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The Problem
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seL4 + L4.verified

Goals:
• Formal specification of kernel and machine
• Verified production quality, high-performance kernel

Address problems in older L4s:
• Communication control
• Kernel resource accounting
• No performance penalty for new features

– 30 cycles per syscall ok. Maybe.
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Overview

• The seL4 Kernel
– Interface
– State
– Kernel Objects

• Interesting Problems
– Designing and formalizing an OS kernel
– Coping with C
– Refinement on monadic functional programs
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Credit Where It’s Due

• L4.verified:
– Led by Gerwin Klein
– Verifiers (Sydney): four research assistants, three PhD students, 

under-grad projects, two/three researchers (including 100% of 
Gerwin)

– Tool support (Canberra): three researchers
– Project entering its fourth (and last) year

• L4 itself
– “L4” is really a family of (open source) implementations
– Many people over many years

• including new spin-off company Open Kernel Labs
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seL4
secure embedded L4
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Small Kernels

• Smaller, more trustworthy 
foundation
– Hypervisor, microkernel, 

nano-kernel, virtual machine 
monitor, isolation kernel, 
partitioning kernel, 
exokernel…..

– Fault isolation, fault 
identification, IP protection, 
modularity…..

– High assurance components 
in presence of other 
components
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Small Kernels

• Smaller, more trustworthy 
foundation

– Hypervisor, microkernel, nano-
kernel, virtual machine monitor, 
isolation kernel, partitioning 
kernel, exokernel…..

– Fault isolation, fault 
identification, IP protection, 
modularity…..

– High assurance components in 
presence of other components

• Only as trustworthy as the 
foundation

– Code reviews?

– Testing?

– Static analysis?

• Sound and unsound

seL4 
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Kernel Interface

• Kernel is a state transformer:
kernel :: Event ⇒ KernelState ⇒ KernelState

Simulator/
HW KernelSave/Restore

Syscall
Interrupt
Fault

Load/Store
TLB Access
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Kernel State

• Physical memory 

Storage: obj_ref ⇒ kernel_object option

• Mapping database        
Capability derivations: cte_ref ⇒ cte_ref option

• Current thread               

Pointer: obj_ref

• Machine context
 

 Registers, caches, etc
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Kernel Objects (simplified)

• Capability Table
cap_ref ⇒ capability

• Thread Control Block (TCB)
record        ctable, vtable :: capability
                  state :: thread_state
                  result_endpoint, fault_endpoint :: 

cap_ref
               ipc_buffer :: vpage_ref
               context :: user_context

• Endpoint: 
Idle | Receive (obj_ref list) | Send (obj_ref list)

• Data Page
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Designing and Formalising

concrete syntax is everything
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Designing and Formalising a New Kernel

Design &
Specify

Formal
Model

High-Performance
C implementation

Safety
Theorem

Proof

P
ro

of
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Kernel Developers
Versus

Formal Methods Practitioners

13
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Standard Kernel Design

Kernel Hacker View

Design &
Specify

Formal
Model

High-Performance
C implementation

Safety
Theorem

White-
board

Prototype on
Real Hardware

Step 2

Proof P
roof
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Formal Design

Design &
Specify

Formal
Model

High-Performance
C implementation

Safety
Theorem

Formal Methods View

Step 2

Design in 
Theorem Prover

Proof

Proof



                           

10 May, 2007 HCSS 16

Iterative Design and Formalisation

Design &
Specify

Formal
Model

High-Performance
C implementation

Safety
Theorem

Haskell
Prototype Proof

•  prototype kernel 
   executes native binaries on simulator

•  exposes usability issues early

•  tight formal design integration

Proof
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Iterative Design and Formalisation

Design &
Specify

Formal
Model

High-Performance
C implementation

Safety
Theorem

Haskell
Prototype Proof

Proof

Inspired by existing code
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User-Level Simulation

• User-level CPU simulator
– M5 Alpha simulator
– Locally-developed ARMv6 

simulator
– QEMU

• Executes compiled user-
level binaries

• Sends events to the 
Haskell kernel

17
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Machine Monad - Lowest Level of Model

• getMemoryTop :: MachineMonad (PPtr ())
• getDeviceRegions :: MachineMonad [(PPtr (), Int)]
• loadWord :: PPtr Word -> MachineMonad Word
• storeWord :: PPtr Word -> Word -> MachineMonad ()
• insertMapping :: PPtr Word -> VPtr -> Int -> Bool ->              

    MachineMonad ()
• flushCaches :: MachineMonad ()
• getActiveIRQ :: MachineMonad (Maybe IRQ)
• maskInterrupt :: Bool -> IRQ -> MachineMonad ()
• ackInterrupt :: IRQ -> MachineMonad ()
• waitForInterrupt :: MachineMonad IRQ
• configureTimer :: MachineMonad IRQ
• resetTimer :: MachineMonad ()

• Foreign Function Interface (FFI)
• Approximate machine-level C functions
• Close to “real” as possible

– Forces us to manage “hardware”
18
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Kernel-State Monad

• Physical memory model
– Contents of dynamically-

allocated memory
– Typed kernel data

• Thread control blocks
• Capability and page 

tables
– Indexed by physical 

memory address
• Forces us to model 

memory management 
(30% of kernel)

• Reduces the gap to C
– Pointers,not Haskell’s 

19
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KernelState Monad

• Physical memory model

– Contents of dynamically-
allocated memory

– Typed data used by the kernel

• Thread control blocks

• Capability and page tables

• ...

– Indexed by physical memory 
address

• Forces us to model memory 
management (30% of kernel)

• Reduces the gap to C

– Pointers,not Haskell’s heap

• Still provides strongly typed 
pointers

Physical Address
Space

CTE Objects

TCB Object

CTE Pointers

TCB Pointer
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Haskell to Isabelle/HOL

• Needs to be quick and easy:

• Problems:
– Size (3000 loc)
– Real-life code (GHC extensions, no nice formal model)
– Want Isabelle/HOL for safety and refinement proofs
– Existing tools do not parse the code

Formal
Model

Haskell
Prototype
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Approach: Quick and Dirty

• In the end:

• No “hard” translation correctness guarantee
• Remaining issues:

– Special features (“Dynamic”)
– Termination
– Monads

Formal
Model

High-Performance
C implementation

Proof

Safety
Theorem



                           

10 May, 2007 HCSS 23

Termination

• Haskell:
– Lazy evaluation
– Non-terminating recursion possible

• Isabelle/HOL:
– Logic of total functions

• But:
– All system calls terminate
– We prove termination
– So far: done, relatively easy, not much recursion 

            (one proof required ugly, but true, assumption)
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Monads

• Haskell kernel:
– Imperative, monadic style throughout

• Isabelle/HOL:
– Type system too weak to implement monads in the abstract

• But:
– Strong enough to implement concrete monads (state, exception)
– Nice do-style syntax in theorem prover
– So far: needed more concrete than abstract properties for proofs



                           

10 May, 2007 HCSS

• Refinement target is C code 
– C code whose “shape” we know in advance
– C code we will be able to optimise and refine later
– C code that will include assembler for fast paths

machine-checked
proof

Dropping Down to C

26

annotated
C code

C semantics +
memory model

Parser Isabelle/HOL
embedding VCG

+
Interactive 

proof

HOL proof 
obligations
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C Problems Avoided

• Abstract machine details can be implementation-defined.  
– E.g., endian-ness, behaviour of arithmetic operations, size of 

bytes(!)
• For a particular verification, treat these choices as given (know that 

bytes are 8-bits long, know that ARM chips are run little-endian, 
etc.)

• Other aspects can be unspecified.
– E.g., order of evaluation of expressions (significant in presence 

of side effects)
• Make expressions with side effects illegal.

• Worst: lots of behaviour is undefined.
27
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C Problems Avoided

• Undefined behaviour is illegal behaviour:
– dividing by zero, accessing memory at bad alignments, writing to 

unallocated memory...

• When translating from C input, annotate possibly badly 
behaved expressions with guards.

• For example, when translating 
       *(p + 1) = 3;
add guard requiring that address (p + 1) be a valid 
address for an integer.

28
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Guards

• A guard is an arbitrary boolean expression over program 
states.  If true of a state, the program is allowed to 
continue.  (Otherwise, implicitly, it aborts.)

• Guards can be used to simulate arbitrarily complicated 
run-time checks.  

• The verification environment (Isabelle/HOL) requires the 
verifier to prove that the guard is true whenever the 
attached statement is about to be run.

29
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Guard Flexibility

• Generation of guards can be customised to suit 
particular verification tasks. 
– In some OS environments, address zero holds the start of a 

exception vector; reading and writing the null pointer has to be 
allowed. 

– Writing unallocated memory may be a necessary part of the 
action of a memory management module

• reading uninitialised memory might still be treated as a run-time 
error

• The underlying verification environment can be simple 
and language-agnostic. 

30
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C Memory Model

• Underlying model must be addr ⇒ byte

• This is unusable

• Lots of work by Harvey Tuch has allowed layering of 
higher-level, typed abstractions over this when code is 
“well-behaved” (which is often)

31

byte int



                           

10 May, 2007 HCSS

Multiple Typed Heaps Co-Existing

 

32
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Multiple Typed Heaps Can Co-exist

A type description gives one type to each address. 

Accesses that respect it can happen independently.

15

byte

int

short

lift-typ-heap

7F 10 32 A0FF0A

typ-desc

0 FF FFheap-state

lift-state
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C Experience

• Technology and theory prototypes have been developed
– parser, VCG, typed heaps

• Case studies (independent of any refinement) have 
established that the basic verification environment is 
usable

• The proof of the pudding will soon be upon us... 

33
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The Proof

Refinement on monadic functional 
programs
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Overview

Abstract Model

Executable Model

C Code HW

Manual System Specification
(Isabelle/HOL)

High Performance Implementation
(C/asm)

Hoare Logic
Separation Logic

Monadic functional 
programs

Formal proof:
concrete behaviour 
captured at 
abstract level

Haskell
Prototype
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Refinement

• The old story:
– C refines A if all behaviors of C are contained in A

• Sufficient: forward simulation

A

C
s’

s

t’

t

S S



                           

10 May, 2007 HCSS 37

State Monad in Isabelle

• Nondeterministic state monad:

types  (σ, α) monad  =  σ ⇒ (α * σ) set

return :: α ⇒ (σ, α) monad
return x s == {(x,s)}

bind (>>=) :: (σ, α) monad ⇒ (α ⇒ (σ, β) monad) ⇒
                     (σ, β) monad

f >>= g == λs. ∪ (λ(v,t). g v t) ‘ (f s)

fail :: (σ, α) monad
fail s = {}
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Hoare Logic for the State Monad

• Hoare triples with result values:
  {P} f {Q} == ∀s. P s → (∀(r,s’) ∈ f s. Q r s’)

• WP-Rules:

{P x} return x {P }

{ P } f { Q }        ∀x. { Q x } g x { R }  

{P } f >>= g {R }

{ P }  fail  { Q }
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State Monad Refinement

• Forward Simulation
A

C
s’

s (r,  t)

S R

(r’, t’)

S

corres S R A C ==

    ∀(s,s') ∈ S. 

      ∀(r', t') ∈ C s'.  

            ∃(r, t) ∈ A s.  (t, t') ∈ S ∧  (r, r') ∈ R
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State Monad Refinement

• Forward Simulation
A

C
P’

P (r,  t)

S R

(r’, t’)

S

corres S R P P' A C ==

    ∀(s,s') ∈ S. P s ∧ P' s' 

      ∀(r', t') ∈ C s'.

        ∃(r, t) ∈ A s. (t, t') ∈ S ∧ (r, r') ∈ R
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corres S R’ P P’ f f’

∀ x y.(x,y) ∈ R’→ corres S R (Q x) (Q’ y) (g x) (g’ y)
{P} f {Q}

{P’} f’ {Q’}

A Small Refinement Calculus 

corres S R P P’ (return x) (return y)

(x,y) ∈ R

corres S R P P’ A fail

corres S R P P’ (f >>= g) (f’ >>= g’)
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Summary

• Monadic style supports Refinement and Hoare Logic nicely
– get, put, modify, select, or, assert, when, if, case, etc analogous

• Statistics:
– 3.5kloc abstract, 7kloc concrete spec (about 3k Haskell)
– 35kloc proof so far (estm. 50kloc final, about 10kloc/month)
– 22 patches to Haskell kernel, 90 to abstract spec
– 7-10kloc of C/asm expected for final product 

• Invariants: 
– well typed references, aligned objects
– thread states and endpoint queues
– well formed current thread, scheduler queues 
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Future Work

• From http://www.ok-labs.com

We are collaborating closely with NICTA ... on 
developing the first fully verified, proven bug-free 
operating systems kernel within two years.

• Just advertising?  

44

http://www.ok-labs.com
http://www.ok-labs.com
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Thank You


