
Towards an OS Platform for Truly
Dependable Real-Time Systems
Gernot Heiser
NICTA and University of New South Wales, Sydney

© NICTA 2011 2 OSPERT Keynote

What’s Next?

© NICTA 2011 3 OSPERT Keynote

Complexity Threatens Dependability

•  Massive functionality ⇒ huge software stacks
–  Expensive recalls of CE devices

•  Increasing usability requirements
–  Wearable or implanted medical devices
–  Patient-operated
–  GUIs next to life-critical functionality

•  On-going integration of critical and entertainment functions
–  Automotive infotainment and engine control

© NICTA 2011 4 OSPERT Keynote

Safety Issues Are Real!

Malicious remote control of pacemaker

Malicious remote operation of car

© NICTA 2011 5 OSPERT Keynote

Root Cause: Complexity

•  Complexity of critical devices will continue to grow
–  Critical systems with millions of lines of code (LOC)

•  We need to learn to ensure dependability despite complexity
–  Need to guarantee dependability

•  Correctness guarantees for MLOCs unfeasible

•  Key to solution: isolation
–  … with controlled

communication

© NICTA 2011 6 OSPERT Keynote

 Complex
 GUIs etc

 Simple
 Control

Critical Non-critical

Isolation

Controlled communication

Isolation: Physical

Dedicated CPUs for critical tasks

© NICTA 2011 7 OSPERT Keynote

Isolation: Logical

© NICTA 2011 8 OSPERT Keynote

•  Protect critical components by
sandboxing complex components

•  Provide tightly-controlled
communication channels

•  Trustworthy microkernel
provides general mechanisms
to enforce isolation

•  Policy layer defines access rights
•  Microkernel becomes core of

trusted computing base
–  System trustworthiness

only as good as microkernel

 Hardware

 Microkernel

 Linux
 Server

Legacy App.
Legacy App.

 Legacy
 Apps

 Trusted
 Service

 Sensitive
 App

Trusted Untrusted

 Policy Layer

Isolation Requirements

To guarantee dependability, following must be guaranteed:
•  Isolation infrastructure impact must be specified

–  To allow reason about operation of isolated critical instances
•  Isolation infrastructure must behave as specified

–  Functional correctness
–  Bounded and know worst-case latencies

•  Isolation infrastructure must provide actual isolation
–  Integrity guarantees
–  Temporal isolation

© NICTA 2011 9 OSPERT Keynote

NICTA Trustworthy Systems Agenda

© NICTA 2011 10 OSPERT Keynote

1.  Ensure microkernel (seL4) dependability
–  Formal specification of functionality
–  Proof of functional correctness of implementation
–  Proof of safety/security properties
–  WCET guarantees

2.  Lift microkernel guarantees to whole system
–  Use kernel correctness and integrity to guarantee critical functionality
–  Ensure correctness of balance of trusted computing base
–  Prove dependability of complete system

11

capDL Model (4,800) Initial
protection
state

Abstract Model (4,900) Manual Spec
(Isabelle/HOL)

22,000 lop

117,000 lop

50,000 lop

Kernel Functional Verification

© NICTA 2011

Executable Model (13,000) Haskell (5,700)

Integrity (1,000)

Confidentiality (???)

C Code (8,700) High Performance
Implementation Asm Code (320) Sane initial state

Hardware Hardware model

Multicore

OSPERT Keynote

Kernel Worst-Case Execution Time

Issues for WCET analysis of seL4
•  Need knowledge of worst-case interrupt-latency

–  Longest non-preemptible path + IRQ delivery cost
–  seL4 runs with interrupts disabled

•  System calls in well-designed microkernel are short!
•  Strategic preemption points in long-running operations
•  Optimal average-case performance with reasonable worst-case

•  Applications also need to know cost of system calls
–  Need WCET analysis of all possible code paths

© NICTA 2011 12 OSPERT Keynote

Kernel Worst-Case Execution Time

Challenges for WCET analysis of OS kernels in general:
•  Kernel code notoriously unstructured
•  Low-level system-specific instructions
•  Context-switching
•  Assembly code

seL4-specific advantages:
•  (Relatively) structured design (evolved from Haskell prototype)
•  Event-based kernel (single kernel stack)
•  Small (as far as operating systems go!)
•  No function pointers in C
•  Preemption points are explicit and preserve code structure
•  Memory allocation performed in userspace

© NICTA 2011 13 OSPERT Keynote

WCET analysis process

CFG extractor

seL4 binary

Path Analysis, Arch.
modeling

Loop bounds

ILP
equations

CPLEX

WCET
Upper bound

Observed
execution time

Hardware platform CFG

Worst-case
scenarios

© NICTA 2011 14 OSPERT Keynote

Evaluation platform

•  OMAP3-based BeagleBoard-xM
–  ARM Cortex-A8 @ 800 MHz
–  128 MB memory
–  32KB 4-way set-associative L1 instruction cache
–  Disabled data cache

•  Cache analysis did not scale
–  Disabled branch predictors

•  Pipeline model too simple
–  Modeled single-

issue pipeline
•  A8 is dual-

issue

Image Koen Kooi CC-SA 2.0

© NICTA 2011 15 OSPERT Keynote

Early Days…

ms

ms

© NICTA 2011 16 OSPERT Keynote

Improve WCET

•  Analysis helps placing preemption points
–  Will be able to reduce WCET by 1–2 orders of magnitude

•  Knowledge about seL4 can eliminate many paths
–  Invariants proved during verification
–  E.g. loop iteration counts, non-interference
–  Can easily prove new invariants

•  Power-of-2 alignment of
kernel objects constrain
cache layout
–  May make D-cache

analysis feasible
•  Improved pipeline modelling

–  May have practical approach
for complex pipelines

•  Aim: IRQ WCET < 10 µs

© NICTA 2011 17

Find an
infeasible

critical
path

Find an
invariant to
invalidate
the path

Express
invariants

as ILP
constraints

Measure
impact on
estimated

WCET

OSPERT Keynote

Full-System Guarantees

© NICTA 2011 18 OSPERT Keynote

  Build system with minimal TCB
  Formalize and prove security properties about architecture
  Prove correctness of trusted components
  Prove correctness of setup
  Prove temporal properties (isolation, WCET, …)
  Maintain performance

Specifying Access Control

© NICTA 2011 19 OSPERT Keynote

System Architecture

Trusted Components

Security Policy

Trusted Component
Behaviour Spec

CapDL Spec

Bootstrapper

Components and
Glue Code

System Image
Untrusted

Components

System Security
ProofseL4 proofs

4

1

2

3

5

Device Drivers:
Correct By Construction

•  Correct driver synthesis
–  given model of driver

interface, basic behaviour,
and hardware

–  driver is automatically generated
–  performance as good as hand-knitted

•  Challenge: device spec
•  Vision:

–  automatically extract hardware model
from HDL description

–  potential impact beyond our immediate
agenda

driver.c

Formal
OS interface

spec

Formal
device spec HDL

20 © NICTA 2011 OSPERT Keynote

Complex Yet Dependable Systems?

•  A first step has been taken: seL4 is a dependable base
–  Proof of functional correctness, integrity
–  Feasibility of WCET analysis

•  Progress on full-system properties
–  capDL refinement + integrity

•  Much remains to be done
–  Missing bits in kernel verification
–  Verification of large TCB components

•  Synthesis beats manual verification
•  Driver synthesis results encouraging

–  Overall system guarantees

mailto:gernot@nicta.com.au
Google: “ertos”

© NICTA 2011 21 OSPERT Keynote

