methods. To execute

in the amplified protection domain the client must specify

one of the registered entry points and they must posses a ca-

pability to that entry point. By registering only the methods

of the component as entry points to the PDX object, a com-

ponent’s interface is enforced, and interface methods exe-

cute within an amplified protection domain, which would

contain the service’s privileged resources.

Figure 2. System Architecture

3.2. Encapsulation and Access Control

Component instances provide a service implementation

with a location to store possibly privileged data, e.g. a print

queue or the contents of a directory. If this location is not

protected by the system then the amplified protection do-

main cannot store privileged data in the instances. This re-

sults in the component implementation having to manually

maintain per-user state.

Capability systems provide natural support for encapsu-

lation, however the relationship between encapsulation and

access control contains subtleties that are often neglected.

Essentially, a client invokes a constructor to create a new

instance of a component. This constructor is an entry point

into the component implementation (a Mungi PDX object)

and executes in its associated amplified protection domain.

Constructors create a new instance of the component inside

a Mungi object that exists only within the component’s pro-

tection domain. It then passes back the address of the com-

ponent (which uniquely identifies an object in a SASOS) to

the client, but does not return a capability to the instance.

The component implementation is therefore the only do-

main holding a capability to the new instance, and as such

is the only domain that can access its internal data. As it

only performs such an access in response to a request to one

of the registered method entry points, instances are fully

encapsulated. Furthermore, because the encapsulation is

achieved simply by using the system provided mechanisms

appropriately, it does not impose any performance penalty.

Although the above scheme does indeed encapsulate

the component instances, it does not allow for instance-

granularity access control. To invoke a method, the client

requires a capability to the entry point in the PDX object, a

reference to the instance, but no capability to the instance.

Therefore there is no protection against a client with access

to the component type from invoking operations on arbi-

trary references in the hope of revealing some private data,

or performing a privileged action. The problem is that the

system capabilities are providing protection at type granu-

larity, whereas we require protection of instances.

As we are dealing with a capability system, the natural

solution is to create a new capability that confers upon the

holder the right to invoke methods on the instance. Unfortu-

nately this scheme is also inadequate. Capabilities provide

protection at page granularity, therefore to protect instances

a component implementation would have to place each in-

stance in its own page. The majority of components con-

tain only a few bytes of data, and so this leads to extremely

inefficient use of memory and dismal translation lookaside

buffer (TLB) performance.

Figure 3. Access Control Granularity

Mungi objects must be page aligned since their protec-

tion derives from the memory management unit (MMU),

which deals with memory at page granularity. Components

do not have such a constraint, because their protection is

based on every method invocation having to pass through

the system’s trusted path mechanism, i.e. PdxCall().

A reference to the instance being used is explicitly pre-

sented to the component implementation on every call, al-

lowing it to perform access control at arbitrary granularity.

Thus, component implementations carry out their own in-

stance capability validations. Constructors create a random

64-bit password which is returned to the client along with

the reference, as well as being stored in the encapsulated

component instance. This (reference, password) tuple is

called a component instance capability (CICAP) and must

be passed and validated on each method invocation. Passed

CICAPs are validated by a simple integer comparison with

the CICAP stored in the component instance, imposing lit-

tle overhead (see Section 4). As CICAPs provide protec-

tion at the granularity of component instances, instances for

different clients may be safely placed into the same Mungi

object. Access control now consists of a validation that the

client has access to the interface entry point, and to the com-

ponent instance, as illustrated in Figure 3. It is important to

note that these validations are independent. This means that

if a client holds CICAPs for two instances of a given com-

ponent, it cannot be allowed access to a certain interface for

one of the instances, but not the other.

3.3. Extending Components

Rights amplification, encapsulation and user access con-

trol allow components to provide applications with addi-

tional services. This is one-level of system extensibility.

True system extensibility allows new extensions to build

upon existing services, and to be invoked via existing inter-

faces. It is the combination of these two mechanisms that

gives extensible systems their flexibility and power [11].

Sections 3.4 and 3.5 describe how these operations are pro-

vided by the Mungi component model, and identify their

associated protection issues.

3.4. Forwarding and Aggregation

Forwarding (also known as component composition) is a

simple model for reusing existing components, that avoids

the semantic problems caused by implementation inheri-

tance [23]. To extend an existing service (C
B

), a new com-

ponent (C
E

) is developed that provides a super-set of C
B

’s

interfaces. An instance of C
E

contains a reference to an in-

stance of C
B

(either created in the constructor or supplied

by the client), which it uses as any normal client would, i.e.

there is no concept of a specialisation interface [15]. Since

the extending component provides a super-set of the inter-

faces provided by the base component, polymorphism al-

lows instances of the extending component to be substituted

for instances of the base component. Forwarding relies on

the natural reusability of components, rather than introduc-

ing a new model, such as inheritance, when a client happens

to be another component.

Since forwarding is essentially just components acting

as clients, it does not directly introduce any new protec-

tion issues. It does however introduce the concept of a dy-

namic system interface, which creates a number of security

issues. When a new component (C
E

) extends an existing

service (C
B

), C
B

is no longer part of the system interface

and should become inaccessible to applications. An appli-

cations view of the system interface is a system-level policy,

that should therefore be enforced by a mandatory protection

mechanism, i.e. one where security attributes are controlled

by an administrator rather than users. Mandatory protection

in extensible systems is briefly discussed in Section 3.6.

Aggregation is an optimised form of forwarding, in

which interfaces of a base component are directly exported

by the extending component. This avoids the overhead of

the extending component having to relay the request to the

base component, when it does not add any extra processing.

Figure 4 illustrates forwarding and aggregation.

Figure 4. Forwarding vs Aggregation

Normally when a component (C
E

) extends another com-

ponent (C
B

), it does not distributeC
B

’s CICAP. This means

that no clients may directly access C
B

, which is therefore

contained in C

E

. As the extending component usually as-

sumes that it is the only entity invoking methods on the

base component, this containment is very important. Un-

der aggregation, clients directly invoke methods on the base

component. As described in Section 3.2, a client cannot be

granted access to a given interface of a component for some

instances, but not others. To allow clients to directly invoke

methods on the base component for aggregated interfaces,

C

E

must provide clients with a valid CICAP for the base

component. As CICAPs allow access to all interfaces, in

general there is no protection against clients also invoking

methods on non-aggregated interfaces, and thereby violat-

ing containment.

This problem is addressed by introducing the concept of

an instance owner, who may create new CICAPs with ac-

cess to a subset of interfaces. When an instance is created,

an owner CICAP allowing access to all interfaces is gener-

ated and returned to the client. Each component provides

an entry point that allows a client holding an owner CICAP

to request the creation of a new CICAP with access to a

specified set of interfaces. A new password is generated and

recorded in the instance, along with the set of interfaces this

CICAP permits access to. The new CICAP is then returned

to the client. When a method is invoked, the component

compares the passed CICAP with the owner CICAP, and

any CICAP generated with access to the invoked interface.

If a match is found, the invocation is allowed to proceed.

Therefore, when a component aggregates interfaces from a

base component, it requests the creation of a new CICAP

with access only to the aggregated interfaces. Clients are

then only provided with this CICAP, ensuring that they can-

not call non-aggregated interfaces of the base component.

3.5. Delegation

Delegation allows new components to be invoked via ex-

isting interfaces, i.e. it is the component-oriented equiv-

alent of virtual inheritance. It allows a new component-

instanceC
D

to register itself with an interface of an existing

component-instanceC
B

, so that if a client invokes a method

on that interface ofC
B

, the request is redirected toC
D

. Fig-

ure 5 shows the flow of control when a delegated method A

is invoked on a base component. Requests are shown as

solid lines, replies as dotted lines.

Figure 5. Delegation

Delegation allows authorised entities to customise sys-

tem services to improve performance, correctness and sim-

plicity [21]. For example, a new component could delegate

an existing printer instance to provide fair scheduling, or a

directory set to provide a customised file cache. Delegation

allows these new services to be added in a manner that is

transparent to clients. Without delegation, all clients must

manually migrate to the new service.

Delegation is essentially a form of dynamic aggregation,

and so protection is mostly provided using the mechanisms

presented in the previous section. One difference however,

is that delegation requires an entry point for delegating in-

stances to register themselves. Obviously, delegation is a

sensitive operation, e.g. delegating write requests to the

password file. For protection, the entry point to register a

delegating instance is placed on its own interface. Again

however, this is insufficient due to the independence of en-

try point and instance validations discussed in Section 3.2.

For example, in a component-based file system a user would

be able to extend their own directories. This requires that

they possess a capability to the delegation entry point for

directory components. The user should also be able to read

certain directories (e.g. /home), requiring that they possess

a CICAP to these directories. A mechanism is needed to

prevent users from delegating directories they do not own.

This can be achieved by the owner creating a new CICAP

with access to all interfaces except the delegation interfaces.

This CICAP can then be safely distributed.

3.6. Mandatory Security

”A given system is ’secure’ only with respect to

some specific policy” [1]

So far, discussion has been limited to discretionary pro-

tection, i.e. protection mechanisms in which security at-

tributes are controlled by users. Mungi capabilities and

CICAPs can both be be freely distributed without system in-

tervention, and are therefore discretionary protection mech-

anisms. Such protection is incapable of enforcing system-

wide security policies, because it cannot defend against

careless or malicious users.

A mechanism for enforcing system-wide security poli-

cies, i.e. mandatory security, is being increasingly recog-

nised as a requirement for a general-purpose operating sys-

tem [14, 10]. As extensible systems are inherently dynamic

and fine-grained (Section 3.4) such mechanisms are vital.

Currently, mandatory access control mechanisms capa-

ble of effectively supporting extensible environments do not

exist [14]. For example, existing mandatory mechanisms

do not provide for controlled amplification of a client’s pro-

tection domain, which was identified in Section 1 as a re-

quirement for extensible systems. A protection mechanism,

based on type enforcement (TE), suitable for use in an exten-

sible environment is currently being developed on Mungi.

3.7. Summary

This section described the protection features of a com-

ponent model being developed on the Mungi SASOS.

Specifically, it described how:

� A Mungi PDX trusted path, allows components to ex-

ecute in an amplified protection domain.

� Mungi capabilities combine with PDX to provide nat-

ural data encapsulation.

� Effective discretionary access control can be per-

formed using CICAPs, avoiding inefficient use of

memory and dismal TLB performance.

� Extension can be safely performed using forwarding

and aggregation.

� Existing services can be safely delegated.

4. Performance

This section presents initial performance results for a se-

cure component-based programming system being imple-

mented on the Mungi OS. Section 4.1 examines the over-

head of the component model by comparing method invo-

cation and component creation costs with the raw system

costs. Section 4.2 presents results from a subset of the OO1

benchmark [4] to show that the micro-benchmark results

lead to end-to-end performance gains.

Mungi benchmarks were run on a 100MHz MIPS

R4600-based computer with 64MB of RAM developed at

UNSW. Irix and Linux figures were obtained by [25] on a

100MHz R4600-base SGI Indy workstation.

4.1. Micro-benchmarks

As trusted path mechanisms become faster [16, 9], the

overhead of the software construction model, e.g. Mungi

components, becomes more significant [12]. This section

examines the overhead of the described component model

for method invocation and component creation.

Table 1 presents the performance of a method invoca-

tion, with the added overhead of CICAPs shown separately.

Results were obtained by invoking a method 500 times and

measuring the total elapsed time. The method invoked sim-

ply returns a 64-bit integer stored in the instance.

Operation Arg. Size (b) Time (�s)

Mungi PdxCall 8 30

No CICAPs 0 31

No CICAPs 1k 31

No CICAPs 16k 31

Standard 0 32

Aggregated (1st call) 1k 63

Aggregated (repeated) 1k 32

Delegated (1st call) 1k 64

Delegated (repeated) 1k 32

Table 1. Method invocation

A basic method invocation costs only 1 �s (around 100

machine cycles) more than a raw PdxCall(). The ex-

tra cycles are consumed handling the component reference,

which is passed on each method invocation, handling pa-

rameters, and error checking. As all threads execute within

the single address space, marshalling of parameters is not

required and hence there is no cost associated with passing

larger amounts of data. CICAPs add a further microsec-

ond to the method invocation cost. This is the time taken

to retrieve the stored CICAP from the component instance

and perform an integer comparison with the passed CICAP.

Invoking an aggregated or delegated method incurs twice

the overhead of a standard method invocation for the first

call, but is the same for further calls to the same interface.

This is because the first request is sent to the aggregating, or

delegating, component, who redirects it to the appropriate

component, thus requiring two method invocations. Further

requests are sent directly to the appropriate component.

Table 2 presents the performance of component creation.

Results were obtained by invoking a single constructor 500

times and measuring the total elapsed time.

Operation Time (�s)

Basic Creation 92

+ CICAPs 93

Table 2. Component creation

Component creation costs 93�s. This involves a request

to the component domain to create a new instance (32�s),

the creation of a Mungi object to be used as a parameter

buffer (45�s), and the creation and initialisation of a local

proxy object to be used by the client. CICAPs are also gen-

erated by the constructor. A simple hashing of the system

clock was used by the measured component, resulting in a

1�s overhead. Obviously more sophisticated random num-

ber generators may result in higher overheads.

4.2. The OO1 Benchmark

The OO1 benchmark [4] is designed to simulate typical

operations on an object-oriented database. The data stored

in the database should be accessible to the user only via the

defined interface functions, and so is a natural situation for

components. A database component is constructed with ap-

propriate access methods, and an instance is created to hold

the database information. The database used consisted of

20,000 parts. Four operations are performed, lookup, for-

ward traversal, reverse traversal and insert.

Table 3 shows the results from the OO1 benchmark run-

ning on Irix, Linux and Mungi. Irix and Linux use an

RPC trusted path, with a client/server software construction

model. Mungi uses the component model described in Sec-

tion 3. Irix and Linux results are taken from [25]. All times

are in milliseconds. L. is lookup, F.T. is forward traversal,

R.T. is reverse traversal and I. is insert.

Mungi components outperform Linux by a factor of

eleven and Irix by a factor of twenty-one. Total execution

time for OO1 can be separated in three categories:

� Executing application code, which includes the client

logic and the database operations. As application code

is the same for all three systems, and contains no sys-

tem calls, this cost should be constant across systems.

System L. F.T. R.T. I. Time (ms)

Irix 949 1,409 1,411 203 3,972

Linux 344 467 461 842 2,114

Mungi 88.8 27.1 33.0 38.9 187.8

Table 3. OO1 benchmark results (in ms)

By placing the database in the same protection domain

as the client, and re-executing the benchmarks, it was

confirmed that the cost was constant, at 28�s. As this

is over three orders of magnitude less than the total ex-

ecution time, application code overhead is irrelevant.

� Cross-domain call overhead. Each operation results

in (at least one) cross-domain call. Table 4 compares

the cost of a cross-domain call on each system.

Mechanism Time (�s)

Mungi PdxCall 30

Linux RPC 160

Irix RPC 450

Table 4. Cross-domain call performance

As 5869 operations are performed by the benchmark,

the total cross-domain call overhead (X-Dom) can be

calculated. These values are presented in Table 5.

System X-Dom. (ms) Other (ms) Total (ms)

Irix 2641 1331 3972

Linux 939 1175 2114

Mungi 176 11.8 187.8

Table 5. Division of overhead

� Model overhead is the remaining difference be-

tween the three systems. Irix and Linux both use

a client/server model in a multiple-address-space en-

vironment, while Mungi uses a component model in

a single-address-space environment. Model overhead

is primarily parameter marshalling and message dis-

patch, e.g. a message loop. As Irix and Linux use

the same software construction model, which does not

involve system intervention, it is expected that both

should incur a similar model overhead.

Section 4.1 shows that, for Mungi, the model overhead

is 6.7% (2

30

) of the cross-domain cost. For the 176ms

cross-domain cost reported in Table 5, this corresponds

to 11:8ms, which is exactly the value in the Other col-

umn. This confirms that cross-domain call latency and

model overhead are indeed the differentiating factors

for the OO1 benchmark. Therefore, the Other col-

umn of Table 5 can justifiably be used as reporting the

model overhead. Irix and Linux have a similar model

overhead as expected, though the 11.7% (1331�1175
1331

)

difference is greater than expected. Further analysis is

required to fully explain this result.

5. Conclusion

Component-based programming is a natural way of con-

structing extensible software, but has yet to be employed

at the system level due to issues of protection and perfor-

mance. In Section 1 we identified five protection-oriented

requirements for an extension model, and described the de-

sign of a component-system satisfying these requirements

in Section 3. Initial performance results presented in Sec-

tion 4 indicate that components can provide both the se-

curity and performance required for building extensible

systems. Performance measurements with more macro-

benchmarks and real workloads will provide further evi-

dence.

References

[1] S. R. Ames, M. Gasser, and R. R. Schell. Security kernel de-

sign and implementation: An introduction. IEEE Computer,

16(7):14–22, July 1983.

[2] M. Anderson, R. Pose, and C. S. Wallace. A password-

capability system. The Computer Journal, 29:1–8, 1986.

[3] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fi-

uczynski, D. Becker, C. Chambers, and S. Eggers. Extensi-

bility, safety and performance in the SPIN operating system.

In Proceedings of the 15th ACM Symposium on OS Princi-

ples (SOSP), pages 267–284, Copper Mountain, CO, USA,

Dec. 1995.

[4] R. G. G. Cattell and J. Skeen. Object operations benchmark.

ACM Transactions on Database Systems, 17:1–31, 1992.

[5] D. Cheriton. Low and high risk operating system architec-

tures, (panel). In Proceedings of the 1st USENIX Symposium

on Operating Systems Design and Implementation (OSDI),

Monterey, CA, USA, Nov. 1994.

[6] The component object model specification. Technical report,

Microsoft Corporation and Digital Equipment Corporation,

1995. http://www.microsoft.com.

http://www.microsoft.com

[7] Corba components. TC Document orbos/99-

02-05, Object Management Group, Mar. 1999.

ftp://ftp.omg.org/pub/docs/orbos/99-02-05.pdf.

[8] J. Dennis and E. Van Horn. Programming semantics for

multiprogrammed computers. Communications of the ACM,

9:143–55, 1966.

[9] E. Gabber, C. Small, J. Bruno, J. Brustoloni, and A. Sil-

berschatz. The Pebble component-based operating system.

In Proceedings of the 1999 USENIX Technical Conference,

pages 267–282, Monterey, CA, USA, June 1999.

[10] R. Grimm and B. Bershad. Access control in extensible sys-

tems. Technical Report UW-CSE-97-11-01, Dept of Com-

puter Science & Engineering, University of Washington,

Seattle, WA, USA, 1997.

[11] R. Grimm and B. Bershad. Security for extensible systems.

In Proceedings of the 6th Workshop on Hot Topics in Oper-

ating Systems (HotOS), pages 62–66, Cape Cod, MA, USA,

May 1997.

[12] A. Haeberlen, J. Liedtke, Y. Park, L. Reuther, and V. Uh-

lig. Stub-code performance is becoming important. In 1st

USENIX Workshop on Industrial Experiences with Systems

Software (WEISS), San Diego, CA, USA, Oct. 2000.

[13] G. Heiser, K. Elphinstone, J. Vochteloo, S. Russell, and

J. Liedtke. The Mungi single-address-space operating sys-

tem. Software: Practice and Experience, 28(9):901–928,

July 1998.

[14] T. Jaeger. Access control in configurable systems.

In J. Vitek and C. Jensen, editors, Secure Inter-

net Programming: Security Issues for Distributed

and Mobile Objects. Sept. 1999. Available from:

http://www.research.ibm.com/sawmill/.

[15] G. Kiczales and J. Lamping. Issues in the design and spec-

ification of class libraries. In Proceedings of the ACM

Symposium on Object-Oriented Programming Systems, Lan-

guages, and Applications (OOPSLA), pages 435–451, 1992.

[16] J. Liedtke, K. Elphinstone, S. Schönberg, H. Härtig,

G. Heiser, N. Islam, and T. Jaeger. Achieved IPC perfor-

mance (still the foundation for extensibility). In Proceed-

ings of the 6th Workshop on Hot Topics in Operating Systems

(HotOS), pages 28–31, Cape Cod, MA, USA, May 1997.

[17] P. Loscocco, S. Smalley, P. Muckelbauer, R. Taylor,

J. Turner, and J. Farrell. The inevitability of failure: The

flawed assumption of security in modern computing envi-

ronments. Technical report, United Stated National Security

Agency (NSA), 1995.

[18] S. J. Mullender and A. S. Tanenbaum. The design of a

capability-based distributed operating system. The Com-

puter Journal, 29:289–299, 1986.

[19] G. Nelson. Programming in Modula-3. Prentice Hall, 1991.

[20] Radical operating system structures for extensibility: A

panel session. In Proceedings of the 1st USENIX Symposium

on Operating Systems Design and Implementation (OSDI),

pages 195–199, November 1994.

[21] P. Pardyak and B. Bershad. Dynamic binding for an extensi-

ble system. In Proceedings of the 2nd USENIX Symposium

on Operating Systems Design and Implementation (OSDI),

Seattle, WA, USA, Oct. 1996.

[22] M. Seltzer, Y. Endo, C. Small, and K. Smith. Dealing with

disaster: Surviving misbehaved kernel extensions. In Pro-

ceedings of the 2nd USENIX Symposium on Operating Sys-

tems Design and Implementation (OSDI), pages 213–228,

Nov. 1996.

[23] C. Szyperski. Component Software: Beyond Object-

Oriented Programming. Addison-Wesley/ACM Press, Es-

sex, England, 1997.

[24] US Department of Defence. Trusted Computer System Eval-

uation Criteria, 1986. DoD 5200.28-STD.

[25] J. Vochteloo. Design, Implementation and Perfor-

mance of Protection in the Mungi Single-Address-

Space Operating System. Phd thesis, School of Com-

puter Science and Engineering, University of NSW,

Sydney 2052, Australia, July 1998. Available from

http://www.cse.unsw.edu.au/˜disy/papers/.

[26] J. Vochteloo, K. Elphinstone, S. Russell, and G. Heiser.

Protection domain extensions in Mungi. In Proceedings of

the 5th IEEE International Workshop on Object Orientation

in Operating Systems (IWOOOS), pages 161–165, Seattle,

WA, USA, Oct. 1996. IEEE.

[27] J. Vochteloo, S. Russell, and G. Heiser. Capability-based

protection in the Mungi operating system. In Proceedings of

the 3rd IEEE International Workshop on Object Orientation

in Operating Systems (IWOOOS), pages 108–15, Asheville,

NC, USA, Dec. 1993. IEEE.

ftp://ftp.omg.org/pub/docs/orbos/99-02-05.pdf
http://www.research.ibm.com/sawmill/
http://www.cse.unsw.edu.au/~disy/papers/

	. Introduction
	. Mungi
	. Protected Components
	. Method Execution in an Amplified Domain
	. Encapsulation and Access Control
	. Extending Components
	. Forwarding and Aggregation
	. Delegation
	. Mandatory Security
	. Summary

	. Performance
	. Micro-benchmarks
	. The OO1 Benchmark

	. Conclusion

