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Abstract

Automotive components present unique challenges
in reliability, security, performance and cost. Con-
solidation of different functions in multi-purpose
units drives up complexity, and raises not only reli-
ability concerns, but also the issue of liability for
sub-component suppliers. It is of foremost im-
portance to guarantee reliability and security right
from the start when designing such systems. In this
work we present a complete approach grounded in
a flexible and secure microkernel, supported by a
flexible operating system and component architec-
ture on top. This is coupled with rigorous software
development to assure the reliability and security.

1 Introduction

Security is becoming an increasingly important is-
sue for cars and their complex software develop-
ment process. While a decade ago security was
mainly an issue of mechanical locks and anti-theft-
units, it has largely grown into a design and soft-
ware problem.

Cars are therefore subject to new threats from the
outside, e.g., unauthorised access by cracking elec-
tronic locks, accessing and changing control soft-
ware, or simple unauthorised “updates”. There are
also conceptual design threats posed by malicious
or rogue software running in a system. How can we
ensure that separated functionalities implemented
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on the same control unit remain separated? What
happens if parts of the software fail?

Those threats are real and they have a direct im-
pact — measurable in recalls, down-time, damaged
image, or litigation. As such, security issues have a
wide impact on operational safety and overall pro-
duction cost.

We advocate a sound development process from
the hardware up, focussed on security. This re-
quires a small operating system kernel which is fast
and highly reliable. Moreover, it has to provide
strong separation not only for security issues, but
also to guarantee a separation of concerns prevent-
ing the failure of a complete electronic control unit
(ECU) or even the whole system if one function-
ality fails critically. Additionally, the trend toward
ECU consolidation further increases system com-
plexity, and is compelling motivation for moving
away from the monolithic system image approach
to embedded system development.

In this paper we present an approach which sat-
isfies all of the above requirements. Figure 1 illus-
trates the general structure of the system design we
advocate. We assume (and argue for) ECUs with
hardware-based memory protection and a distinc-
tion between privileged mode of execution (for the
operating-system kernel) and user-mode execution
(for everything else). We believe the move to such
ECUs is inevitable. Given memory protection, we
argue the system’s software should be based on a
small, stable, flexible, high-performance microker-
nel that enables a wide class of systems to be con-
structed. Such a microkernel must be trustworthy
and hence must be the result of a rigorous assur-
ance process.

On top of the base microkernel we expect a su-
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Figure 1: L4-based embedded system

pervisory operating system server that implements
domain-specific management of the overall system.
For example, it would be responsible for imple-
menting and enforcing separation on the system
using the microkernel’s basic mechanisms. De-
vice drivers and other system services run as un-
privileged (user-mode) servers in their own address
spaces, and form a higher level environment for
domain-specific applications, also running at user-
mode in their own address space.

We believe our approach is conducive to the con-
struction of secure embedded systems as it pro-
vides a small, secure, highly assured microkernel
as the fundamental building block, i.e., the trusted
computing base (TCB). Upon this building block,
systems components of varying degrees of security
and assurance can be instantiated with strong sepa-
ration guarantees from other components.

For the remainder of the paper, we provide
some background on the L4 microkernel (Sec-
tion 2), which describes the basic mechanisms we
believe should be provided by the base of a secure
embedded-system kernel. Section 3 describes sev-
eral projects underway to further improve L4 as a
secure embedded systems platform, and Section 4
presents our conclusions.

2 L4 Background

A secure system must be built upon secure foun-
dations. The basic mechanisms of a microkernel-
based system foundation are paramount to achiev-
ing the goals of security. Insecure mechanisms
are an obvious problem, but inflexible or ineffi-
cient mechanisms are problematic too. Inflexibility
or inefficiencies result in kernel optimisations, ad-
ditional features, and work-arounds which poten-
tially undermine an original secure design and any
original assurance of correctness.

L4 has been used as the basis of a wide vari-
ety of systems with few modifications to its ba-
sic mechanisms. Besides its early development for
high performance systems, work on versions tar-
geted for embedded systems has progressed to a
state of commercial deployment. This covers in
particular the recent release of the embedded sys-
tems API. In this section, we provide an outline of
L4’s mechanisms and advocate their use to enable
the construction of trustworthy embedded systems.

2.1 Threads & IPC

L4 provides kernel-scheduled threads as the model
of execution. These are scheduled preemptively
using a strict priority-based round-robin scheduler.
The priority and time quantum can be assigned per
thread. By varying these parameters, several stan-
dard schedulers can be emulated — examples be-
ing rate-monotonic (by combining distinct priori-
ties with infinite time slices), or proportional share
(by combining a single priority with time slices of
different lengths to represent the thread’s share of
the CPU).

Threads interact via interprocess communication
(IPC). IPC takes the form of synchronous messages
that are efficiently transferred between threads at
very near the hardware-dictated context switching
cost [1].

2.2 Address Spaces

The microkernel provides mechanisms for cre-
ating, managing, and destroying address spaces.
These mechanisms provide a level of abstraction
above the raw memory management hardware. Ad-
dress spaces allow the kernel to enforce separation
(sometimes termed partitioning) between applica-
tions, and thus control interaction between applica-
tions and enable fault isolation.

Address-space manipulation is via the map,
grant, and unmap model as illustrated in Figure 2.
The figure shows rectangular boxes representing
address spaces. σ0 initially possesses all non-
kernel physical memory; A is an operating system
server; C and D are two clients of A. L4 im-
plements a recursive virtual address space model
which permits virtual memory management to be
performed entirely at user level. It is recursive in
the sense that each address space is defined in terms
of other address spaces. Initially all physical mem-
ory is mapped within the root address space σ0,



3

whose role is to make that physical memory avail-
able to new address spaces (in this case, the oper-
ating system server A and another server B, which
might be a legacy OS for running user interfaces).
A’s address space is constructed by mapping re-
gions of accessible virtual memory from σ0’s ad-
dress space to the next, such that rights are either
preserved or reduced.

Page faults are handled by the kernel transform-
ing them into messages delivered via IPC. Every
thread has a pager thread associated with it. The
pager is responsible for managing a thread’s ad-
dress space. Whenever a thread takes a page fault,
the kernel catches the fault, blocks the thread and
synthesises a page-fault IPC message to the pager
on the thread’s behalf. The pager can then respond
with a mapping and thus unblock the thread. Thus
the pager can implement zero-fill on access, de-
mand loading, shared memory, or enforce or relax
partitioning.

This model has been successfully used to con-
struct several very different systems as user-
mode applications, including real-time systems and
single-address-space systems [2–5].
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Figure 2: Virtual Memory Primitives

2.3 Device Drivers

Device drivers on an L4-based system run as appli-
cations in user-mode. The kernel itself only pro-
vides support for interrupt delivery and access to
device registers and memory. Interrupts are de-
livered as messages from virtual interrupt threads,
which uniquely identify the interrupt source. The
real interrupt service routine within the kernel
masks the interrupt, transforms the interrupt event
into an IPC message from the virtual interrupt
thread, which is delivered to the driver’s interrupt
service routine (itself a thread). The routine within
the driver receives the message and performs the
normal service-routine functionality. Upon com-

pletion, the driver sends a reply message to the
virtual interrupt thread, resulting in the interrupt
source being unmasked. Access to device registers
is achieved using the normal address-space man-
agement mechanisms. Registers are mapped into
the virtual address space such that driver applica-
tions can access them directly.

Device drivers running at user-mode do suffer
a small performance penalty, however our experi-
ments show that for a general purpose system, the
penalty for running a Gigabit Ethernet driver at
user-mode was a small increase in CPU utilisation
(less than 10%) and approximately equal through-
put [6]. Less performance-critical drivers have neg-
ligible impact on performance. The advantages of
running device drivers outside the kernel is that
the kernel itself remains stable and independent of
the hardware platform, the system as a whole is
more robust to driver faults, and importantly, leav-
ing drivers outside the kernel provides a significant
reduction in kernel verification complexity.

3 Pieces of the Puzzle

The core building blocks that support this vision
exist already, such as the microkernel and the su-
pervisory operating system (called Iguana). These
are mature enough to be deployed in commercial
embedded systems. However, more work is re-
quired in order to deliver on the promise of se-
cure and reliable embedded systems. We are con-
sequently working on a number of projects which
aim at providing the missing building blocks over
the next two years. This is schematically shown in
Figure 3, and explained in this section.
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Figure 3: Projects creating a secure platform
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3.1 Software architecture

The microkernel approach derives much of its
power from the ability to support highly compo-
nentised systems with hardware-enforced encap-
sulation of components. The microkernel pro-
vides the mechanisms to achieve this, but a sup-
port framework is required to make it feasible
to develop (potentially very large) software sys-
tems in a componentised fashion. One project,
dubbed CAmkES, aims at developing such a soft-
ware component architecture, specifically for next-
generation embedded systems. It introduces mech-
anisms that enable the separation of concerns,
while supporting the performance, security, and re-
liability needs of embedded system software.

Organising software as interacting components
with well-defined interfaces improves the reusabil-
ity of code. It also improves flexibility by allow-
ing components to be added and removed from a
system (possibly at run-time), as well as allow-
ing components developed in different languages
to interact with each other. Components provide
natural units of protection, fault containment, and
resource management. Finally, componentisation
with hardware-enforced interfaces also reduces the
complexity of assurance.

3.2 Secure Foundation

L4 has proved itself to be a flexible platform for
system development in general. However, there are
some shortcomings with the current design [7, 8].
These shortcomings can be summarised as inflexi-
ble or inefficient control of communication, and in-
sufficient control of kernel memory management.
The secure embedded L4 (seL4) project aims to ad-
dress these and other issues so as to ensure L4 is a
suitable platform for secure embedded systems de-
velopment.

Communication control is the key to control-
ling interaction between applications. The only di-
rect interaction between L4 applications is via IPC,
or is established via IPC (e.g. a shared-memory
mapping established via IPC). Secure communica-
tion control enables both integrity (an unforgeable
identity in messages) and confidentiality (control
of information flow) guarantees to be enforced by
the microkernel. It has been observed that system
partitioning can be viewed as a security policy on
information flow [9]. If partitions are unable to de-

tect the presence of another partition, then faults in
other partitions can have no effect.

The seL4 project is exploring the use of
capability-based communication to provide L4
with a basic, flexible, efficient mechanism for en-
forcing communication policy. Such a mechanism
would be policy neutral, i.e. could be customisable
by the specific system to match the application do-
main. Systems could have no communication re-
strictions, or be strictly partitioned.

Kernel memory resources require controlled
and predictable management. A system needs to be
able to precisely control the memory used by the
kernel for implementing kernel abstractions. Pre-
cise control ensures that memory cannot be ex-
hausted by malicious or malfunctioning applica-
tions. Predictable kernel-memory allocation also
improves the predictability of the kernel’s tempo-
ral behaviour, in contrast to secure systems that use
kernel memory as a cache of kernel objects [10].

While L4 is a small kernel by general-purpose
OS standards (roughly 10,000 lines of code), it is
still a moderate-sized kernel by embedded stan-
dards. The secure embedded L4 project aims to
further reduce the kernel size by simplifying some
kernel abstractions where features of the kernel are
not generally used by embedded applications. Ad-
ditionally, we are working toward a single-stack
version of the kernel to reduce the kernel’s dynamic
memory footprint.

3.3 Assurance

The idea of a microkernel is to establish a small
trusted computing base which is secure and reli-
able. Therefore, it is imperative that this comput-
ing base is in fact functionally correct as all other
system and application services will depend on it.
We are convinced that the highest possible assur-
ance has to be given and that these guarantees have
to be established rigorously.

Moreover, for all components within or outside
the TCB, we advocate the use of additional au-
tomatic software analysis tools to detect standard
bugs during the implementation process. The ad-
vantages are lower production costs by early detec-
tion and, of course, higher assurance right from the
start of the implementation process.

It is virtually impossible to guarantee correct-
ness of a system, and in turn the absence of bugs,
by standard software engineering practice such as
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code review, systematic testing and good software
design alone. The complexity of system software
is typically too high to be manageable by informal
reasoning or reasoning that is not tool-supported.
The formal methods community has developed var-
ious rigorous, mathematically sound techniques
and tools that have matured enough within the last
decades to allow the formal analysis of system soft-
ware.

Three projects are working on various aspects
of assurance. The L4.verified project is concerned
with maximal assurance for the microkernel itself,
using mathematical proofs. The Goanna project fo-
cusses on less strict, yet more generally and quickly
applicable techniques for increasing the trustwor-
thiness of systems code. The Potoroo project is
working towards a model of the timing behaviour
of the L4 microkernel, in order to support the real-
time analysis of L4-based software.

The main ideas of the projects are outlined be-
low. For a more comprehensive introduction see
also [11].

3.3.1 L4.verified

The highest level of assurance possible is a math-
ematical proof that a system satisfies the desired
properties. Given a suitably small TCB, it is pos-
sible to construct such a proof, machine checked,
and with the help of an interactive proof assistant.
For any nontrivial system, the kernel, albeit small
compared to the full system size, will still be a very
large construct to verify formally. We therefore fol-
low an approach where one first (manually) builds
a small, abstract specification of the system, then
(machine-supported) proves the desired properties
about the specification, and finally (again machine-
supported) proves that the implementation of the
system is a formal refinement of the specification
[12,13]. This approach is not applicable to all kinds
of properties, but to all that are preserved under the
refinement process, including the functional cor-
rectness of the system. This approach requires a
significant amount of resources, as well as exper-
tise in formal verification and the problem domain.
It can guarantee that the kernel behaves exactly as
specified.

We use higher-order logic and the theorem
prover Isabelle as our tool set to describe the be-
haviour of the kernel at an abstract level in the form
of an operational specification. This description is
then refined inside the prover into a program writ-

ten in a standard, imperative, C-like language. The
last step consists of showing that the actual C code
is indeed a refinement of the C-like program. This
is done by automatically parsing the C code into an
Isabelle model and then establishing the refinement
relation formally.

The abstract description is at the level of a refer-
ence manual and relatively easy to understand. At
that level, address translation for instance is mod-
elled as an abstract function from virtual to phys-
ical addresses, explicitly not mentioning that this
lookup is implemented by complex page table data
structures in the real system. This is the level
we use for analysing the behaviour of the system
and for proving additional simple safety properties,
such as the requirement that the same virtual ad-
dress can never be translated to two different phys-
ical addresses. At the end of the refinement pro-
cess stands a formally verified imperative program
— the kernel implementation in full detail.

Proof-based OS verification has been tried in the
past [14,15]. The rudimentary tools available at the
time meant that the proofs had to end at the design
level; full implementation verification was not fea-
sible. The verification of Kit [16] down to object
code demonstrated the feasibility of this approach
to kernel verification, although on a system that is
far simpler than any real-life OS kernel in use in
secure systems today.

Since the early attempts at kernel verification
there have been dramatic improvements in the
power of available theorem proving tools. Proof
assistants like ACL2, Coq, PVS, HOL and Isabelle
have been used in a number of successful verifi-
cations, ranging from mathematics and logics to
microprocessors [17], compilers [18], and full pro-
gramming platforms like JavaCard [19].

We are currently among several groups engaged
in microkernel verification, notably VFiasco [20],
VeriSoft [21] and Coyotos [22].

3.3.2 Goanna

While full functional correctness can be shown
only by proof-based methods, the effort is high,
i.e., there is substantial expert manpower needed
over an extended period of time. This is not al-
ways practical. In particular for less sensitive sys-
tem parts, a lower-level assurance can be accepted
if this can be achieved in a short period of time.
Furthermore, any small change to the implementa-
tion of a formally-verified kernel (leave alone a port
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to a different hardware platform) requires proofs to
be redone, which is expensive and may not be justi-
fied for applications which are not mission critical.

The Goanna project aims at developing a
software-analysis tool that works automatically and
delivers results in minutes, ideally even faster. This
will be integrated in the software development pro-
cess such that it becomes as natural to use as the
compiler itself. Since it does not require any user
interaction it will also be applicable by non-formal
methods experts.

In contrast to the heavyweight theorem proving
approach in the L4.verified project, the Goanna
approach considers the application and develop-
ment of rather lightweight static analysis tech-
niques [23, 24]. Static analysis is a general term
comprising a number of analysis techniques which
can be applied at compile-time, i.e., prior to the ex-
ecution of the actual code. In fact, some of these
techniques can be applied in even earlier design
stages when the code does not yet compile and,
therefore, is not executable.

The drawback of any automatic software analy-
sis technique is that almost all properties are gen-
erally undecidable, as the problem can be reduced
to the halting problem. To make them nonethe-
less usable in practice, decidable approximations
are computed. These can be either over- or under-
approximations.

With regard to safety properties, over-
approximations consider abstract programs
which exhibit more behaviour than the actual
concrete program. If an abstract program still
satisfies a given safety property although it exhibits
more behaviour then the concrete program will
do so as well (since it has less behaviour that can
violate that property). However, if the abstract
program does violate the given property it does not
necessarily mean that the concrete program does
violate it as well, since the violation might just
be in the over-approximated part of the program
behaviour which is not in the concrete program. In
this case we have a false alarm or false positive. It
is a major research challenge in the area of auto-
matic software analysis to minimise the number of
false alarms.

Under-approximations on the other hand con-
sider program approximations which exhibit less
behaviour than the original program. In this case
any violation of a safety property in the approxi-
mated program is certainly a violation in the orig-

inal program while the absence of a violation does
not guarantee that the program has no harmful (i.e.,
property violating) behaviour. Again, it is a major
research challenge to keep the gap between the ac-
tual behaviour and the approximated one as small
as possible.

Under-approximations are well suited to exploit
bugs in programs while over-approximations are
used to establish correctness. We seek to attack the
problem from both sides to gain maximum results.

In a first step we only consider a fixed set of
properties and violations such as buffer-overruns,
division by zero, unreachable code, uninitialised
variables etc. We tailor our analysis techniques
specifically to the properties to be established, us-
ing different techniques as appropriate (such as
data flow analysis, abstract interpretation, and, to
some extend, model checking).

Similar approaches are used, e.g., by Microsoft’s
Static Driver Verifier [25] and the Coverity toolset
[26].

3.3.3 Potoroo

Automotive systems are real-time by nature, and
hence functional correctness needs to be comple-
mented by temporal correctness. This is mo-
tivated by the fact that a number of ECUs in
cars have time-critical functionality and security
requirements. An example of this are driver-
assistance systems intervening with steering and
breaking, which require a secure logging mecha-
nism for litigation prevention. This is particular rel-
evant in the context of ECU consolidation in which
software from several suppliers is executed on the
same high-performance ECUs. Especially these
ECUs which are equipped with caches are hard to
analyse and the widely-used end-to-end measure-
ments with safety factors have led to increasing
number of problems in the industry, as the safety
factors do not necessarily cover worst-case situa-
tions.

The analysis of the real-time behaviour of sys-
tems relies on knowing the worst-case execution
time (WCET) of all software components. While
application-level code has been targeted in the past,
little (if any) work has been done on establish-
ing credible timing models of the operating-system
kernel. The Potoroo project specifically targets
the temporal behaviour of the kernel. The work
is based on the measurement-based approach [27]
which is now commercialised by Rapita Systems
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Ltd. [28]. It measures the code on basic block
level and creates a reliable and tight estimate of the
WCET of the overall program using a syntax tree
representation. Besides the worst-case execution
time, the method is able to provide insights into the
probability with which this worst case may actually
appear. The method is adapted within the Potoroo
project to work on kernel code.

3.4 Infotainment

Despite some lag in the uptake of entertainment
devices in the car, we expect similar trends as in
other industries, like the telecommunications sec-
tor. There we can observe a move from a simple
single-function device (for making voice calls) to
a extensible multi-functional device that includes
productivity applications as well as multimedia
features for entertainment. This increases the level
of security threats, as systems are expected to deal
with downloaded software, such as games or non-
certified upgrades. It also leads to a desire for sup-
port of legacy APIs, such as Linux or Windows.
Such APIs generally do not satisfy the require-
ments of secure embedded systems, and legacy
code must be forced to execute in a carefully con-
tained environment.

Our Wombat server [29] is a slimline de-
privileged Linux server that is integrated into the
L4-based environment. It allows user-level appli-
cations to run without imposing security risks on
the rest of the system. Similar user-level environ-
ments can be created to support other APIs.

4 Conclusions

In this work we presented a flexible and complete
approach for high performance and secure embed-
ded systems. Moreover, we stressed the need to
integrate rigorous safety and security analysis right
from the start. In fact, we believe that only verified
software will be successful in the long run.

The L4 microkernel has reached production sta-
tus now and is distributed as open source under a
BSD-style license. Commercial products based on
the framework are expected to hit the stores early
next year.

Besides the projects listed above, we are explor-
ing novel architectural designs, such as a flexible
component structure, system-wide approaches to
power management and the use of reflective sched-

ulers for improved control and improved adaptabil-
ity of temporal behaviour. Also under investigation
are hardware- and resource-related security aspects
such as covert channels.

References

[1] J. Liedtke, K. Elphinstone, S. Schönberg,
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