
https://trustworthy.systems

The Formally Verified
seL4 Microkernel
Gernot Heiser | gernot.heiser@data61.csiro.au | @GernotHeiser
• RTCSA Keynote, Aug’20

High-Assurance Foundation for MCS

What Is Needed For Mixed-Criticality?
During a review process, ca Aug’17:
• [Gernot:] Temporal isolation is necessary for mixed criticality systems.
• [Reviewer:] Wrong, temporal isolation is sufficient.

What Is a Mixed-Criticality System?
“A mixed-critical system […] supports the execution of safety-critical, mission-
critical, and non-critical software within a single, secure compute platform.”
[Barhorst’09]

Criticality of a component is defined
by the impact of failure:
• loss of life
• injury
• inconvenience

Certification of critical component must not
depend on behaviour of less critical components
⇒ must prevent any interference by less
critical components!

Preventing Interference – The OS’s Job

RTCSA Keynote, Aug'204 |

High
criticality

Low
criticality

Operating System

We need an OS that can guarantee the absence of interference!

Modify data

Affect timing

seL4:
Provable Isolation

What is seL4?

RTCSA Keynote, Aug'206 |

The world’s first operating-
system kernel with provable

security enforcement

The world’s fastest
general-purpose

microkernel, designed
for real-world use

The world’s only
protected-mode OS

with complete, sound
timeliness analysis

World’s most
advanced mixed-

criticality OS

Open Source

A Microkernel is not an OS

RTCSA Keynote, Aug'207 |

Processor

Device
DriverDevice

DriverDevice
Driver

NW
Stack

Device
DriverDevice

DriverFile
System

Process
Mgmt

Memory
Mgmt

AppAppApp

Strong
Isolation

Device drivers, file systems, crypto,
power management, virtual-machine
monitor are all usermode processes

IPC

Controlled
Communication

VM

Linux

AppAppApp

VMM

Microkernel = context-switching engine HypervisorMicrokernel

Capability-Based Access Control

RTCSA Keynote, Aug'208 |

Any system call is invoking a capability:
err = method(cap, args);

Obj reference
Access rights

Capability = Access Token:
Prima-facie evidence of privilege

Eg. read,
write, send,
execute…

Capabilities provide:
• Fine-grained access

control
• Reasoning about

information flow

Eg. thread,
address
spaceObject

Abstract
Model

Proof

C Imple-
mentation

Proof

Confidentiality Availability

Binary code

Pr
oo

f
Pr

oo
f

Pr
oo

f

Functional correctness:
C code only behaves

as specified

Model enforces
isolation

Translation validation:
Binary retains

C-code semantics
Limitations (work in progress):
• Kernel initialisation not yet verified
• MMU & caches modelled abstractly
• Multicore version not yet verified
• Timing channels not ruled out

Proved Spatial Isolation

RTCSA Keynote, Aug'209 |

Integrity

Proof?

Rewrite
Rules

C Source

Binary Code

Formalised C

Formalised
Binary

Graph
Language

Graph
Language

10 RTCSA Keynote, Aug'20

Target of functional
correctness proof

Pr
oo

f

Formal
C Semantics

Proof
SMT Solver

De-
compilerPr

oo
f

Formal ISA Spec

Compiler

Symbol Tables
Pr

oo
f

Binary Code Verification

Isolation by
Architecture

RTCSA Keynote, Aug'2011 |

Issue: Capabilities are Low-Level

RTCSA Keynote, Aug'2012 |

Thread-ObjectA CNodeA1 EP Thread-ObjectBCNodeB1
CNodeA2

VSpace

VSpace

CSpace CSpace

Se
nd

Re
ce
ive

PDAPTA1
FRAME

FRAME

...

...

... ...

...

...CO
N
TE

XT

CO
N
TE

XT

A B

>50 capabilities
for trivial program!

S
en

d

R
ec

ei
ve

A B

Simple But Non-Trivial System

RTCSA Keynote, Aug'2013 |

Component Middleware: CAmkES

RTCSA Keynote, Aug'2014 |

Higher-level abstractions of
low-level seL4 constructs

Comp A

Comp C

Comp B

SemaphoreShared memory

RPC

Interface

Component

Connector

Trivial System in CAmkES

RTCSA Keynote, Aug'2015 |

Comp A Comp B

RPC

HACMS UAV Architecture

RTCSA Keynote, Aug'2016 |

Radio
Driver

CAN
Driver

Data
Link

Crypto

Uncritical/
untrusted,
contained

Linux

Camera

Wifi

Security enforcement:
Linux only sees
encrypted data

Enforcing the Architecture

RTCSA Keynote, Aug'2017 |

Architecture
specification
language

A

CNode EP CNode
CSpace CSpace

Se
nd

Re
ce
ive

... ...

CO
N
TE

XT

CO
N
TE

XT

VSpace

component
code+

CAmkES

capDL
glue
code

+ proof

initialised system + proof

+ proof
Thread
Object

Thread
Object

VSpace

A B

B

Low-level access rights

Radio
Driver

Crypto

CAN
Driver

Data
Link Uncritical/

untrusted,
contained

Linux

Camera

Wifi

driver.c VMM.cglue.c

Compiler/
Linker

binaryinit.c

Conditions
apply

Military-Strength Security

RTCSA Keynote, Aug'2018 |

Unmanned Little Bird (ULB)

Autonomous trucks

Cross-Domain
Desktop
Compositor

Secure
Comms
Dongle

DARPA HACMS:
Retrofit existing

system!

DARPA HACMS:
Retrofit existing

system!

Temporal
Isolation:
WCET
Analysis

RTCSA Keynote, Aug'2019 |

High-Assurance WCET Analysis

RTCSA Keynote, Aug'20

Program
binary

Control
Flow

Graph

Loop
bounds

Micro-
architecture

model

Integer
linear

equations

Infeasible
path info

WCETILP solverAnalysis tool

20

Proved at C level, transferred
to binary though translation-
validation toolchain

Temporal
Isolation:
Controlling
Time

RTCSA Keynote, Aug'2021 |

Mixed Criticality: Critical + Untrusted

RTCSA Keynote, Aug'2022 |

Critical:
Control
loop

Sensor
readings

Untrusted:
NW
driver

NW
interrupts

NW driver must preempt control loop
• … to avoid packet loss
• Driver must run at high prio
• Driver must be trusted not to monopolise CPU

Runs frequently but for
short time (order of µs)

Runs every 100 ms
for few millisecods

MCS Challenge: Sharing

RTCSA Keynote, Aug'2023 |

Critical
Less

critical

Vehicle
Control

NavigationShared
Data

Vehicle control
must see
consistent state

Updates

Sharing: Delegation to Resource Server

RTCSA Keynote, Aug'2024 |

Control
P1 Server

PSNavig.
P2

Single-threaded,
guarantees
atomicity

Communication
endpoint (port)

Who pays for
server time?

Implements immediate priority
ceiling protocol (IPCP) if

PS ≥ max (P1, P2)

Solution: Time Capabilities

Classical thread attributes
• Priority
• Time slice

New thread attributes
• Priority
• Scheduling context capability

RTCSA Keynote, Aug'2025 |

Not runnable
if null

Not runnable
if null

Scheduling context object
• T: period
• C: budget (≤ T)

Limits CPU
access –

sporadic server

Enables reasoning about
time and temporal isolation
for mixed-criticality systemsC = 2

T = 3

Capability
for time

MCS with Scheduling Contexts

RTCSA Keynote, Aug'2026 |

Runs every 100 ms
for few millisecods

Runs frequently but for
short time (order of µs)

Control
loop

P = low
Sensor
readings

NW
driver

P = high

NW
interrupts

C = 2
T = 3
Utilisation = 67%

C = 25,000
T = 100,000
Utilisation = 25%

Client1
P1

Shared Server Time Charged to Client

RTCSA Keynote, Aug'2027 |

Server
PS

Running
Running

Server runs on
client’s scheduling

context

Client is
charged for

server’s time

Client2
P2

Timeout exception
to deal with

budget exhaustion

seL4 MCS Support
• Time as a first-class resource:
- Enforcement of delegatable time budgets
- Suitable for formal reasoning
- Verification to be completed this year

• Status:
- Functional correctness of MCS extensions presently being verified for Arm and RISC-V

• To Do:
- Proving scheduler properties
- Formal framework for reasoning about timeliness of applications

Thank You!

RTCSA Keynote, Aug'2029 |

