
https://trustworthy.systems

We Need a New
Hardware-Software Contract
Gernot Heiser | gernot@unsw.edu.au | @GernotHeiser
• SHARD, Lorentz Center, September 2019

Threats

SHARD, Lorentz Center, September 20192 |

Speculation

Microarchitectural
Timing Channel

An “unknown
unknown” until

recently

A “known
unknown”

for decades

Spatial
Isolation:
A Solved
Problem

SHARD, Lorentz Center, September 20193 |

Enforcing Security: The OS’s Job

SHARD, Lorentz Center, September 20194 |

Operating System

Hardware (CPU etc)

High Low

Provide mechanisms

Enforce policies

HW-SW Contract

Security enforcement must be
mandatory, i.e. not dependent
on application/user cooperation!

Abstract
Model

Proof

C Imple-
mentation

Proof

Confidentiality Availability

Binary code

Pr
oo

f
Pr

oo
f

Pr
oo

f

Functional correctness:
C code only behaves
as specified by model

Security properties:
Model enforces isolation

Translation validation:
Binary retains

C-code semantics Limitations (work in progress):
• Kernel initialisation not yet verified
• MMU & caches modelled abstractly
• Multicore kernel not yet verified
• Timing channels not ruled out

Sound worst-case
execution time
(WCET) bound

Proved OS-Enforced Spatial Isolation

SHARD, Lorentz Center, September 20195 |

Integrity

What Are
Timing
Channels?

SHARD, Lorentz Center, September 20196 |

Timing Channels

SHARD, Lorentz Center, September 20197 |

Information leakage through timing of events
• Typically by observing response latencies or own execution speed

Covert channel: Information flow that bypasses the security policy

Side channel: Covert channel exploitable without insider help

High LowTrojan
encodes

info

Spy
observes
Attacker
observes

Victim
executes
normally

Cause: Competition for Shared HW Resources

SHARD, Lorentz Center, September 20198 |

Affect execution speed

Shared hardware

• Inter-process interference
• Competing access to micro-

architectural features
• Hidden by the HW-SW contract!

High Low

What Is
Needed?

SHARD, Lorentz Center, September 20199 |

Confidentiality Needs Time Protection

Time protection: A collection
of OS mechanisms which
collectively prevent
interference between security
domains that make execution
speed in one domain
dependent on the activities of
another.

[Ge et al. EuroSys’19]

SHARD, Lorentz Center, September 201910 |

High Low

Traditionally OSes enforce
security by memory protection,
i.e. enforcing spatial isolation

Time Protection: Partition Hardware
LowHigh

Cache
Flush

Temporally
partition

Cannot spatially partition on-
core caches (L1, TLB, branch
predictor, pre-fetchers)
• virtually-indexed
• OS cannot control

Low

Cache

High

LowHigh

Cache

Spatially partition

Flushing useless for
concurrent access
• HW threads
• cores

Need
both!
Need
both!

SHARD, Lorentz Center, September 201911 |

Requirements for Time Protection

SHARD, Lorentz Center, September 201912 |

Timing channels can be closed iff the OS can
• (spatially) partition or
• reset
all shared hardware

On-core
state

Off-core
state &

stateless HW

Sharing 1: Stateless Interconnect
H/W is bandwidth-limited
• Interference during concurrent

access
• Generally reveals no data or

addresses
• Must encode info into access

patterns
• Only usable as covert channel, not

side channel

Shared
interconnect

Memory No effective defence
with present hardware!

SHARD, Lorentz Center, September 201913 |

High Low

Sharing 2: Stateful Hardware
HW is capacity-limited
• Interference during
• concurrent access
• time-shared access

• Collisions reveal addresses
• Usable as side channel

Cache

Any state-holding microarchitectural feature:
• cache, branch predictor, pre-fetcher state machine

Solvable problem –
focus of this work

SHARD, Lorentz Center, September 201914 |

High Low

Implementing
Time Protection
on Stateful
Hardware

SHARD, Lorentz Center, September 201915 |

Spatial Partitioning: Cache Colouring

SHARD, Lorentz Center, September 201916 |

Cache

RAM

• Partitions get frames of disjoint colours
• seL4: userland supplies kernel memory
⇒ colouring userland colours dynamic
kernel memory

• Per-partition kernel image to colour kernel
[Ge et al. EuroSys’19]

High Low

TCB PT PTTCB

Temporal Partitioning: Flush on Switch

SHARD, Lorentz Center, September 201917 |

1. T0 = current_time()
2. Switch user context
3. Flush on-core state
4. Touch all shared data needed for return
5. while (T0+WCET < current_time()) ;
6. Reprogram timer
7. return

Latency depends
on prior execution!

Time padding
to Remove

dependency

Ensure
deterministic

execution

Must remove any
history dependence!

Cost of Reset
• Flushing on-core state is not a performance issue:
- no cost when not used
- direct flush cost for dirty L1-D in the order of 1µs
- direct flush cost for everything else in the order of 100 cycles
- indirect cost is negligible, if used on security-partition switch

• eg VM switch, 10–100 Hz rate
• no hot data in cache after other partition’s execution

• Hardware support (eg targeted L1 flush) is essential!

Performance Impact of Colouring

Architecture x86 Arm

Mean slowdown 3.4% 1.1%

Arch seL4
clone

Linux
fork+exec

x86 79 µs 257 µs

Arm 608 µs 4,300 µs

• Overhead mostly low
• Not evaluated is cost of

not using super pages
[Ge et al., EuroSys’19]

-1%

0%

1%

2%

3%

4%

5%

6%

7%

ba
rn

es

ch
ol
es

ky fft
fm

m lu

oc
ea

n

ra
di
os

ity
ra

di
x

ra
yt
ra

ce

w
at

er
ns

qu
ar

ed

w
at

er
sp

at
ia
l

M
EAN

S
lo

w
d

o
w

n

50% colours base
50% colour clone

SHARD, Lorentz Center, September 201919 |

Reality Check:
Flushing
On-Core State

SHARD, Lorentz Center, September 201920 |

Evaluating Intra-Core Channels

SHARD, Lorentz Center, September 201921 |

Flush

Mitigation on Intel and Arm processors:
• Disable data prefetcher (just to be sure)
• On context switch, perform all architected flush operations:
• Intel: wbinvd + invpcid (no targeted L1-cache flush supported!)
•Arm: DCCISW + ICIALLU + TLBIALL + BPIALL

LowHigh

Cache
Flush

Low

Cache

High

Methodology: Prime and Probe

SHARD, Lorentz Center, September 201922 |

Output
Signal

2. Touch n cache lines

1. Fill cache with own data

3. Traverse cache,
measure execution timeInput

Signal

High Low
Trojan

encodes
Spy

observes

Methodology: Channel Matrix

SHARD, Lorentz Center, September 201923 |

 7000
 8000
 9000

 10000
 11000
 12000

 0 10 20 30 40 50 60P
ro

b
in

g
 t

im
e

 (
cy

cl
e

s)

Cache sets accessed

datafile using 1:2:($3>pmax ? pmax : $3)

 0
 0.005
 0.01
 0.015
 0.02
 0.025
 0.03
 0.035
 0.04

Horizontal
variation indicates

channel

Raw I-cache channel
Intel Sandy Bridge

Channel Matrix:
• Conditional probability of

observing time, t, given input, n.
• Represented as heat map:

• bright = high probability

I-Cache Channel With Full State Flush

SHARD, Lorentz Center, September 201924 |

 60000

 61000

 62000

 63000

 64000

 0 10 20 30 40 50 60

T
im

e
 (

cy
cl

e
s) datafile using 1:2:3

 0.001

 0.01

Intel Sandy Bridge

 12500

 13000

 13500

 14000

 0 2 4 6 8 10
T

im
e

 (
cy

cl
e

s) datafile using 1:2:3

 0.001

 0.01

Intel Haswell

 7000

 8000

 9000

 10000

 11000

 0 10 20 30 40 50 60

O
u

tp
u

t
(c

yc
le

s)

Input (sets)

datafile using 1:2:3

0.00010

0.00100

Intel Skylake

 90000

 92000

 94000

 0 5 10 15 20 25 30 35 40

T
im

e
 (

cy
cl

e
s)

Cache sets

datafile using 1:2:3

0.00010

0.00100

HiSilicon A53

CHANNEL!

CHANNEL!

No evidence
of channel

SMALL CHANNEL!

HiSilicon A53 Branch History Buffer

SHARD, Lorentz Center, September 201925 |

0 1

10-1

10-3
10-2

10-4

10-5400

600

800

1000

Trojan signalSp
y

ex
ec

ut
io

n
tim

e

Branch history buffer (BHB)
• One-bit channel
• All reset operations applied

Channel!

Intel Haswell Branch Target Buffer

SHARD, Lorentz Center, September 201926 |

 31000

 32000

 33000

 34000

 3500 4000 4500 5000

T
im

e
 (

cy
cl

e
s) datafile using 1:2:3

 0.001

 0.01

Sp
y

ex
ec

ut
io

n
tim

e

Trojan cache footprint
Channel!

Found residual channels
in all recent Intel and ARM
processors examined!

Branch target buffer
• All reset operations

applied

Intel Spectre Defences

SHARD, Lorentz Center, September 201927 |

Intel added indirect
branch control (IBC)
feature, which closes
most channels, but…

Intel Skylake
Branch history buffer

Small
channel!

https://ts.data61.csiro.au/projects/TS/timingchannels/arch-mitigation.pml

Also residual state
in pre-fetchers

Security: A
HW-SW
Codesign Issue

SHARD, Lorentz Center, September 201928 |

Remember: Security Enforcement

SHARD, Lorentz Center, September 201929 |

Operating System

Hardware (CPU etc)

High Low

Provide mechanisms

Enforce policies

HW-SW Contract

Security enforcement must be
mandatory, i.e. not dependent
on application/user cooperation!

Why Hardware Cannot Do Security Alone
• Security policies are high-level

• Course-grain: “applications” are sets of cooperating processes

• Hardware mechanisms are fine-grain: instructions, pages, address spaces
• Much semantics lost in mapping to hardware level

• Security policies are complex: “Can A talk to B?” is too simple
• maybe one-way communication is allowed
• maybe communication is allowed under certain conditions
• maybe low-bandwidth leakage doesn’t matter
• maybe secrets only matter for a short time
• maybe only subset of {confidentiality, integrity, availability} is important

Why the ISA is an Insufficient Contract
• The ISA is a purely operational contract

• Sufficient for ensuring functional correctness
• Insufficient for ensuring confidentiality or availability

High Low

Observe execution speed:
Confidentiality violation

Affect execution speed:
Availability violation

The ISA intentionally
abstracts time away

New HW/SW Contract: aISA

For all shared microarchitectural resources:
1. Resource must be spatially partitionable or flushable
2. Concurrently shared resources must be spatially partitioned
3. Resource accessed solely by virtual address must be flushed and not

concurrently accessed
• Implies cannot share HW threads across security domains!

4. Mechanisms must be sufficiently specified for OS to partition or reset
5. Mechanisms must be constant time, or of specified, bounded latency
6. Desirable: OS should know if resettable state is derived from data, instructions,

data addresses or instruction addresses
7. Desirable: Flush only affects state that must be flushed

Augmented ISA supporting time protection

SHARD, Lorentz Center, September 201932 |

Security Standing
Committee agrees

Can We Verify
Time
Protection?

SHARD, Lorentz Center, September 201933 |

Remember: Competition for HW Causes
Channels!
High Low

Affect execution speed

Shared hardware

• Prove absence of interference,
⇒ no channels possible

• Must prove correct partitioning!

SHARD, Lorentz Center, September 201934 |

Can Time Protection Be Verified?
1. Correct treatment of spatially partitioned state:
- Need hardware model that identifies all such state (augmented ISA)
- Enables functional correctness argument:

No two domains can access the same physical state

2. Correct flushing of time-shared state
- Not trivial: eg proving all cleanup code/data are forced into cache after flush

• Needs an actual cache model
- Even trickier: need to prove padding is correct

• … without explicitly reasoning about time!

SHARD, Lorentz Center, September 201935 |

Transforms timing
channels into

storage channels!

How Can We Prove Time Padding?
• Idea: Minimal formalisation of hardware clocks (logical time)
- Monotonically-increasing counter
- Can add constants to time values
- Can compare time values

SHARD, Lorentz Center, September 201936 |

To prove: padding loop terminates
as soon as timer value ≥ T0+WCET

Functional
property

https://trustworthy.systems

THANK YOU

Gernot Heiser | gernot@unsw.edu.au | @GernotHeiser

