Verifying an Operating System Kernel

Michael Norrish

NICTA Members

. B Department of State and
B: Australian Government =z % UNSW % fegional Development
2 5

" Department of Communications, mmmm——
Information Technology and the Arts

First for Business

o @ . THE UNIVERSITY
7 iversi riffith W .

oom The University of Sydney e tand |“u| &\IIVERStITY OF QUEENSLAND

Government

. = a
Australian Research Council The Place To Be
NICTA Partiners

fAn exception 06 has occured at 0028:C11B3ADC in WD DiskTSD(03) +
00001660, This was called from 0028:C11B40C8 in WD voltrack(04) +
00000000, It may be possible to continue normally,

* Press any key to attempt to continue.
* Press CTRLHALTHRESET to restart your computer. You will
lose any unsaved information in all applications.

Press any key to continue

el4 + L4.verified m

S

Goals:
- Formal specification of kernel and machine

- Verified production quality, high-performance kernel

Address problems in older L4s:

« Communication control
- Kernel resource accounting

« No performance penalty for new features

— 30 cycles per syscall ok. Maybe.

10 May, 2007

Oq

verview

« The selL4 Kernel

— Interface
— State
— Kernel Objects

* Interesting Problems

— Designing and formalizing an OS kernel @:Dﬁ

— Coping with C

— Refinement on monadic functional programs D I:{>[j

10 May, 2007

Credit Where It's Due m

« L4.verified:

— Led by Gerwin Klein

— Verifiers (Sydney): four research assistants, three PhD students,
under-grad projects, two/three researchers (including 100% of
Gerwin)

— Tool support (Canberra): three researchers
— Project entering its fourth (and last) year

« L4 itself

— “L4” is really a family of (open source) implementations

— Many people over many years
* including new spin-off company Open Kernel Labs

10 May, 2007

selL4

secure embedded L4

Small Kernels

- Smaller, more trustworthy e N
foundation
Sensitive

— Hypervisor, microkernel, App.
nano-kernel, virtual machine : \
monitor, isolation kernel,

—

partitioning kernel, N ;fH\ N
exokernel

Device Trusted Device

Fault isolation, fault Driver csted| || oriver
identification, IP protection,) \
modularity [

High assurance components
in presence of other Kernel
components

—

Supervisor

Hardware

10 May, 2007

Kq

ernel Interface

Syscall
Interrupt

Fault

Simulator/
HW Save/Restore

Load/Store
TLB Access

« Kernel is a state transformer:
kernel :: Event = KernelState — KernelState

10 May, 2007

Kq

ernel State

Physical memory
Storage: obj ref => kernel object option

Mapping database

Capability derivations: cte ref = cte ref option

Current thread
Pointer: obj_ ref

Machine context
Registers, caches, etc

10 May, 2007

Kernel Objects (simplified)

- Capability Table

cap ref = capability

- Thread Control Block (TCB)
record ctable, vtable :: capability
state :: thread state

result endpoint, fault endpoint ::
cap_ref
ipc buffer :: vpage ref
context :: user context

« Endpoint:
Idle | Receive (obj ref list) | Send (obj ref list)

- Data Page

10 May, 2007

Designing and Formalising

concrete syntax is everything

Dq

esigning and Formalising a New Kernel

Design & Formal
Specify Model

High-Performance Safety
C implementation Theorem

10 May, 2007

Kernel Developers
Versus
Formal Methods Practitioners

Sq

tandard Kernel Design

Kernel Hacker View

O
Design & -
Specify < 5?
N

Formal
Model
High-Performance W
C implementation

J

>
_— Safety
Prototype on Theorem
Real Hardware

10 May, 2007

Fq

ormal Design

Formal Methods View Design in
Theorem Prover

Design & Formal
Specify Model

e 0

-

LHigh-Performance Safety

C implementatio w Theorem

10 May, 2007

q

terative Design and Formalisation

Design &
{ i Specify ﬁ

Haskell Formal Safety
Prototype :> Model Theorem

ﬂ prototype kernel

executes native binaries on simulator

High-Performance * exposes usability issues early

C implementation « tight formal design integration

10 May, 2007

q

terative Design and Formalisation

Design &
f i Specify ﬁ

Haskell Formal Safety
Prototype Theorem

High-Performance
C implementation

10 May, 2007

Uq

ser-Level Simulation

e User-level CPU simulator
- M5 Alpha simulator

- Locally-developed ARMv6
simulator

- QEMU

e Executes compiled user-
level binaries \ 4

e Sends events to the ARMv6 Save/RestonEg

Haskell kernel Binary

Event

Simulator <J_oa d/Store Kernel

JLB Access

10 May, 2007

Machine Monad - Lowest Level of Model

getMemoryTop :: MachineMonad (PPtr ())
getDeviceRegions :: MachineMonad [(PPtr (), Int)]
loadWord :: PPtr Word -> MachineMonad Word
storeWord :: PPtr Word -> Word -> MachineMonad ()

insertMapping :: PPtr Word -> VPtr -> Int -> Bool ->
MachineMonad ()

flushCaches :: MachineMonad ()

getActiveIRQ :: MachineMonad (Maybe IRQ)
maskInterrupt :: Bool -> IRQ -> MachineMonad ()
ackInterrupt :: IRQ -> MachineMonad ()
waitForInterrupt :: MachineMonad IRQ
configureTimer :: MachineMonad IRQ

resetTimer :: MachineMonad ()

Foreign Function Interface (FFI)
Approximate machine-level C functions

Close to “real” as possible
— Forces us to manage “hardware”

10 May, 2007

Kq

ernel-State Monad

* Physical memory model Physical Address

— Contents of dynamically- Space
allocated memory

— Typed kernel data CTE Pointers
« Thread control blocks
- Capability and page
tables

— Indexed by physical
memory address

* Forces us to model
memory management TcB Pointer
(30% of kernel)

- Reducesthe gapto C
— Pointers,not Haskell’s

10 May, 2007

— CTE Objects

TCB Object

Haskell to Isabelle/HOL m

* Needs to be quick and easy:

Haskell j‘> Formal
Prototype Model

* Problems:
— Size (3000 loc)
— Real-life code (GHC extensions, no nice formal model)
— Want Isabelle/HOL for safety and refinement proofs
— Existing tools do not parse the code

10 May, 2007

Aq

pproach: Quick and Dirty

* |n the end:

o |

[High-Performance] [Safety]

C implementation Theorem

* No “hard” translation correctness guarantee

- Remaining issues:
— Special features (“Dynamic”)
— Termination
— Monads

10 May, 2007

Tq

ermination

- Haskell:
— Lazy evaluation
— Non-terminating recursion possible

- |sabelle/HOL:

— Logic of total functions

- But:
— All system calls terminate
— We prove termination

— So far: done, relatively easy, not much recursion
(one proof required ugly, but true, assumption)

10 May, 2007

Mq

onads

- Haskell kernel:
— Imperative, monadic style throughout

- |sabelle/HOL:

— Type system too weak to implement monads in the abstract

- But:
— Strong enough to implement concrete monads (state, exception)
— Nice do-style syntax in theorem prover
— So far: needed more concrete than abstract properties for proofs

10 May, 2007

Dq

ropping Down to C

- Refinement target is C code
— C code whose “shape” we know in advance
— C code we will be able to optimise and refine later
— C code that will include assembler for fast paths

annotated Parser Isabelle/HOL HOL proof
C code embedding obligations

+
C semantics + machine-checked @ Interactive

memory model proof proof

10 May, 2007

Cq

Problems Avoided

« Abstract machine details can be implementation-defined.

— E.g., endian-ness, behaviour of arithmetic operations, size of
bytes(!)
- For a particular verification, treat these choices as given (know that

bytes are 8-bits long, know that ARM chips are run little-endian,
etc.)

- Other aspects can be unspecified.

— E.g., order of evaluation of expressions (significant in presence
of side effects)

« Make expressions with side effects illegal.

« Worst: lots of behaviour is undefined.

10 May, 2007

Cq

Problems Avoided

- Undefined behaviour is illegal behaviour:

— dividing by zero, accessing memory at bad alignments, writing to
unallocated memory...

- When translating from C input, annotate possibly badly

behaved expressions with guards.

- For example, when translating
*(p + 1) =

add guard requiring that address (p + 1) be a valid
address for an integer.

10 May, 2007

H

uards

« Aguard is an arbitrary boolean expression over program
states. If true of a state, the program is allowed to
continue. (Otherwise, implicitly, it aborts.)

Guards can be used to simulate arbitrarily complicated
run-time checks.

The verification environment (Isabelle/HOL) requires the
verifier to prove that the guard is true whenever the
attached statement is about to be run.

10 May, 2007

Guard Flexibllity m

« Generation of guards can be customised to suit

particular verification tasks.

— In some OS environments, address zero holds the start of a
exception vector; reading and writing the null pointer has to be
allowed.

— Writing unallocated memory may be a necessary part of the
action of a memory management module

+ reading uninitialised memory might still be treated as a run-time
error

« The underlying verification environment can be simple
and language-agnostic.

10 May, 2007

Cq

Memory Model

Underlying model must be addr = byte

4 VA

byte

« This is unusable

- Lots of work by Harvey Tuch has allowed layering of
higher-level, typed abstractions over this when code is
“well-behaved” (which is often)

10 May, 2007

Mq

ultiple Typed Heaps Co-Existing

A type description gives one type to each address.
Accesses that respect it can happen independently.

typ-desc .

@ lift-state

heap-state [oATFF 7F| 1032

lift-typ-heap
v

10 May, 2007

Cq

Experience

- Technology and theory prototypes have been developed
— parser, VCG, typed heaps

- Case studies (independent of any refinement) have
established that the basic verification environment is
usable

- The proof of the pudding will soon be upon us...

10 May, 2007

The Proof

Refinement on monadic functional
programs

verview

H

Manual System Specification
| Abstract Mode (Isabelle/HOL)

Formal proof:
concrete behaviour
captured at
abstract level

Monadic functional
programs

[Executable Model] < [Pl;lci?)l’zil)le]

Hoare Logic
Separation Logic

] High Performance Implementation

I HW (C/asm)

10 May, 2007

Rq

efinement

» The old story:
— Crefines A if all behaviors of C are contained in A

« Sufficient: forward simulation

10 May, 2007

Sq

tate Monad in Isabelle

 Nondeterministic state monad:

types (0,a) monad = 0 = (a * O) set

return :: o = (0, o) monad
return x s == {(x,s)}

bind (>>=) :: (o, a) monad = (o = (0o, p) monad) =
(o, p) monad
f >=qg=As.U (AM(v,t). gv t) * (f s)

fail :: (0o, a) monad
fail s = {}

10 May, 2007

Hq

oare Logic for the State Monad

Hoare triples with result values:
{P} £ {Q} == Vs. Ps — (V(r,s’") € £ s. Qr s’)

- WP-Rules:

{P x} return x {P }

{P}{Q} x{Qx}gx{R}
{P}f>>=g{R}

{P} fail {Q}

10 May, 2007

tate Monad Refinement

Sq

« Forward Simulation

corres S R A C ==
V(s,s') € 8.
V(r', t') €
d(r, £t) €A s. (t, t')y €S A (r, r') R

10 May, 2007

tate Monad Refinement

Sq

« Forward Simulation

corres S R P P' A C ==
V(s,s') €S. Ps A P' s'
V((r', t') € C s'.
d(r, t) €A s. (£, t') €S A (r, r') ER

10 May, 2007

Aq

Small Refinement Calculus

corres S R P P’ A fail

(x,y) € R

corres S R P P’ (return x) (return y)

corres S R’ P P’ £ £/

Vxvy.(x,y) € RR— corres S R (Q x) (Q" y) (g x) (g’ vy)
{P} £ {Q}
{P"} £ {Q'}
corres S R P P’ (£ >>= g) (£ >>= g’)

10 May, 2007

Sq

ummary

- Monadic style supports Refinement and Hoare Logic nicely
— get, put, modify, select, or, assert, when, if, case, etc analogous

- Statistics:
3.5kloc abstract, 7kloc concrete spec (about 3k Haskell)
35kloc proof so far (estm. 50kloc final, about 10kloc/month)
22 patches to Haskell kernel, 90 to abstract spec
7-10kloc of C/asm expected for final product

 Invariants:
— well typed references, aligned objects
— thread states and endpoint queues
— well formed current thread, scheduler queues

10 May, 2007

Fq

uture Work

* Fromhttp://www.ok-1abs.com

We are collaborating closely with NICTA ... on
developing the first fully verified, proven bug-free
operating systems kernel within two years.

e Just advertising?

10 May, 2007

http://www.ok-labs.com
http://www.ok-labs.com

Thank You

G()f.)gle ‘I4.veriﬁed | [I'm Feeling_lrl’\}’ucky |

