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What Is Needed For Mixed-Criticality?
During a review process, ca Aug’17:
• [Gernot:] Temporal isolation is necessary for mixed criticality systems.
• [Reviewer:] Wrong, temporal isolation is sufficient.



What Is a Mixed-Criticality System?
“A mixed-critical system […] supports the execution of safety-critical, mission-
critical, and non-critical software within a single, secure compute platform.” 
[Barhorst’09]

Criticality of a component is defined 
by the impact of failure:
• loss of life
• injury
• inconvenience

Certification of critical component must not 
depend on behaviour of less critical components 
⇒ must prevent any interference by less 
critical components!



Preventing Interference – The OS’s Job
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seL4:
Provable Isolation



What is seL4?
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The world’s first operating-
system kernel with provable

security enforcement

The world’s fastest
general-purpose 

microkernel, designed 
for real-world use

The world’s only 
protected-mode OS 

with complete, sound 
timeliness analysis

World’s most 
advanced mixed-

criticality OS

Open Source



A Microkernel is not an OS
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Capability-Based Access Control
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Any system call is invoking a capability:
err = method( cap, args );

Obj reference
Access rights

Capability = Access Token:
Prima-facie evidence of privilege

Eg. read, 
write, send, 
execute…

Capabilities provide:
• Fine-grained access 

control
• Reasoning about 

information flow

Eg. thread, 
address 
spaceObject
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Functional correctness: 
C code only behaves 

as specified

Model enforces 
isolation

Translation validation:
Binary retains

C-code semantics
Limitations (work in progress):
• Kernel initialisation not yet verified
• MMU & caches modelled abstractly
• Multicore version not yet verified
• Timing channels not ruled out

Proved Spatial Isolation
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Integrity
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Isolation by 
Architecture
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Issue: Capabilities are Low-Level
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Simple But Non-Trivial System
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Component Middleware: CAmkES
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Higher-level abstractions of 
low-level seL4 constructs
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Trivial System in CAmkES
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HACMS UAV Architecture
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Enforcing the Architecture 
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Military-Strength Security
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Temporal 
Isolation:
WCET
Analysis
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High-Assurance WCET Analysis
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Proved at C level, transferred 
to binary though translation-
validation toolchain



Temporal 
Isolation:
Controlling
Time
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Mixed Criticality: Critical + Untrusted
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Critical:
Control 
loop

Sensor
readings

Untrusted:
NW 
driver

NW
interrupts

NW driver must preempt control loop
• … to avoid packet loss
• Driver must run at high prio
• Driver must be trusted not to monopolise CPU

Runs frequently but for 
short time (order of µs) 

Runs every 100 ms
for few millisecods



MCS Challenge: Sharing
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Sharing: Delegation to Resource Server
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PSNavig.
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server time?

Implements immediate priority 
ceiling protocol (IPCP) if 

PS ≥ max (P1, P2)



Solution: Time Capabilities

Classical thread attributes
• Priority
• Time slice

New thread attributes
• Priority
• Scheduling context capability
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Not runnable 
if null

Not runnable 
if null

Scheduling context object
• T: period
• C: budget (≤ T)

Limits CPU 
access –

sporadic server

Enables reasoning about 
time and temporal isolation 
for mixed-criticality systemsC = 2

T = 3

Capability 
for time



MCS with Scheduling Contexts
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Runs every 100 ms
for few millisecods

Runs frequently but for 
short time (order of µs) 

Control 
loop
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C = 25,000
T = 100,000
Utilisation = 25%



Client1
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Shared Server Time Charged to Client
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seL4 MCS Support
• Time as a first-class resource:
- Enforcement of delegatable time budgets
- Suitable for formal reasoning
- Verification to be completed this year

• Status:
- Functional correctness of MCS extensions presently being verified for Arm and RISC-V

• To Do:
- Proving scheduler properties
- Formal framework for reasoning about timeliness of applications



Thank You!
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