
How to Build
Truly Trustworthy Systems
Gernot Heiser
NICTA and University of New South Wales
Sydney, Australia

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 2
UPMARC SS, June’12

©2012 Gernot Heiser NICTA 3

Present Systems are NOT Trustworthy!

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 4

What’s Next?

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 55

Claim:
A system must be considered not trustworthy
unless proved otherwise!

Corollary [with apologies to Dijkstra]:

Testing, code inspection, etc. can only show
lack of trustworthiness!

So, why don’t
we prove

trustworthiness
?

©2012 Gernot Heiser NICTA 6

Core Issue: Complexity

• Massive functionality of CE devices
⇒ huge software stacks
– How secure are your payments?

• Increasing usability requirements
– Wearable or implanted medical devices
– Patient-operated
– GUIs next to life-critical functionality

• On-going integration of critical and entertainment functions
– Automotive infotainment and engine control
– Gigabytes of software on 100 CPUs…

UPMARC SS, June’12

Systems far too
complex to prove

their trustworthiness!

©2012 Gernot Heiser NICTA 7

Dealing with Complexity: Physical Isolation

UPMARC SS, June’12

Does not
scale!

Separate processors for
critical functionality

Correctness
of bus

protocols?

©2012 Gernot Heiser NICTA 8

How About Logical Isolation?

UPMARC SS, June’12

Shared processor with
software isolation

Hardware

Hypervisor

VM

OS

App

VM

OS

App

VM

OS

App

Xen:
0.3 MLOC

Dom0 Linux

Linux:
7.5 MLOC

Remember: A system
is not trustworthy

unless proved
otherwise!

©2012 Gernot Heiser NICTA 9

Our Vision: Trustworthy Systems

UPMARC SS, June’12

We will change the practice of designing and
implementing critical systems, using rigorous

approaches to achieve true trustworthiness

Hard
guarantees on
safety/security/

reliability

Suitable for
real-world
systems

©2012 Gernot Heiser NICTA 10

Isolation is Key!

Processor

Linux
Server

Legacy App.
Legacy App.

Legacy
Apps

Trusted
Service

Sensitive
App

UPMARC SS, June’12

Identify, minimise and
isolate critical
components! Critical,

trusted

Mechanisms
for enforcing

isolation

Trustworthy Microkernel – seL4

Complex,
untrusted
Complex,
untrusted

Policy Layer
General-
purpose

System-
specific,
simple!

Defines
access
rights

©2012 Gernot Heiser NICTA 11

Isolation is Key!

Processor

Linux
Server

Legacy App.
Legacy App.

Legacy
Apps

Trusted
Service

Sensitive
App

UPMARC SS, June’12

Identify, minimise and
isolate critical
components! Critical,

trusted

Mechanisms
for enforcing

isolation

Trustworthy Microkernel – seL4

Complex,
untrusted
Complex,
untrusted

Policy Layer
General-
purpose

System-
specific,
simple!

Defines
access
rights

Core of trusted
computing base:

System can only be
as dependable as the

microkernel!

©2012 Gernot Heiser NICTA 12

NICTA Trustworthy Systems Agenda

1. Dependable microkernel (seL4) as a rock-solid base
– Formal specification of functionality
– Proof of functional correctness of implementation
– Proof of safety/security properties

2. Lift microkernel guarantees
to whole system
– Use kernel correctness and integrity

to guarantee critical functionality
– Ensure correctness of balance of

trusted computing base
– Prove dependability properties of

complete system
• despite 99 % of code untrusted!

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 13

Agenda

• Motivation
• What is a microkernel, and what is L4?
• seL4 – designed for trustworthiness
• Establishing trustworthiness
• From kernel to system
• Sample system 1: Secure access controller
• Sample system 2: RapiLog

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 14

Monolithic Kernels vs Microkernels

• Idea of microkernel:
– Flexible, minimal platform, extensible
– Mechanisms, not policies
– Goes back to Nucleus [Brinch Hansen, CACM’70]

UPMARC SS, June’12

Hardware

VFS

IPC, file system

Scheduler, virtual memory

Device drivers, dispatcher

Hardware

IPC, virtual memory

Application

Application

Unix
Server

File
ServerDevice

Driver

Syscall

IPC

Kernel
Mode

User
Mode

Horizontal
structure

Vertical
structure

©2012 Gernot Heiser NICTA 15

Microkernel Evolution

First generation

• Eg Mach (’87)

• 180 syscalls
• 100 kLOC
• 100 µs IPC

Third generation

• seL4 (‘09)

• ~3 syscalls
• 9 kLOC
• < 1 µs IPC

UPMARC SS, June’12

IPC, MMU abstr.
Scheduling

Kernel memory
Devices

Low-level FS,
Swapping

Memory Objects

Second generation

IPC, MMU abstr.
Scheduling

Memory-
mgmt
library

• Eg L4 (‘95)

• ~7 syscalls
• ~10 kLOC
• ~ 1 µs IPC

IPC, MMU abstr.
Scheduling

Kernel memory

©2012 Gernot Heiser NICTA 16

2nd-Generation Microkernels

• 1st-generation kernels (Mach, Chorus) were a failure
– Complex, inflexible, slow

• L4 was first 2nd-G microkernel [Liedtke, SOSP’93, SOSP’95]
– Radical simplification & manual micro-optimisation, fast IPC

• Family of L4 kernels:
– Original GMD assembler kernel (‘95)
– Fiasco (Dresden ‘98), Hazelnut (Karlsruhe ‘99), Pistachio

(Karlsruhe/UNSW ‘02), L4-embedded (NICTA ‘04)
• L4-embedded commercialised as OKL4 by Open Kernel Labs
• Deployed in >1.5 billion phones

– Commercial clones (PikeOS, P4, CodeZero, …)
– Approach adopted e.g. in QNX (‘82) and Green Hills Integrity (‘90s)

UPMARC SS, June’12

A concept is tolerated inside the microkernel only if moving it outside
the kernel, i.e. permitting competing implementations, would prevent
the implementation of the system’s required functionality

©2012 Gernot Heiser NICTA 17

Microkernel Principles: Minimality

Strict adherence to minimality leads to a very small kernel

Advantages:
• Easy to implement, port?

– in practice limited architecture-specific micro-optimization
• Less code to optimise
• Hopefully enables a minimal trusted computing base (TCB)

– small attack surface, fewer failure modes
• Easier debug, maybe even prove correct?

Challenges:
• API design: generality with small code base
• Kernel design and implementation for high performance

– … and correctness!

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 18

Consequence of Minimality: User-level Services

UPMARC SS, June’12

Hardware

VFS

IPC, file system

Scheduler, virtual memory

Device drivers, dispatcher

Hardware

IPC, virtual memory

Application

Application

Unix
Server

File
ServerDevice

Driver

Syscall

IPC

Kernel
Mode

User
Mode

• Kernel provides no services, only
mechanisms

• Strongly dependent on fast IPC and
exception handling

©2012 Gernot Heiser NICTA 19

Microkernel Principles: Policy Freedom

Policies limit
– May be good for many cases,

but always bad for some
– Example: disk pre-fetching

“General” policies lead to bloat
– Implementing combination of

policies
– Try to determine most

appropriate one at run-time

UPMARC SS, June’12

A true microkernel must be free of policy!

Consequence
of generality
& minimality

©2012 Gernot Heiser NICTA 20

Policy Example: Address-Space Layout

• Kernel determines layout, knows executable format, allocates stack
– limits ability to import from other OSes
– cannot change layout

• small non-overlapping address spaces beneficial on some archs
– kernel loads apps, sets up mappings, allocates stack

• requires file system in kernel or interfaced to kernel
• bookkeeping for revokation & resource management
• heavyweight processes

– memory-mapped file API

UPMARC SS, June’12

Text Data BSS Stacklibc File

©2012 Gernot Heiser NICTA 21

Policy-Free Address-Space Management

• Kernel provides empty address-space “shell”
– page faults forwarded to server
– server provides mapping

• Cost:
– 1 round-trip IPC, plus mapping operation

• mapping may be side effect of IPC
• kernel may expose data structure

– kernel mechanism for forwarding page-fault exception
• “External pagers” first appeared in Mach [Rashid et al, ’88]

– … but were optional

UPMARC SS, June’12

Text Data BSS Stacklibc File

Page-fault
server

Map
Exception

StackStack

©2012 Gernot Heiser NICTA 22

What Mechanisms?

• Fundamentally, the microkernel must abstract
– Physical memory
– CPU
– Interrupts/Exceptions

• Unfettered access to any of these bypasses security
– No further abstraction needed for devices

• memory-mapping device registers and interrupt abstraction suffices
• …but some generalised memory abstraction needed for I/O space

• Above isolates execution units, hence microkernel must also provide
– Communication (traditionally referred to as IPC)
– Synchronization

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 23

What Mechanisms?

Traditional hypervisor vs microkernel abstractions

UPMARC SS, June’12

Resource Hypervisor Microkernel

Memory Virtual MMU (vMMU) Address space

CPU Virtual CPU (vCPU) Thread or
scheduler activation

Interrupt Virtual IRQ (vIRQ) IPC message or signal

Communication Virtual NIC Message-passing IPC

Synchronization Virtual IRQ IPC message

©2012 Gernot Heiser NICTA 24

Issues of 2G L4 Kernels

• L4 solved performance issue [Härtig et al, SOSP’97]
… but left a number of security issues unsolved

• Problem: ad-hoc approach to protection and resource management
– Global thread name space ⇒ covert channels
– Threads as IPC targets ⇒ insufficient encapsulation
– Single kernel memory pool ⇒ DoS attacks
– Insufficient delegation of authority ⇒ limited flexibility, performance

• Addressed by seL4
– Designed to support safety- and security-critical systems

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 25

Agenda

• Motivation
• What is a microkernel, and what is L4?
• seL4 – designed for trustworthiness
• Establishing trustworthiness
• From kernel to system
• Sample system 1: Secure access controller
• Sample system 2: RapiLog

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 26

Requirements for Trustworthy Systems

Safety Security

Functional
Correctness

Availability

Timeliness

Termination

Confident. /
Info Flow

Integrity

UPMARC SS, June’12

Isolation!

©2012 Gernot Heiser NICTA 27

seL4 Design Goals

UPMARC SS, June’12

Trustworthy Microkernel – seL4

Policy Layer

Processor

Linux
Server

Legacy App.
Legacy App.

Legacy
Apps

Trusted
Service

Sensitive
App 1. Isolation

• Strong
partitioning!

2. Formal verification
• Provably

trustworthy!
3. Performance

• Suitable for
real world!

©2012 Gernot Heiser NICTA 28

Fundamental Design Decisions for seL4

1. Memory management is user-level responsibility
– Kernel never allocates memory (post-boot)
– Kernel objects controlled by user-mode servers

2. Memory management is fully delegatable
– Supports hierarchical system design
– Enabled by capability-based access control

3. “Incremental consistency” design pattern
– Fast transitions between consistent states
– Restartable operations with progress guarantee

4. No concurrency in the kernel
– Interrupts never enabled in kernel
– Interruption points to bound latencies
– Clustered multikernel design for multicores

UPMARC SS, June’12

Isolation

Perfor-
mance

Verification

Real-time

©2012 Gernot Heiser NICTA 29

What are Capabilities?

UPMARC SS, June’12

Obj reference

Access rights

Cap = Access Token

Eg. read,
write, send,
execute…

Cap typically in kernel to
protect from forgery

Ø user references cap
through handle

Eg. thread,
file, …

Object

©2012 Gernot Heiser NICTA 30

seL4 User-Level Memory Management

UPMARC SS, June’12

Global Resource Manager

RAM Kernel
Data

GRM
Data
GRM
Data

Resource Manager
RM
Dat
a

Resource Manager
RM
Dat
a

Addr
Space

AS

Addr
Space

Addr
Space

RM
RM
Dat
a

Resources fully
delegated, allows

autonomous
operation

Strong isolation,
No shared kernel

resources

“Untyped” (unallocated) memory

Delegation
can be

revoked

©2012 Gernot Heiser NICTA 31

seL4 Memory Management Mechanics: Retype

UPMARC SS, June’12

UT0

Retype (Untyped, 21)

UT1 UT2F0 F3F2F1

Retype (Untyped, 21)

UT3 UT4

Retype (TCB, 2n)

……

Retype (CNode, 2m, 2n)

r,w r,w r,w r,w

Retype (Frame, 22)

……

Capability
storage

User
memory

Thread
control
block

Capability
to “untyped”

©2012 Gernot Heiser NICTA 32

Incremental Consistency

UPMARC SS, June’12

Kernel
entry

O(1)
operation

Long operation

Kernel
exit

Check pending
interrupts

O(1)
operation

O(1)
operation

O(1)
operation

Abort &
restart later

Disable
interrupts

Enable
interrupts

Avoids concurrency in (single-core) kernel

©2012 Gernot Heiser NICTA 33

Example: Destroying IPC Endpoint

Actions:

1. Disable EP cap (prevent new messages)
2. while message queue not empty do
3. remove head of queue (abort message)
4. check for pending interrupts
5. done

UPMARC SS, June’12

Client1
Server

Client2

IPC
endpoint

Message
queue

©2012 Gernot Heiser NICTA 34

Difficult Example: Revoking IPC “Badge”

State to keep across preemptions
• Badge being removed
• Point in queue where preempted
• End of queue at time operation started
• Thread performing revocation

Need to squeeze into endpoint data structure!

UPMARC SS, June’12

Client1
Server

Client1
state

Client2 Client2
state

Badge

Removing
orange
badge

Invariants to
maintain!

©2012 Gernot Heiser NICTA 35

Approaches for Multicore Kernels

UPMARC SS, June’12

Core

User
thread

Kernel

User
thread

Core Core

User
thread

User
thread

Core

Kernel Kernel

Core

User
thread

Kernel

User
thread

Core

SMP
big lock

SMP
fine-grained locks

Multikernel
no locks

©2012 Gernot Heiser NICTA 36

Multicore Kernel Trade-Offs

Property Big Lock Fine-grained
Locking

Multikernel

Data structures shared shared distributed
Scalability poor good excellent
Concurrency in
kernel

zero high zero

Kernel
complexity

low high low

Resource
management

centralised centralised distributed

UPMARC SS, June’12

Core

User
threa
d

Kernel

User
threa
d

Core Core

User
threa
d

User
threa
d

Core

Kernel Kernel

Core

User
threa
d

Kernel

User
threa
d

Core

©2012 Gernot Heiser NICTA 37

Reality of Multicore is NUMA!

UPMARC SS, June’12

Core
HW
context

HW
context

L1 cache

Core
HW
context

HW
context

L1 cache

L2 cache

L3 cache / Main memory

Core
HW
context

HW
context

L1 cache

L2 cache

Core

L1 cache

Core
HW
context

HW
context

L1 cache

Multi-threadingFast
communi

-cation

Slow
communi

-cation

©2012 Gernot Heiser NICTA 38

Microkernel Principle: Policy Freedom

UPMARC SS, June’12

Core
HW
context

HW
context

L1 cache

Core
HW
context

HW
context

L1 cache

L2 cache

L3 cache / Main memory

Core
HW
context

HW
context

L1 cache

L2 cache

Core
HW
context

HW
context

L1 cache

Share (SMP)
where it is

cheap!

Don’t share
(multikernel) where

it is expensive!

• Kernel must not dictate policy
• Kernel must not introduce avoidable overhead

©2012 Gernot Heiser NICTA 39

Performance of Big Kernel Lock

UPMARC SS, June’12

100
80
60
40
20

0

10
8

6
4

2

100
80

604020

U
til

iz
at

io
n

(%
)

Kernel Time (%)

H/W Contexts

Scales to ≥8
threads if

kernel time is
low! Should be

for good
microkernel

Limit of shared
L2 cache

©2012 Gernot Heiser NICTA 40

Resulting Design: Clustered Multikernel

UPMARC SS, June’12

Core
HW
context

HW
context

L1 cache

Core
HW
context

HW
context

L1 cache

L2 cache

L3 cache / Main memory

Core
HW
context

HW
context

L1 cache

L2 cache

Core
HW
context

HW
context

L1 cache

Kernel

User
threa
d

User
threa
d

User
threa
d

User
threa
d

Kernel

User
threa
d

User
threa
d

User
threa
d

User
threa
d

Virtu-
al
CPU

Virtu-
al
CPU

Virtu-
al
CPU

Virtu-
al
CPU

Virtu-
al
CPU

Virtu-
al
CPU

Virtu-
al
CPU

Virtu-
al
CPU

SMP Linux

Still no
concurrency
in the kernel!

©2012 Gernot Heiser NICTA 41

Agenda

• Motivation
• What is a microkernel, and what is L4?
• seL4 – designed for trustworthiness
• Establishing trustworthiness
• From kernel to system
• Sample system 1: Secure access controller
• Sample system 2: RapiLog

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 42

seL4 as Basis for Trustworthy Systems

Safety Security

Functional
Correctness
Functional

Correctness

Availability

Timeliness

Termination

Confident. /
Info Flow

Integrity

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 43

Proving Functional Correctness

UPMARC SS, June’12

Abstract
Model

Executable
Model

C Imple-
mentation

Pr
oo

f
Pr

oo
f

30–35 py
4.5 years
30–35 py
4.5 years

Refinement: All
possible

implementation
behaviours are

captured by model

Refinement: All
possible

implementation
behaviours are

captured by model

117,000 lop

50,000 lop

©2012 Gernot Heiser NICTA 44

Proof of Functional Correctness

Access Control Model (300)

Abstract Model (4,900)

Executable Model (13,000)

C Code (8,700) HW

Confinement (10)

Haskell Prototype (5,700)

Formal proof:
concrete behaviour
captured at
abstract level

Manual System Specification
(Isabelle/HOL)

High Performance Implementation
(C/asm)

Hardware model

3,000 lopon-going

117,000 lop

50,000 lop
(92% done)

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 45

Why So Long for 9,000 LOC?

UPMARC SS, June’12

seL4 call
graph

©2012 Gernot Heiser NICTA 46

Costs Breakdown

Did you find bugs???
• During (very shallow) testing: 16
• During verification: 460
• 160 in C, ~150 in design, ~150 in spec

Haskell design 2 py
C implementation 2 weeks
Debugging/Testing 2 months
Kernel verification 12 py
Formal frameworks 10 py
Total 25 py

Repeat (estimated) 6 py
Traditional engineering 4–6 py

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 47

seL4 Formal Verification Summary

Kinds of properties proved
• Behaviour of C code is fully captured by abstract model
• Behaviour of C code is fully captured by executable model
• Kernel never fails, behaviour is always well-defined
• assertions never fail
• will never de-reference null pointer
• cannot be subverted by misformed input

• All syscalls terminate, reclaiming memory is safe, ...
• Well typed references, aligned objects, kernel always mapped…
• Access control is decidable

UPMARC SS, June’12

Can prove further
poperties on

abstract level!

©2012 Gernot Heiser NICTA 48

seL4 as Basis for Trustworthy Systems

Safety Security

Functional
Correctness

Memory
Safety

Availability

Timeliness

Termination

Confident. /
Info Flow

Integrity

✔

✔

✔

Integrity

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 49

Integrity: Limiting Write Access

Microkernel

TCBs Caps

PTs

TCBs Caps

PTs

UPMARC SS, June’12

To prove:
• Domain-1 doesn’t have write capabilities to Domain-2 objects

⇒ no action of Domain-1 agents will modify Domain-2 state
• Specifically, kernel does not modify on Domain-1’s behalf!

– Prove kernel only allows write upon capability presentation

Domain 1 Domain 2

©2012 Gernot Heiser NICTA 50

seL4 as Basis for Trustworthy Systems

Safety Security

Functional
Correctness

Memory
Safety

Availability

Timeliness

Termination

Confident. /
Info Flow

Integrity

✔

✔

✔

✔

Availability

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 51

Availability: Ensuring Resource Access

• Strict separation of kernel resources
⇒ agent cannot deny access to another domain’s resources

UPMARC SS, June’12

Microkernel

TCBs Caps

PTs

TCBs Caps

PTs

Domain 1 Domain 2

©2012 Gernot Heiser NICTA 52

seL4 as Basis for Trustworthy Systems

UPMARC SS, June’12

Safety Security

Functional
Correctness

Memory
Safety

Availability

Timeliness

Termination
✔

✔

✔

Integrity

Confident. /
Info Flow

✔

Confident. /
Info Flow

✔

©2012 Gernot Heiser NICTA 53

Confidentiality: Limiting Read Accesses

To prove:
• Domain-1 doesn’t have read capabilities to Domain-2 objects

⇒ no action of any agents will reveal Domain-2 state to Domain-1

UPMARC SS, June’12

Domain 1 Domain 2
Violation not
observable

by Domain 2!

Non-interference proof in progress:
• Evolution of Domain 1 does not depend on Domain-2 state
• Presently cover only overt information flow

©2012 Gernot Heiser NICTA 54

seL4 as Basis for Trustworthy Systems

Safety Security

Functional
Correctness

Memory
Safety

Availability

Timeliness

Termination

Confident. /
Info Flow

Integrity

✔

✔

✔

✔

✔

UPMARC SS, June’12

✔

Timeliness

©2012 Gernot Heiser NICTA 55

Timeliness

Domain 1 Domain 2

Microkernel

Makes
arbitrary
system

calls

IRQ

Delivery
with

bounded
latency

Non-
preemptible

UPMARC SS, June’12

Need worst-case execution time (WCET) analysis of kernel

©2012 Gernot Heiser NICTA 56

WCET Analysis Approach

UPMARC SS, June’12

Main source
of pessimism!

Manual,
being
automated

Accurate &
sound model of
ARM pipeline

Tune WCET by inserting
interrupt checks

©2012 Gernot Heiser NICTA 57

Result

UPMARC SS, June’12

378
99.5

0 100 200 300

Observed
Computed

Pessimism due to
under-specified

hardware

µs

WCET presently limited by verification practicalities
• 10 µs seem achievable

©2012 Gernot Heiser NICTA 58

Future: Whole-System Schedulability

seL4

Hardware

Arbitrary
behaviour

Moderately
Critical

Highly
Critical

Not
Critical

Guarantee
schedulability

Requires model
for managing
time resource

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 59

seL4 as Basis for Trustworthy Systems

Safety Security

Functional
Correctness

Memory
Safety

Availability

Timeliness

Termination
✔

✔

✔

✔

✔

Integrity

Confident. /
Info Flow

✔

✔

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 60

Proving seL4 Trustworthiness

UPMARC SS, June’12

Integrity

Proof

Abstract
Model

Executable
Model

C Imple-
mentation

Pr
oo

f
Pr

oo
f

Proof

Confiden-
tiality

30–35 py
4.5 years
30–35 py
4.5 years

1 py
4 months

WCET
Analysis

2 py, 1 year
Mostly for tools

Availability

0 py
By construction

≈ 2 py
(estimate)

©2012 Gernot Heiser NICTA 61

seL4 – the Next 24 Months

UPMARC SS, June’12

Integrity

Proof

Abstract
Model

Executable
Model

C Imple-
mentation

Proof

Confiden-
tiality

WCET
Analysis

Initiali-
zation Proof

Timing-
Channel

Mitigation?

Availability

Binary
code

Pr
oo

f

Non-Inter-
ference

Proof

MulticoreProof

©2012 Gernot Heiser NICTA 62

Binary Code Verification (In Progress)

UPMARC SS, June’12

C source

Binary code

Formalised
C

Formalised
binary

Function
code

Function
code

Formal
ISA spec

SAT
solver

Formal
C semantics Rewrite

rules

De-
compiler

Symbol
tables

etc

©2012 Gernot Heiser NICTA 63

Multikernel Verification

• By definition, multikernel images execute independently
– except for explicit messaging

• To prove:
– isolated images are initialised correctly
– images maintain isolation at run time

UPMARC SS, June’12

RAM Kernel0
Memory

Kernel1
Memory Untyped

Essentially non-
interference

©2012 Gernot Heiser NICTA 64

Agenda

• Motivation
• What is a microkernel, and what is L4?
• seL4 – designed for trustworthiness
• Establishing trustworthiness
• From kernel to system
• Sample system 1: Secure access controller
• Sample system 2: RapiLog

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 65

Phase Two: Full-System Guarantees

• Achieved: Verification of
microkernel (8,700 LOC)

• Next step: Guarantees for
real-world systems
(1,000,000 LOC)

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 66

Overview of Approach

§ Build system with minimal TCB
§ Formalize and prove security properties about architecture
§ Prove correctness of trusted components
§ Prove correctness of setup
§ Prove temporal properties (isolation, WCET, …)
§ Maintain performance

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 67

Specifying Security Architecture

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 68

Device Drivers

UPMARC SS, June’12

Processor

Linux
Server

Legacy App.
Legacy App.

Legacy
Apps

Trusted
Service

Sensitive
App

Trustworthy Microkernel – seL4

Policy Layer

Device
Driver

Complex,
untrusted

Drivers at
user level –

can en-
capsulate

Some
devices

are critical!

Device
Driver

How make
trustworthy?

©2012 Gernot Heiser NICTA 69

Driver Development

driver.c

OS Interface
Spec

Device Spec

Can we
automate?

Error-
prone!

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 70

Driver Development

driver.c

OS Interface
Spec

Device Spec

Can we
automate?

Error-
prone!Formal

OS Interface
Spec

Formal
Device Spec

Formalise
specs!

Formalise
specs!

Synthesis!

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 71

Driver Synthesis as Controller Synthesis

Driver = controller

OS requests = control objective

device

send() - send a network
packet

Packet has been sent

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 72

Game Theory
• Framework for verification and synthesis of reactive systems
• Provides classification of games and complexity bounds
• Provides algorithms for winning strategies!

Synthesis Algorithm (Main Idea)

G

2

1

3
I

u

u

c3

c2

c1 G

Force
device into
goal state2

1
CPre(G) = {1,2}
CPre(G,1,2} = {1,2,3}

3

CPre(G) = {1,2}CPre(G) = {1,2}
CPre(G,1,2} = {1,2,3}
CPre(G,1,2,3} =
{I,1,2,3}

I

Initial
state

Device
driver!

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 73

Drivers Synthesised (To Date)

Asix AX88772
USB-to-Eth adapter

SD host controller

W5100 Eth shield

IDE disk controller

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 74

Driver Synthesis: Interface Specs

driver.c

Formal
OS Interface

spec

Formal
Device Spec

Straightforward –
do once per OS

Where
from???

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 75

Hardware Design Workflow

Informal specification

High-level model

Register-transfer-level
description

netlist

Manual transformation

• Low-level description:
registers, gates, wires.

• Cycle-accurate
• Precisely models internal

device architecture and
interfaces

• “Gold reference”

Too
detailed
(for now)

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 76

Hardware Design Workflow

Informal specification

High-level model

Register-transfer-level
description

netlist

Manual transformation

• Captures external
behaviour

• Abstracts away structure
and timing

• Abstracts away the low-
level interface

bus_write(u32 addr, u32 val)
{
...

}

High-level model

Use for now

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 77

From Drivers to File Systems?

FS.c

OS interface

Media layout

Functional
interface

Data
structure

Needs
different

approach!

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 78

Building Secure Systems: Long-Term View

Hardware

seL4 Microkernel

Trusted Userland

Linux

App

Native
App

Managed
runtime

GCOther
Stuff

Managed
App

C + asm

DSL

Your choice!
(… but managed
is clearly better)

Formal
Verification

Formal
Verification?

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 79

Agenda

• Motivation
• What is a microkernel, and what is L4?
• seL4 – designed for trustworthiness
• Establishing trustworthiness
• From kernel to system
• Sample system 1: Secure access controller
• Sample system 2: RapiLog

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 80

Proof of Concept: Secure Access Controller

UPMARC SS, June’12

SAC

US NATO AUS SIN
www

©2012 Gernot Heiser NICTA 81

Logical Function

© NICTA 2010 From imagination to impact

A B

D

C

Gigabit
Network Card
Drivers

10,000 LoC

Web Server

5000 LoC Network routing

60,000 LoC

Nic-D

Nic-C Nic-A Nic-B

Security Property:
• No data leakage between

red and blue networks

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 82

Logical Function

© NICTA 2010 From imagination to impact

A B

D

C

Gigabit
Network Card
Drivers

10,000 LoC

Web Server

5000 LoC Network routing

60,000 LoC

Nic-D

Nic-C Nic-A Nic-B

RouterSAC
controller

Web Server

5000 LoC

Gigabit
Network
Drivers

10,000 LoC

Network routing

60,000 LoC

Security Property:
• No data leakage between

red and blue networks

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 83

Minimal TCB

© NICTA 2010 From imagination to impact

A B

D

C

SAC

Nic-C Nic-A Nic-B

Nic-D

RouterSAC
controller Router

Router
Manager

Timer

SAC
controller Router

Timer

Router
Manager

rw
rw

rw

rwcg

r
rw

w
w

w

rw

rw

rw
rw

Trusted

Untrusted

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 84

Implementation

© NICTA 2010 From imagination to impact

A B

D

C

SAC

Nic-C Nic-A Nic-B

Nic-D

RouterSAC
controller Router

Router
Manager

Timer

SAC
controller Router

Timer

Router
Manager

rw
rw

rw

rwcg

r
rw

w
w

w

rw
rw

rw

Trusted

Untrusted

Virtualized
Linux,

10 MLoC Virtualized
Linux,

10 MLoC

Hand-
written,

300 LoC

Hand-
written,

1500 LoC

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 85

Agenda

• Motivation
• What is a microkernel, and what is L4?
• seL4 – designed for trustworthiness
• Establishing trustworthiness
• From kernel to system
• Sample system 1: Secure access controller
• Sample system 2: RapiLog

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 86

Database Transactions

Various approaches, but today usually write-ahead logging:

App

DBMS

db.write (recno,
&dat)

log.append (&db[recno]); db[recno] = *dat;

Storage
Device

Log must be
recoverable
in case of

fault!

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 87

DBMS Threat Model

App

DBMS

OS

Hardware

Abort &
Restart

Transaction
Crash

Crash

Crash

Fault

Recover
from Log
Recover
from Log

RAID!

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 88

Log Data Must Be Recoverable!

App

DBMS

db.write (recno,
&dat)

log.append (&db[recno]); db[recno] = *dat;

Storage
Device

Sync()

Synchronous
I/O!

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 89

Log Data Must Be Recoverable!

App

DBMS

OS

Hardware

db.write (recno,
&dat)

Sync()

Driver.write();
wait_for(IRQ);

Wait because
can’t trust OS!

Transaction
processing limited
by I/O speed, not

CPU speed!

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 90

What If We Could Trust the OS?

App

DBMS

OS

Hardware

db.write (recno,
&dat)

Write()

Copy(); Buffer

Asynchronous
write!

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 91

But We Can Trust seL4!

DBMS

Other
OS

Services

seL4

Storage
Device

Device
Driver

Other
Hardware

Logging
Service

Buffer
Log

Verified ⇒
No crash

Simple –
Verify Correct-by-

construction
(Synthesis)

Problem: Needs DBMS re-write

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 92

RapiLog: Use Virtualization

Virtual Machine

DBMS

Linux
Device
Driver

Storage
Device

Virtual
Storage
Device

Device
Driver

Buffer

seL4

Other
Hardware

Log

No
change!

No
change!

Lie
about
Sync()

Guarantee
persistence
(eventually)

Correct-by-
construction
(Synthesis)

UPMARC SS, June’12

©2012 Gernot Heiser NICTA 93

Performance

UPMARC SS, June’12

94%
increase

90%
increase

61%
increase

Also maintain durability on power failure!

©2012 Gernot Heiser NICTA 94

Trustworthy Systems – We’ve Made a Start!

UPMARC SS, June’12

Safety Security

Functional
Correctness

Memory
Safety

Availability

Timeliness

Termination
✔

✔

✔

✔

✔

Integrit
y

Confident. /
Info Flow

✔

✔

Thank You!
mailto:gernot@nicta.com.au

Twitter @GernotHeiser
Google: “nicta trustworthy systems”

mailto:gernot@nicta.com.au

