
Towards an OS Platform for Truly 
Dependable Real-Time Systems 
Gernot Heiser 
NICTA and University of New South Wales, Sydney 



© NICTA 2011  2 OSPERT Keynote 



What’s Next? 
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Complexity Threatens Dependability 

•  Massive functionality ⇒ huge software stacks 
–  Expensive recalls of CE devices 

•  Increasing usability requirements 
–  Wearable or implanted medical devices 
–  Patient-operated  
–  GUIs next to life-critical functionality 

•  On-going integration of critical and entertainment functions 
–  Automotive infotainment and engine control 
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Safety Issues Are Real! 

Malicious remote control of pacemaker 

Malicious remote operation of car 
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Root Cause: Complexity 

•  Complexity of critical devices will continue to grow 
–  Critical systems with millions of lines of code (LOC) 

•  We need to learn to ensure dependability despite complexity 
–  Need to guarantee dependability 

•  Correctness guarantees for MLOCs unfeasible  

•  Key to solution: isolation 
–  … with controlled 

communication 
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Isolation: Physical 

Dedicated CPUs for critical tasks 
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Isolation: Logical 
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•  Protect critical components by  
sandboxing complex components 

•  Provide tightly-controlled  
communication channels 

•  Trustworthy microkernel 
provides general mechanisms  
to enforce isolation 

•  Policy layer defines access rights 
•  Microkernel becomes core of 

trusted computing base 
–  System trustworthiness 

only as good as microkernel 
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Isolation Requirements 

To guarantee dependability, following must be guaranteed: 
•  Isolation infrastructure impact must be specified  

–  To allow reason about operation of isolated critical instances 
•  Isolation infrastructure must behave as specified 

–  Functional correctness 
–  Bounded and know worst-case latencies 

•  Isolation infrastructure must provide actual isolation 
–  Integrity guarantees 
–  Temporal isolation 
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NICTA Trustworthy Systems Agenda 
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1.  Ensure microkernel (seL4) dependability 
–  Formal specification of functionality 
–  Proof of functional correctness of implementation 
–  Proof of safety/security properties 
–  WCET guarantees 

2.  Lift microkernel guarantees to whole system 
–  Use kernel correctness and integrity to guarantee critical functionality 
–  Ensure correctness of balance of trusted computing base 
–  Prove dependability of complete system 
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Kernel Worst-Case Execution Time 

Issues for WCET analysis of seL4 
•  Need knowledge of worst-case interrupt-latency 

–  Longest non-preemptible path + IRQ delivery cost 
–  seL4 runs with interrupts disabled 

•  System calls in well-designed microkernel are short! 
•  Strategic preemption points in long-running operations 
•  Optimal average-case performance with reasonable worst-case 

•  Applications also need to know cost of system calls 
–  Need WCET analysis of all possible code paths 
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Kernel Worst-Case Execution Time 

Challenges for WCET analysis of OS kernels in general: 
•  Kernel code notoriously unstructured 
•  Low-level system-specific instructions 
•  Context-switching 
•  Assembly code 

seL4-specific advantages: 
•  (Relatively) structured design (evolved from Haskell prototype) 
•  Event-based kernel (single kernel stack) 
•  Small (as far as operating systems go!) 
•  No function pointers in C 
•  Preemption points are explicit and preserve code structure 
•  Memory allocation performed in userspace 
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WCET analysis process 
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seL4 binary 
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execution time 

Hardware platform CFG 

Worst-case 
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Evaluation platform 

•  OMAP3-based BeagleBoard-xM 
–  ARM Cortex-A8 @ 800 MHz 
–  128 MB memory 
–  32KB 4-way set-associative L1 instruction cache 
–  Disabled data cache 

•  Cache analysis did not scale 
–  Disabled branch predictors 

•  Pipeline model too simple 
–  Modeled single- 

issue pipeline 
•  A8 is dual- 

issue 

Image Koen Kooi CC-SA 2.0 
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Early Days… 

ms 

ms 
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Improve WCET 

•  Analysis helps placing preemption points 
–  Will be able to reduce WCET by 1–2 orders of magnitude 

•  Knowledge about seL4 can eliminate many paths 
–  Invariants proved during verification 
–  E.g. loop iteration counts, non-interference 
–  Can easily prove new invariants 

•  Power-of-2 alignment of  
kernel objects constrain  
cache layout 
–  May make D-cache 

analysis feasible 
•  Improved pipeline modelling 

–  May have practical approach 
for complex pipelines 

•  Aim: IRQ WCET < 10 µs 
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Full-System Guarantees 
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   Build system with minimal TCB 
   Formalize and prove security properties about architecture 
   Prove correctness of trusted components  
   Prove correctness of setup 
   Prove temporal properties (isolation, WCET, …) 
   Maintain performance 



Specifying Access Control 
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Device Drivers:  
Correct By Construction 

•  Correct driver synthesis 
–  given model of driver  

interface, basic behaviour, 
and hardware 

–  driver is automatically generated 
–  performance as good as hand-knitted 

•  Challenge: device spec 
•  Vision: 

–  automatically extract hardware model 
from HDL description 

–  potential impact beyond our immediate 
agenda 

driver.c 

Formal 
OS interface 

spec 

Formal 
device spec HDL 
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Complex Yet Dependable Systems? 

•  A first step has been taken: seL4 is a dependable base 
–  Proof of functional correctness, integrity 
–  Feasibility of WCET analysis 

•  Progress on full-system properties 
–  capDL refinement + integrity 

•  Much remains to be done 
–  Missing bits in kernel verification 
–  Verification of large TCB components 

•  Synthesis beats manual verification 
•  Driver synthesis results encouraging 

–  Overall system guarantees 

mailto:gernot@nicta.com.au 
Google: “ertos” 
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