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Threats
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Speculation

Microarchitectural 
Timing Channel

An “unknown 
unknown” until 

recently

A “known 
unknown” 

for decades



Spatial 
Isolation: 
A Solved 
Problem
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Enforcing Security: The OS’s Job
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Operating System

Hardware (CPU etc)

High Low

Provide mechanisms

Enforce policies

HW-SW Contract

Security enforcement must be 
mandatory, i.e. not dependent 
on application/user cooperation!
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Functional correctness: 
C code only behaves 
as specified by model

Security properties:
Model enforces isolation

Translation validation:
Binary retains

C-code semantics Limitations (work in progress):
• Kernel initialisation not yet verified
• MMU & caches modelled abstractly
• Multicore kernel not yet verified
• Timing channels not ruled out

Sound worst-case 
execution time 
(WCET) bound

Proved OS-Enforced Spatial Isolation
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Integrity



What Are 
Timing 
Channels?
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Timing Channels
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Information leakage through timing of events
• Typically by observing response latencies or own execution speed

Covert channel: Information flow that bypasses the security policy

Side channel: Covert channel exploitable without insider help

High LowTrojan
encodes 

info

Spy
observes
Attacker 
observes

Victim 
executes 
normally



Cause: Competition for Shared HW Resources
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Affect execution speed

Shared hardware

• Inter-process interference
• Competing access to micro-

architectural features 
• Hidden by the HW-SW contract!

High Low



What Is 
Needed?
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Confidentiality Needs Time Protection

Time protection: A collection 
of OS mechanisms which 
collectively prevent 
interference between security 
domains that make execution 
speed in one domain 
dependent on the activities of 
another.

[Ge et al. EuroSys’19]
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High Low

Traditionally OSes enforce 
security by memory protection, 
i.e. enforcing spatial isolation



Time Protection: Partition Hardware
LowHigh

Cache
Flush

Temporally 
partition

Cannot spatially partition on-
core caches (L1, TLB, branch 
predictor, pre-fetchers)
• virtually-indexed
• OS cannot control

Low

Cache

High

LowHigh

Cache

Spatially partition

Flushing useless for 
concurrent access
• HW threads
• cores

Need
both!
Need
both!
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Requirements for Time Protection
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Timing channels can be closed iff the OS can
• (spatially) partition or
• reset
all shared hardware

On-core
state

Off-core
state & 

stateless HW



Sharing 1: Stateless Interconnect
H/W is bandwidth-limited
• Interference during concurrent 

access
• Generally reveals no data or 

addresses
• Must encode info into access 

patterns
• Only usable as covert channel, not 

side channel

Shared
interconnect

Memory No effective defence
with present hardware!
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High Low



Sharing 2: Stateful Hardware
HW is capacity-limited
• Interference during
• concurrent access
• time-shared access

• Collisions reveal addresses
• Usable as side channel

Cache

Any state-holding microarchitectural feature:
• cache, branch predictor, pre-fetcher state machine

Solvable problem –
focus of this work

SHARD, Lorentz Center, September 201914 |

High Low



Implementing
Time Protection
on Stateful
Hardware
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Spatial Partitioning: Cache Colouring
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Cache

RAM

• Partitions get frames of disjoint colours
• seL4: userland supplies kernel memory
⇒ colouring userland colours dynamic 
kernel memory

• Per-partition kernel image to colour kernel
[Ge et al. EuroSys’19]

High Low

TCB PT PTTCB



Temporal Partitioning: Flush on Switch
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1. T0 = current_time()
2. Switch user context
3. Flush on-core state
4. Touch all shared data needed for return
5. while (T0+WCET < current_time()) ;
6. Reprogram timer
7. return

Latency depends
on prior execution!

Time padding 
to Remove

dependency

Ensure 
deterministic 

execution

Must remove any 
history dependence!



Cost of Reset
• Flushing on-core state is not a performance issue:
- no cost when not used
- direct flush cost for dirty L1-D in the order of 1µs
- direct flush cost for everything else in the order of 100 cycles
- indirect cost is negligible, if used on security-partition switch

• eg VM switch, 10–100 Hz rate
• no hot data in cache after other partition’s execution

• Hardware support (eg targeted L1 flush) is essential!



Performance Impact of Colouring

Architecture x86 Arm

Mean slowdown 3.4% 1.1%

Arch seL4
clone

Linux 
fork+exec

x86 79 µs 257 µs

Arm 608 µs 4,300 µs

• Overhead mostly low
• Not evaluated is cost of 

not using super pages
[Ge et al., EuroSys’19]
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Reality Check:
Flushing
On-Core State
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Evaluating Intra-Core Channels
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Flush

Mitigation on Intel and Arm processors:
• Disable data prefetcher (just to be sure)
• On context switch, perform all architected flush operations:
• Intel: wbinvd + invpcid (no targeted L1-cache flush supported!)
•Arm: DCCISW + ICIALLU + TLBIALL + BPIALL

LowHigh

Cache
Flush

Low

Cache

High



Methodology: Prime and Probe
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Output
Signal

2. Touch n cache lines

1. Fill cache with own data

3. Traverse cache, 
measure execution timeInput

Signal

High Low
Trojan

encodes
Spy

observes



Methodology: Channel Matrix
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I-Cache Channel With Full State Flush
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HiSilicon A53 Branch History Buffer 
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Intel Haswell Branch Target Buffer
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Found residual channels 
in all recent Intel and ARM 
processors examined!

Branch target buffer
• All reset operations 

applied



Intel Spectre Defences
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Intel added indirect 
branch control (IBC) 
feature, which closes 
most channels, but…

Intel Skylake
Branch history buffer

Small 
channel!

https://ts.data61.csiro.au/projects/TS/timingchannels/arch-mitigation.pml

Also residual state 
in pre-fetchers



Security: A 
HW-SW 
Codesign Issue
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Remember: Security Enforcement
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Operating System

Hardware (CPU etc)

High Low

Provide mechanisms

Enforce policies

HW-SW Contract

Security enforcement must be 
mandatory, i.e. not dependent 
on application/user cooperation!



Why Hardware Cannot Do Security Alone
• Security policies are high-level

• Course-grain: “applications” are sets of cooperating processes

• Hardware mechanisms are fine-grain: instructions, pages, address spaces
• Much semantics lost in mapping to hardware level

• Security policies are complex: “Can A talk to B?” is too simple
• maybe one-way communication is allowed
• maybe communication is allowed under certain conditions
• maybe low-bandwidth leakage doesn’t matter
• maybe secrets only matter for a short time
• maybe only subset of {confidentiality, integrity, availability} is important



Why the ISA is an Insufficient Contract
• The ISA is a purely operational contract

• Sufficient for ensuring functional correctness
• Insufficient for ensuring confidentiality or availability

High Low

Observe execution speed:
Confidentiality violation

Affect execution speed:
Availability violation

The ISA intentionally 
abstracts time away



New HW/SW Contract: aISA

For all shared microarchitectural resources:
1. Resource must be spatially partitionable or flushable
2. Concurrently shared resources must be spatially partitioned
3. Resource accessed solely by virtual address must be flushed and not 

concurrently accessed
• Implies cannot share HW threads across security domains!

4. Mechanisms must be sufficiently specified for OS to partition or reset
5. Mechanisms must be constant time, or of specified, bounded latency
6. Desirable: OS should know if resettable state is derived from data, instructions, 

data addresses or instruction addresses
7. Desirable: Flush only affects state that must be flushed

Augmented ISA supporting time protection
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Security Standing 
Committee agrees



Can We Verify 
Time 
Protection?
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Remember: Competition for HW Causes 
Channels!
High Low

Affect execution speed

Shared hardware

• Prove absence of interference, 
⇒ no channels possible 

• Must prove correct partitioning!
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Can Time Protection Be Verified?
1. Correct treatment of spatially partitioned state:
- Need hardware model that identifies all such state (augmented ISA)
- Enables functional correctness argument: 

No two domains can access the same physical state

2. Correct flushing of time-shared state
- Not trivial: eg proving all cleanup code/data are forced into cache after flush

• Needs an actual cache model
- Even trickier: need to prove padding is correct

• … without explicitly reasoning about time!
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Transforms timing 
channels into 

storage channels!



How Can We Prove Time Padding?
• Idea: Minimal formalisation of hardware clocks (logical time)
- Monotonically-increasing counter
- Can add constants to time values
- Can compare time values
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To prove: padding loop terminates 
as soon as timer value ≥ T0+WCET

Functional 
property
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