

10 May, 2007 HCSS

Michael Norrish

Verifying an Operating System Kernel

10 May, 2007 HCSS 2

The Problem

10 May, 2007 HCSS 3

seL4 + L4.verified

Goals:
• Formal specification of kernel and machine
• Verified production quality, high-performance kernel

Address problems in older L4s:
• Communication control
• Kernel resource accounting
• No performance penalty for new features

– 30 cycles per syscall ok. Maybe.

10 May, 2007 HCSS 4

Overview

• The seL4 Kernel
– Interface
– State
– Kernel Objects

• Interesting Problems
– Designing and formalizing an OS kernel
– Coping with C
– Refinement on monadic functional programs

10 May, 2007 HCSS 5

Credit Where It’s Due

• L4.verified:
– Led by Gerwin Klein
– Verifiers (Sydney): four research assistants, three PhD students,

under-grad projects, two/three researchers (including 100% of
Gerwin)

– Tool support (Canberra): three researchers
– Project entering its fourth (and last) year

• L4 itself
– “L4” is really a family of (open source) implementations
– Many people over many years

• including new spin-off company Open Kernel Labs

10 May, 2007 HCSS

seL4
secure embedded L4

10 May, 2007 HCSS

Small Kernels

• Smaller, more trustworthy
foundation
– Hypervisor, microkernel,

nano-kernel, virtual machine
monitor, isolation kernel,
partitioning kernel,
exokernel…..

– Fault isolation, fault
identification, IP protection,
modularity…..

– High assurance components
in presence of other
components

7

4

Small Kernels

• Smaller, more trustworthy
foundation

– Hypervisor, microkernel, nano-
kernel, virtual machine monitor,
isolation kernel, partitioning
kernel, exokernel…..

– Fault isolation, fault
identification, IP protection,
modularity…..

– High assurance components in
presence of other components

• Only as trustworthy as the
foundation

– Code reviews?

– Testing?

– Static analysis?

• Sound and unsound

seL4
Kernel

Supervisor

Linux
Server

Device
Driver

Trusted
Service Device

Driver

Legacy
App.Legacy

App.Legacy
App.Legacy

App.

Trusted
ServiceTrusted

ServiceTrusted
Service

Device
Driver

Sensitive
App.Sensitive

App.Sensitive
App.Sensitive
App.

Hardware

Untrusted Trusted

10 May, 2007 HCSS 8

Kernel Interface

• Kernel is a state transformer:
kernel :: Event ⇒ KernelState ⇒ KernelState

Simulator/
HW KernelSave/Restore

Syscall
Interrupt
Fault

Load/Store
TLB Access

10 May, 2007 HCSS 9

Kernel State

• Physical memory

Storage: obj_ref ⇒ kernel_object option

• Mapping database
Capability derivations: cte_ref ⇒ cte_ref option

• Current thread

Pointer: obj_ref

• Machine context

 Registers, caches, etc

10 May, 2007 HCSS 10

Kernel Objects (simplified)

• Capability Table
cap_ref ⇒ capability

• Thread Control Block (TCB)
record ctable, vtable :: capability
 state :: thread_state
 result_endpoint, fault_endpoint ::

cap_ref
 ipc_buffer :: vpage_ref
 context :: user_context

• Endpoint:
Idle | Receive (obj_ref list) | Send (obj_ref list)

• Data Page

10 May, 2007 HCSS

Designing and Formalising

concrete syntax is everything

10 May, 2007 HCSS 12

Designing and Formalising a New Kernel

Design &
Specify

Formal
Model

High-Performance
C implementation

Safety
Theorem

Proof

P
ro

of

10 May, 2007 HCSS

Kernel Developers
Versus

Formal Methods Practitioners

13

10 May, 2007 HCSS 14

Standard Kernel Design

Kernel Hacker View

Design &
Specify

Formal
Model

High-Performance
C implementation

Safety
Theorem

White-
board

Prototype on
Real Hardware

Step 2

Proof P
roof

10 May, 2007 HCSS 15

Formal Design

Design &
Specify

Formal
Model

High-Performance
C implementation

Safety
Theorem

Formal Methods View

Step 2

Design in
Theorem Prover

Proof

Proof

10 May, 2007 HCSS 16

Iterative Design and Formalisation

Design &
Specify

Formal
Model

High-Performance
C implementation

Safety
Theorem

Haskell
Prototype Proof

• prototype kernel
 executes native binaries on simulator

• exposes usability issues early

• tight formal design integration

Proof

10 May, 2007 HCSS 16

Iterative Design and Formalisation

Design &
Specify

Formal
Model

High-Performance
C implementation

Safety
Theorem

Haskell
Prototype Proof

Proof

Inspired by existing code

10 May, 2007 HCSS

User-Level Simulation

• User-level CPU simulator
– M5 Alpha simulator
– Locally-developed ARMv6

simulator
– QEMU

• Executes compiled user-
level binaries

• Sends events to the
Haskell kernel

17

10 May, 2007 HCSS

Machine Monad - Lowest Level of Model

• getMemoryTop :: MachineMonad (PPtr ())
• getDeviceRegions :: MachineMonad [(PPtr (), Int)]
• loadWord :: PPtr Word -> MachineMonad Word
• storeWord :: PPtr Word -> Word -> MachineMonad ()
• insertMapping :: PPtr Word -> VPtr -> Int -> Bool ->

 MachineMonad ()
• flushCaches :: MachineMonad ()
• getActiveIRQ :: MachineMonad (Maybe IRQ)
• maskInterrupt :: Bool -> IRQ -> MachineMonad ()
• ackInterrupt :: IRQ -> MachineMonad ()
• waitForInterrupt :: MachineMonad IRQ
• configureTimer :: MachineMonad IRQ
• resetTimer :: MachineMonad ()

• Foreign Function Interface (FFI)
• Approximate machine-level C functions
• Close to “real” as possible

– Forces us to manage “hardware”
18

10 May, 2007 HCSS

Kernel-State Monad

• Physical memory model
– Contents of dynamically-

allocated memory
– Typed kernel data

• Thread control blocks
• Capability and page

tables
– Indexed by physical

memory address
• Forces us to model

memory management
(30% of kernel)

• Reduces the gap to C
– Pointers,not Haskell’s

19

17

KernelState Monad

• Physical memory model

– Contents of dynamically-
allocated memory

– Typed data used by the kernel

• Thread control blocks

• Capability and page tables

• ...

– Indexed by physical memory
address

• Forces us to model memory
management (30% of kernel)

• Reduces the gap to C

– Pointers,not Haskell’s heap

• Still provides strongly typed
pointers

Physical Address
Space

CTE Objects

TCB Object

CTE Pointers

TCB Pointer

10 May, 2007 HCSS 20

Haskell to Isabelle/HOL

• Needs to be quick and easy:

• Problems:
– Size (3000 loc)
– Real-life code (GHC extensions, no nice formal model)
– Want Isabelle/HOL for safety and refinement proofs
– Existing tools do not parse the code

Formal
Model

Haskell
Prototype

10 May, 2007 HCSS 21

Approach: Quick and Dirty

• In the end:

• No “hard” translation correctness guarantee
• Remaining issues:

– Special features (“Dynamic”)
– Termination
– Monads

Formal
Model

High-Performance
C implementation

Proof

Safety
Theorem

10 May, 2007 HCSS 23

Termination

• Haskell:
– Lazy evaluation
– Non-terminating recursion possible

• Isabelle/HOL:
– Logic of total functions

• But:
– All system calls terminate
– We prove termination
– So far: done, relatively easy, not much recursion

 (one proof required ugly, but true, assumption)

10 May, 2007 HCSS 25

Monads

• Haskell kernel:
– Imperative, monadic style throughout

• Isabelle/HOL:
– Type system too weak to implement monads in the abstract

• But:
– Strong enough to implement concrete monads (state, exception)
– Nice do-style syntax in theorem prover
– So far: needed more concrete than abstract properties for proofs

10 May, 2007 HCSS

• Refinement target is C code
– C code whose “shape” we know in advance
– C code we will be able to optimise and refine later
– C code that will include assembler for fast paths

machine-checked
proof

Dropping Down to C

26

annotated
C code

C semantics +
memory model

Parser Isabelle/HOL
embedding VCG

+
Interactive

proof

HOL proof
obligations

10 May, 2007 HCSS

C Problems Avoided

• Abstract machine details can be implementation-defined.
– E.g., endian-ness, behaviour of arithmetic operations, size of

bytes(!)
• For a particular verification, treat these choices as given (know that

bytes are 8-bits long, know that ARM chips are run little-endian,
etc.)

• Other aspects can be unspecified.
– E.g., order of evaluation of expressions (significant in presence

of side effects)
• Make expressions with side effects illegal.

• Worst: lots of behaviour is undefined.
27

10 May, 2007 HCSS

C Problems Avoided

• Undefined behaviour is illegal behaviour:
– dividing by zero, accessing memory at bad alignments, writing to

unallocated memory...

• When translating from C input, annotate possibly badly
behaved expressions with guards.

• For example, when translating
 *(p + 1) = 3;
add guard requiring that address (p + 1) be a valid
address for an integer.

28

10 May, 2007 HCSS

Guards

• A guard is an arbitrary boolean expression over program
states. If true of a state, the program is allowed to
continue. (Otherwise, implicitly, it aborts.)

• Guards can be used to simulate arbitrarily complicated
run-time checks.

• The verification environment (Isabelle/HOL) requires the
verifier to prove that the guard is true whenever the
attached statement is about to be run.

29

10 May, 2007 HCSS

Guard Flexibility

• Generation of guards can be customised to suit
particular verification tasks.
– In some OS environments, address zero holds the start of a

exception vector; reading and writing the null pointer has to be
allowed.

– Writing unallocated memory may be a necessary part of the
action of a memory management module

• reading uninitialised memory might still be treated as a run-time
error

• The underlying verification environment can be simple
and language-agnostic.

30

10 May, 2007 HCSS

C Memory Model

• Underlying model must be addr ⇒ byte

• This is unusable

• Lots of work by Harvey Tuch has allowed layering of
higher-level, typed abstractions over this when code is
“well-behaved” (which is often)

31

byte int

10 May, 2007 HCSS

Multiple Typed Heaps Co-Existing

32

24 April 2007 Logic Lunch

Multiple Typed Heaps Can Co-exist

A type description gives one type to each address.

Accesses that respect it can happen independently.

15

byte

int

short

lift-typ-heap

7F 10 32 A0FF0A

typ-desc

0 FF FFheap-state

lift-state

10 May, 2007 HCSS

C Experience

• Technology and theory prototypes have been developed
– parser, VCG, typed heaps

• Case studies (independent of any refinement) have
established that the basic verification environment is
usable

• The proof of the pudding will soon be upon us...

33

10 May, 2007 HCSS

The Proof

Refinement on monadic functional
programs

10 May, 2007 HCSS 35

Overview

Abstract Model

Executable Model

C Code HW

Manual System Specification
(Isabelle/HOL)

High Performance Implementation
(C/asm)

Hoare Logic
Separation Logic

Monadic functional
programs

Formal proof:
concrete behaviour
captured at
abstract level

Haskell
Prototype

10 May, 2007 HCSS 36

Refinement

• The old story:
– C refines A if all behaviors of C are contained in A

• Sufficient: forward simulation

A

C
s’

s

t’

t

S S

10 May, 2007 HCSS 37

State Monad in Isabelle

• Nondeterministic state monad:

types (σ, α) monad = σ ⇒ (α * σ) set

return :: α ⇒ (σ, α) monad
return x s == {(x,s)}

bind (>>=) :: (σ, α) monad ⇒ (α ⇒ (σ, β) monad) ⇒
 (σ, β) monad

f >>= g == λs. ∪ (λ(v,t). g v t) ‘ (f s)

fail :: (σ, α) monad
fail s = {}

10 May, 2007 HCSS 38

Hoare Logic for the State Monad

• Hoare triples with result values:
 {P} f {Q} == ∀s. P s → (∀(r,s’) ∈ f s. Q r s’)

• WP-Rules:

{P x} return x {P }

{ P } f { Q } ∀x. { Q x } g x { R }

{P } f >>= g {R }

{ P } fail { Q }

10 May, 2007 HCSS 39

State Monad Refinement

• Forward Simulation
A

C
s’

s (r, t)

S R

(r’, t’)

S

corres S R A C ==

 ∀(s,s') ∈ S.

 ∀(r', t') ∈ C s'.

 ∃(r, t) ∈ A s. (t, t') ∈ S ∧ (r, r') ∈ R

10 May, 2007 HCSS 40

State Monad Refinement

• Forward Simulation
A

C
P’

P (r, t)

S R

(r’, t’)

S

corres S R P P' A C ==

 ∀(s,s') ∈ S. P s ∧ P' s'

 ∀(r', t') ∈ C s'.

 ∃(r, t) ∈ A s. (t, t') ∈ S ∧ (r, r') ∈ R

10 May, 2007 HCSS 42

corres S R’ P P’ f f’

∀ x y.(x,y) ∈ R’→ corres S R (Q x) (Q’ y) (g x) (g’ y)
{P} f {Q}

{P’} f’ {Q’}

A Small Refinement Calculus

corres S R P P’ (return x) (return y)

(x,y) ∈ R

corres S R P P’ A fail

corres S R P P’ (f >>= g) (f’ >>= g’)

10 May, 2007 HCSS 43

Summary

• Monadic style supports Refinement and Hoare Logic nicely
– get, put, modify, select, or, assert, when, if, case, etc analogous

• Statistics:
– 3.5kloc abstract, 7kloc concrete spec (about 3k Haskell)
– 35kloc proof so far (estm. 50kloc final, about 10kloc/month)
– 22 patches to Haskell kernel, 90 to abstract spec
– 7-10kloc of C/asm expected for final product

• Invariants:
– well typed references, aligned objects
– thread states and endpoint queues
– well formed current thread, scheduler queues

10 May, 2007 HCSS

Future Work

• From http://www.ok-labs.com

We are collaborating closely with NICTA ... on
developing the first fully verified, proven bug-free
operating systems kernel within two years.

• Just advertising?

44

http://www.ok-labs.com
http://www.ok-labs.com

10 May, 2007 HCSS

Thank You

