Wombat
A Portable User-Mode Linux for Embedded Systems

Ben Leslié, Carl van Schaikand Gernot Heisér

T National ICT Australia, Sydney, Australia
i University of New South Wales, Sydney, Australia
(firstname.lastnamé@nicta.com.au

Abstract

Embedded systems are the biggest potential market for [.muxh bigger (in terms of number
as well as total value) than either the desktop or the sereeken While Linux is making excellent
inroads into (high-end) embedded systems, a number ofectrdk particular to embedded systems
threaten to limit its impact. These include the requireradat hard real-time capability, extreme
robustness, and, in particular, a minimal trusted compuiase. The viral nature of the GPL is also
frequently causing problems.

We argue that a portable user-mode Linux which runs on a mitymal kernel is the answer,
and will open up application domains which would otherwisehlard to penetrate. We present such
a system, called Wombat, which is a port of Linux kernel tolthemicrokernel. Wombat is readily
portable between architectures (presently runs on x86, AR MIPS), and initial performance
evaluations look promising.

1 Embedded Systems: The Next Frontier

Embedded systems are characterised as devices which gpeimatily computers but contain one or
more processors, operating “behind the scenes”, in ordpradde part of the device’s functionality.
The embedded market is huge — well over 99% of all processersmabedded — and growing strongly
(while the PC and server markets are comparatively flat).

Presently, the vast majority of embedded systems are bawseatleer primitive processors, 8- or 16-
bit micro-controllers without memory protection, perfanm relatively simple control operations. Such
devices tend to have little or no operating system (OS)r $aftware comprises essentially a control
loop which executes task according to a fixed schedule, amé seinimal “kernel’, consisting of some
device drivers and simple libraries.

However, there is a strong trend from those “classical’ edbd systems towards more powerful
platforms, 32-bit (sometimes even 64-bit) general-puega®cessors which provide memory protection
via amemory-management urfiMU). The reasons for this development include the marlkehand
for more sophisticated embedded systems with a lot of complectionality. A typical example are
personal communication and entertainment devices, wihere is an increasing convergence of what
used to be dissimilar devices, into a single system offeaimgde variety of functions.

Such devices have requirements that are quite differem trmse of classical (closed) embedded
systems: high demand on processing capability, and a muech open architecture, which features
internet connectivity, field upgradability via remote a&sestandardised and well-known application
programming interface (API) and the ability to process doaded data and even execute downloaded
code. These are requirements that are well supported bgroporary desktop and server operating
systems, and it is therefore not surprising that there isoagtrend towards an increasing use of standard
operating systems, such as Linux, in embedded systemsctlrstaveys show that Linux is the leading
OS fornewembedded systems work, with (various versions of) Wind@kig second place [Lin04].

2 2 EMBEDDED SYSTEMS CHALLENGES

While we suspect that such surveys are strongly biased taw&2-bit systems and therefore somewhat
misleading, there is little doubt that the tendency towdstindard” OSes in embedded systems is real,
and presents the strongest growth potential for Linux.

The main reasons that are typically given for the populartyinux in embedded systems are source-
code availability and the royalty-free status. Surveysstiat many embedded systems developers are
willing to pay for development environments, training ardes support, but are unwilling to share the
income from their products (in the form of per-unit royadli¢EDCO03].

2 Embedded Systems Challenges

While modern embedded systems have requirements that dreupported by Linux, they provide a
number of other challenges, which make Linux a less-thaatidhoice. These include:

hard real-time: Embedded systems are mostly real-time systems, meaninth#hahave to respond
to external events in a timely fashion. In many cases (egtitmadia systems) this real-time
requirement is “soft”, meaning that such systems can temsissing a deadline occasionally.
Other systems have “hard” real-time requirements: misaidgadline is considered a complete
system failure, and may result in mission failure or everttdea

In spite of very significant progress in Linux’s real-timespensiveness, normal Linux is not
suitable for hard real-time systems, and there are signghhasituation has recently worsened
[SMO04]. Special real-time versions, such as RTLinux [FSKd &TAI [RTA] address the problem
by adding a real-time layer below the kernel proper, in otdenave full control over interrupt
handling. This leads to an architecture which is, in pritgipapable of meeting real-time require-
ments, although at a cost of running the real-time companienthe kernel (with corresponding
loss of protection).

However, the resulting system is still too complex to beyfathalysed with respect to its real-time
performance, with a resulting uncertainty about its apiid really meet the real-time goals. In

fact, it has been shown that a heavily-loaded RTLinux syg&isito honour its real-time guaran-

tees [MHHO2]. Ideally, the system’s real-time performasheuld be established either by math-
ematical proof, or by a complete empirical execution-timealgsis of all its possible execution

paths. This is only practical if the kernel and other remdeticomponents aneery small.

highly robust: Embedded systems are often employed in life-critical osiiscritical scenarios. While
the reliability of Linux on desktops and servers is very hitdlis typically applies to systems which
are at least close to widely-deployed configurations. Masshanges to system configuration, as
it is typically necessary for an embedded system, will ishdly reduce stability and require a
significant maturation process. In the meantime, the afiparts of the system should not be af-
fected by other components which may only be required fopstifmg a user interface or some
non-critical entertainment function. Furthermore, thidaal part of the system must be protected
from attacks by malicious programs which the user downldddam the internet.

Arelated issue is that of upgrading the system without diomat While it is possible, in theory, to
upgrade Linux kernel modules without rebooting the wholgey, in practice this is very limited,
as many modules are tied closely to a specific kernel vergiakjng it impossible to load a newer
version of the model into an old kernel. Other componentt®kernel are impossible to upgrade
without a reboot;

small trusted computing base: A system’strusted computing bag@ CB) is the set of components of a
system which must be assumed to operate correctly in ordescertain the reliability ofiny part
of the system, and the confidentiality and integrity of ittaddNote that this does not necessarily
mean that all components of the TCB are actutgtworthy but clearly the system can only be
trusted to perform its core functionality if the TCB can hested too.

As embedded systems often operate in life- or missioreatisituations, they are trusted to a high
degree, and one would hope that they are actually trustwoitthmany cases a certification of
trustworthiness is required by governments or industryidsdrhe methods used to establish such
trust either have to be used from the beginning of the systel@sign and implementation (strict
standards for systematic design, implementation and adew) or do not scale beyond systems
of a few thousand lines of code (mathematical proof or cohmgmsive code inspection). They
therefore require a minimal TCB size.

As all kernel code executes with system privilege, it is neindly all part of the TCB. The Linux
kernel is too big to establish the degree of trust that isiredufor many embedded applications.

There is one further roadblock for the deployment of Linuxhe embedded systems worlkte
GPL. Embedded systems are produced and sold in order to prodoomeé to their developers and
producers. In many cases the hardware and its interfacdbeadistinguishing properties on which the
market success of a device is based. The firmware is ofterpatsof the producer’s critical intellectual
property, or needs protection as access to its source codle expose the company’s trade secrets to a
degree that would destroy its business.

It is the nature of embedded systems that such firmware mostajty be tightly integrated with the
OS. In the case of Linux, this means in most cases that it widbime subject to the GPL and thus open
source, something that is unacceptable to a company whasgebs is based on keeping its intellectual
property (IP) secret.

Motorola’s much-touted “Linux Smartphone” [Mot04] is a eda point. It runs Linux on a general-
purpose processor, which is separate from the chips thdéimgmt the basic phone functionality. The
Linux system is essentially used to run the user interfacke fhysical separation protects the core
system functionality from a misbehaving Linux side, anadhe firmware from the GPL.

3 LinuxonaMicrokernd

An approach that addresses all the above challenges is tdnmur in user mode on top of a very small
and fast microkernel. A microkernel is a minimal kernel whjmrovides no services, only fundamental
mechanisms that can be used to implement services via usse-gservers. The microkernel is the only
part of such a system that runs in privilege mode.

When running Linux on a microkernel, the Linux kernel becsrae unprivileged (user-mode) server
process. This setup is somewhat similatger-Mode LinuXUML) [Dik00Q]. However, UML needs to
be hosted on Linux and only runs on x86. Our aim is a user-maualexLsystem that requires a minimal
infrastructure (and a minimal TCB), and runs on a wide ranigarchitectures relevant for embedded
systems (mostly ARM and MIPS).

In our implementation of this approach, the Linux serverabedd Wombat The microkernel we use
is the L4Ka::Pistachio [L4K] implementation of the L4 mi&ernel API [L4KO01]. L4 has demonstrated
performance that is an order of magnitude better than tredrier microkernels [Lie93,LE®7] (which
was poor and has brought the whole microkernel idea inteplige). L4 is designed to support hard real-
time applications.

The resulting system, which can be viewed as a variant of &amad McKenny’s third approach
to real-time computing with Linux [SM04], is shown in Figute This approach has been pioneered
by Dresden University of Technology (TUD) by theitllinux system [HHLF97]. They experienced a
moderate performance degradation compared to native L2fixx on a Pentium machine. The TUD
researchers have also demonstrated an RTLinux-compatilileonment for user-mode real-time tasks,
and have shown that its performance is not greatly degraoiegared to RTLinux [MHHO02].

The Iguana layer in Figure 1 provides some basic OS senites as resource management and
protection. This is hecessary as L4 only provides gemagchanismsno services. Iguana is discussed
further in Section 4.1.

This system architecture addresses the challenges listgédtion 2 as follows:

4 4 SYSTEM ARCHITECTURE

Untrusted
Legacy App
Wombat
Linux Server
Sensitive
App

Sensitive |Proprietary
App Firmware

Iguana Resource Manager

Hardware

Figure 1: Running a user-mode Linux server (Wombat) andr@tpplications on a microkernel.

o the microkernel is responsible for dealing with interrupts4 is designed to satisfy the needs
of hard real-time systems, and ensures that real-time ghigihs are immediately activated if a
relevant interrupt occurs. The Linux system is not involiedny handling of interrupts destined
for real-time tasks;

e the sensitive real-time part of the system is totally issdafrom the Linux side by hardware pro-
tection (mediated by the microkernel) and by the above-ioeed way of dealing with interrupts.
Even if the whole Linux world crashes or is compromised by tiacer, it cannot compromise
the real-time side. Similarly, a new version of the Linuxvegr(based on the same or a different
version of the Linux kernel) can be loaded by simply restgrit, without requiring any downtime
of the sensitive part of the system;

e the size of the TCB is much reduced. Instead of containing whole Linux kernel (hundreds
of thousands of lines of code at least), it contains the L4 okiernel (about 10,000 loc) and the
Iguana resource manager (about 20,000 loc). Obviouslyfjringvare and other “sensitive apps”
are part of the TCB, but that is independent on whether it aimi4 or on Linux. The edge of the
TCB is indicated by a thick line in Figure 1. We will return tfeetissue of the TCB in Section 7;

o the L4 microkernel, as well as Iguana, are open-sourcedrunB&D-style license, allowing it to
be used with few restrictions in a commercial environmens. Ldnux runs as an application on
top of L4 (and besides the proprietary firmware), neither ba any other firmware needs to be
GPL-ed.

4 System Architecture

Figure 2 provides a more detailed look at the structure of &t system, and the Iguana environment
that supports it.

4.1 Iguana

Iguana provides basic services, such as allocating anthghmemory, a memory protection model and
its enforcement, and general resource managetnilaireover, lguana supports an address-space layout
that leads to a dramatic reduction of context-switchingriegads on processors with virtually-addressed

!Resource management in Iguana is very rudimentary at this thut the framework exists for very general and flexible
management of time and memory resources.

4.2 Wombat 5

caches, such as ARM7 (e.g. StrongARM) and ARM9 (e.g. XScadM cores are among the most
popular processors for 32-bit embedded systems, and affsigport for ARM is therefore essential to
support widespread use of the system.

The issue with virtually-addressed caches is that datadrcétthe is only identified by virtual ad-
dress. The virtual address is tied to a particular addrgssintext (i.e., the address space of a particular
process), and different processes tend to use the samaldddress for different information (e.g. the
start of the text segment and the top of the stack is normiadiysame for all processes in a Linux system,
even though the code/data at those addresses are proeeggspConsequently, cache must normally
be flushed on a context-switch on such a processor.

Cache flushes can be avoided when switching between preogiberon-overlapping address-space
layout [WHO00, WTUHO3J? Therefore, Iguana is designed to avoid address-spaceapvdtidoes this
by utilising techniques developed for so-called singldrads-space operating systems (SASQOS), such
as Mungi [HEV'98]. In fact, the Iguana implementation shares the coreqfdite Mungi code base.

The core idea of a SASOS is that, rather than having all psesesxecute in their own (indepen-
dent) address space, have one address space that is shaleégrogesses. Security is supported in a
SASOS by distinguishing betweeamdress translatiorfwhich is tied to the address space) anedmory
protection Rather than its own address space, a process gets itprovaction domainwhich is a rep-
resentation of its access rights to memory. Since in a SASI@ata resides in the same address space,
all data can be addressed with a pointer; however, addiésdbes not implyaccessibility Data can
only be accessed if it is contained in the protection domatheprocess attempting the access.

Unlike Mungi, Iguana does ndbrce a single address-space view. Processes can be created in the
shared address space (but in their own protection domaim@jternatively, in an address space of their
own. This is important, as on a 32-bit processor the avaldBB address space may not be sufficient
to accommodate all processes. (However, as embedded systegty have more than 4GB of RAM, a
shared 4GBrirtual address space tends to be sufficient.)

The main advantage of running processes in the shared adgppase is that they processes auto-
matically get the benefits of fast context switching on pssces like the ARM. As we have shown
earlier [WTUHO3], this can make a 50-fold difference in trantext-switching costs, and is therefore
very important for embedded systems which use protectegpbanemts in order to improve robustness.
Another advantage (independent of the processor aramigddts that sharing of data is simplified: all
data in the shared address space can be shared easily éordivad the participating processes have the
right to access it) as it's guaranteed to be visible at theesadudress for each process, so no pointer
conversions are required.

The main drawback of running in the shared address spacielésabe 4GB limitation) is that this
is inconsistent with the traditional address-space layfixgd addresses for text and stack). This creates
problems for some programs which make the assumption of arkramldress-space layout (although
that is definitely bad practice). Furthermore, stifietk () behaviour is impossible to achieve without
creating a new address spag€linux [Arc] has to deal with the same issues, and has demaiadtthat
in practice this does not cause insurmountable problemanfitredded systems.

4.2 Wombat

Figure 2 shows how address spaces are used in an L4-basech syshing Wombat. The light-coloured
polygon represents the shared Iguana address space. BsiiEsriepresent separate protection domains
(each corresponding to a process). In reality, some of thestection domains will overlap (processes
sharing text or data) but the diagram does not attempt t@sept this. The box sitting on its own in the
top left-hand corner represents a separate address space.

Wombat (the Linux server) runs in its own protection domaiside the shared address space, thus
is able to benefit from fast context switching and simplifiedring this offers. The protection domains

2The so-called PID-relocation of the StrongARM providespmrpfor removing such overlap [WTUHO03], but this is limited
to 32 processes and works on a large, 32MB granularity, weiatts to significant memory fragmentation.

6 4 SYSTEM ARCHITECTURE

Compatibility Native Iguana
Mode Mode User
Linux Linux Process
Process Process

oot Iguana
elinke (System AS)

untrusted

trusted Driver Driver unprivileged

Hardware

Figure 2: Wombat and Iguana.

jointly labelledMyOS Serverare the set of processes that provide the basic OS sendiegyscdmprise
the Iguana server as well as other (possibly domain-spgsifivers. Together with the L4 kernel and
device drivers they make up the system’s minimal TCB. Deveers are discussed in more detail
below (Sect. 5.4).

The boxes labellethuana User Processagpresent application code that only depends on the sys-
tem’s basic OS services, but are independent of Linux they are able to run even if the Linux server
is not up, possibly because it is presently being upgradeils would include the hard real-time com-
ponents, proprietary firmware, and other “sensitive apgsFigure 1. The intention is that all such
processes execute in the shared address space, but thiseisfoi@ed. Programs can execute in their
own address space, but they would lose access to most Igeaiiees, which are only available within
the shared address space.

4.3 Linux applications

Linux applications can be run in one of two ways: eithenative moder in compatibility modeNative
mode Linux processes run inside the shared address spach,gites applications full access to Iguana
services, allows them to communicate freely with other iguapplications (including easy sharing via
shared memory), and on ARM provides fast context switchésden them (and any other processes
running inside the shared address space, including thexlsarver). Native Linux processes therefore
can use the combined API of Linux and Iguana, and can even sfiwices to the rest of the Iguana
system, so they could act as MyOS servers.

The main restriction on native mode Linux applications &edne imposed by the single-address-
space model (and are familiar fronClinux): limited address space size, unusual addressdpgiout
and no support fofork () (although afork ()-exec() sequence is available as jitClinux, which is
sufficient for most applications). While these restrici@mne not a problem in most cases, there are some
Linux applications which will not run in native mode withagignificant porting effort.

Compatibility mode is provided to accommodate such apiatina. As the name implies, full binary
Linux compatibility is supported for applications runniitgthis mode. The drawback of compatibility
mode is that such applications are much less well integriatedhe rest of the system: They can only
communicate directly with Wombat (using Linux system galist with any other processes executing
in the shared address space, and communication with otharate address spaces is only possible via
the standard Linux mechanisms (files, pipes, sockeisp (), SysV IPC, ...).

5 Wombat | mplementation

The current implementation is capable of running small etdbd style system images containing, for
example, the busybox shell. As of time of writing only corglality mode support is available. Wombat
is, however an active project, and we aim to run a full Deliiased system on top of it in the near future.

5.1 Structure

Wombat is designed for portability, between processoritectures, hardware platforms, and Linux
kernel versions. In particular we want to minimise the cdstupporting additional architectures and the
maintenance cost resulting from changes in the Linux kernel

In order to achieve these goals we introduced a new procassutecture, L4, into the Linux source
tree, by adding new directoriesch/14/, andinclude/asm-14/. In order to keep this as architecture-
neutral as possible, we resisted the temptation of hackiregod the existing architectures, but instead
implemented tha 4 architecture from scratch. Any architecture-specific c@mfewhich there is very
little) lives in a subdirectory, e.qarch/14/sys-arm/ for ARM. The initial development was done
mostly concurrently for MIPS and ARM and later ported to x8®rts to PowerPC and Alpha are in
progress (as low-priority background activities).

Only three files in the existing Linux source tree were touch®&o one-line bug fixes, plus some
additional early debugging output printk. Hence, the Wombat implementation easily drops into the
existing source tree. The implementation was started 2803 using the 2.5 series kernel, and has
since been ported to the 2.6 series kernels, the most receiported version is 2.6.5.

5.2 System callsand exceptions

A Linux process is implemented as a single-threaded L4 gsdeke any other process, it can perform
L4 system calls, such as L4 message-passing IPC to comnteinidt other processes in the system.
(Note that only native-mode Linux apps are expected to dasopmpatibility-mode apps are built for a
native Linux environment and do know nothing about L4. WHhilere is no reason why a compatibility-
mode app cannot use L4 system calls, we use L4's securityaneshs to prevent compatibility-mode
apps from sending L4 IPC to any process other than Wombat.)

L4 uses different syscall numbers than Linux. Hence, wheinaxX.app performs a Linux system
call, the L4 kernel treats this as an exception, which isonéd back to Wombat using L4's user-level
exception-handling mechanism, a process cadlgstall redirection or alsotrampoline To Wombat
this looks like a normal IPC message received from the usmregs. It will process the Linux system
call normally (by invoking the standard Linux kernel sees and will return directly to the application
process. This is shown in Figure 3.

Linux
user process

Figure 3: Linux system call redirection.

8 5 WOMBAT IMPLEMENTATION

On the ARM, rather than using different syscall numbers, gtaally use a different mechanism for
L4 and Linux system calls. Linux on ARM uses thei (software interrupt) instruction to trap into the
system call handler. L4, in contrast, uses a jump to an ithadidress, which leads topaefetch abort
exception. This simplifies decoding of system calls in L4d aases the distinction between L4 and
Linux system calls.

Other exceptions are handled similarly, by L4 convertingnthinto IPC messages to Wombat. In-
vocation of a signal handler is done in an architecture-deéget fashion, emulating the standard Linux
way of handling signals.

Page-fault handling is done by expanding the macros thasadbe page table and TLB by invoking
the appropriate L4 mapping operations.

5.3 Scheduling

The basic idea is that scheduling decisions for Linux preegsre done by the normal Linux scheduler.
This requires a little bit of work, as L4 has its own schedubased on hard priorities (using round-robin
within priority levels).

Normal L4 scheduling is used for other Iguana processekidimg Wombat itself. The L4 priorities
are thus used to schedule the complete Linux part of theraysith respect to the other (real-time) pro-
cesses, but not for scheduling Linux processes with respeetch other. The Iguana real-time processes
are normally given higher priority than Wombat, which emsuthat runnable real-time processes will
always preempt the Linux side of the system. Linux applosatiwill only run if no (higher-priority)
real-time process is runnable.

In order to implement proper Linux scheduling for Linux pesses, Wombat ensures that only a
single Linux user process (per CPU) is runnable at any timas Way the L4 scheduler is forced to
schedule Linux apps in a way that is under the control of Wdambaeparatd¢imer thread(with an L4
priority higher than all Linux processes) exists inside\tfiembat protection domain in order to maintain
the Linux time slice. This thread normally waits for a timégcorresponding to the Linux timer tick).
When that timeout occurs, the timer thread is woken, whiemttalls the Linux scheduler in order to
determine the next process to run (according to normal Lgaireduling policy).

In order to run the Linux user process determined by the Lischeduler, the presently executing
one must be preempted and blocked. At present, this is ddfemtil that process next traps into the
kernel (to perform a system call or due to an exception). énwtorst case (CPU-bound process), this
may not happen until another timer tick (where we force an @diate preemption). In such a case, the
the user process runs too long (up to twice its proper timxsliAs such, Linux scheduling policy is
only approximately observed in the present implementation

This will be fixed in the near future. The reason it has not lgbmre yet is that there are several ways
to achieve the desired result in L4, and we need to implentemh @ll and analyse the cost.

The main advantage of this approach is that the schedulicigide is made by thanmodifiedLinux
scheduler, thus avoiding changes to the architecturepartent code of Linux. Furthermore, this ap-
proach requires no locks other than what is already in thax_kernel (and will therefore automatically
benefit from all improvements made to locking in Linux).

The Linux idle task calls the architecture-specifisu_id1e () function. In Wombat this is imple-
mented as an L4 IPC message to the Wombat “kernel” threaahvgiinply sleeps until the next timer
tick or interrupt. This effectively hands control to the Ldla thread, unless there is an Iguana thread
with a L4 priority lower than that of the Linux processes. Bachread could be used to put the system
into a low-power mode.

5.4 Devicedrivers

Each device in the system must be controlled by a singlemlgither a Linux driver or an Ilguana driver.
Iguana drivers run as user-mode processes inside their guam protection domain. Standard Linux

Benchmark | Linux Wombat UML
syscall 0.392 1.38 8.99
pipe 5.05 8.83 66.8

Table 1: Latency benchmark performance

drivers can be used in Wombat unmodified. Such a simple segap dot support sharing of device
access between the real-time and Linux parts of the system.

Shared device access requires that one side contains ther ghdver, and the other side contains a
stub (or proxy) driver, which, when invoked, forwards thquest to the other driver. In most cases, this
means that the proper driver is an Iguana driver, in ordensuie that competing accesses by real-time
and non-real-time components are correctly arbitratedo Ahe encapsulation of the Linux side would
be undermined if Linux drivers were allowed to perform DMA.

Linux] Linux stub driver

Process _+« lguanainvocation

~

~ ----> Linux system call

~

A

Iguana
Application
Iguana

K» Device J
Driver

Figure 4: Shared device drivers in a Wombat system.

Figure 4 shows such a setup. An Iguana process can direetliggrthe driver. A Linux app invokes
it via a Linux system call, in response to which Wombat invkestatically or dynamically loaded) stub
driver, which in turn invokes the proper driver using L4 IPC.

Iguana’s device driver model supports user-mode drivetis pgrformance close to that of in-kernel
drivers. The drivers themselves are portable not only acaoshitectures and platforms (as long as they
support the same devices) but also between Iguana and Linthe-user-mode driver work presented
by Chubb at OLS’04 [Chu04] uses Iguana drivers. Presentihawe drivers for several PCI chipsets,
Ethernet (10/100/1000Mb/s), IDE disk, serial, LCD scremrg a number of proprietary devices.

6 Performance

We compared the performance of Linux, Wombat and User ModexX (UML), on a set of microbench-
marks from the Imbench [MS96] suite. The main impact of ragriiinux as a server will be an increase
in the cost of system calls. The first benchmark used is thé"“aystem-call latency, which shows
the overhead on individual system calls, and representsrstrgase example, as it measures solely the
cost of communicating with Linux. The second benchmarke ggtency, shows the extra cost incurred
when communicating between different processes. Finalgxamine the extra overhead incurred when
switching between running processes.

Measurements were performed on a 2.8GHz Pentium 4 machireWbmbat server was based on
the 2.6.5 kernel. The Linux results were based on 2.6.8.&.UML results were from 2.6.9-rc3 kernel,
with skas enabled.

Table 1 shows the system call and pipe latency on each of tke #ystems. All figures are in
microseconds and represent the average of 100 repetitions.

10 7 CONCLUSIONS

20

Wombat Ok —+—

Wombat 16k —-x-— o 70
18 Linux Ok ------ P _
Linux 16k 8-
UML Ok —m—
16 L UML 16k - o - _
o’
14 | 5 |
12 -
| R
° /,./v»l—/—/»/></_,
o1 /‘/l~~~~lrr"“ | “;_‘/H“;/W”/::&L 777777777777 -

0 10 20 30 40 50 60 70 80 90 100

Figure 5: Context switch overhead in each system

As the table shows, the worst-case slowdown representduehyutl system call is a factor of 3.5 for
Wombat, compared to 23 for UML. Similarly, the pipe test undfombat is a factor of 1.75 slower than
for native Linux, while for UML the penalty is more than a facbf 13.

Figure 5 shows the context switch time, (in microseconds)eéch of the three systems. The number
of active processes was varied from 2 to 96. Each system wasuresl with a 0 and 16 kilobyte cache
footprint.

This benchmark shows a similar picture to the others: perémce of the Wombat system is close to
that of native Linux, while UML performs dramatically worda fact, context switching in the Wombat
system is faster than in native Linux (this warrants furttessearch). UML exhibits a large overhead of
around &s per context switch, almost independent of the number afga®es or the cache size. This is
consistent with the overhead of the null system call.

The relative performance of Wombat compared to the nativedkés comparable or better than that
seen in ELinux system [HHLF97]. Taking a portable approach to Linux on L4 has not led igmificant
performance degradation.

7 Conclusions

We believe that running Linux as a user-mode server on the lofokernel is a promising way of
providing a Linux API (and all the benefits of a Linux system)ambedded systems, while keeping the
trusted computing base small. This view is supported byahethat a number of companies are already
using Wombat and are considering deployment in actual ptsdu

The specific strengths of Wombat, compared to similar ambres are:

e portable across architectures. It presently runs on thvige,more in the pipeline. Treating L4 as
a new architecture means that it is easy to port Wombat tochitecture where Linux is not yet
running, as long as there is a working L4 port. For examplemidat based on the 2.6 kernel runs
on ARM, while native Linux 2.6 doesn't yet;

3Unfortunately we cannot be more specific at this time, buehtyat we can talk about some of the work by the time of the
conference.

11

e its dependency on Linux kernel internals is low, making latigely easy to keep it in sync with
the Linux distribution. For a number of months we have beacking the Linux 2.6 head revision
without major effort;

e as Wombat runs in the Iguana environment, it automaticallyefits from the fast-address-space-
switching (FASS) support built into L4 [WTUHO3]. This is waibut requiring FASS support in
Linux (see FASS paper submitted by Peter Chubb);

e Wombat uses the Iguana driver framework, which allows it kenuse of drivers that can run
(unmodified) in Iguana as well as native Linux.

There is work underway at NICTA which has the potential tantéically increase the attraction of
the Wombat approach: a formal verification of the correcnefsthe microkernel [NIC]. This would
make a critical part of the trusted computing base provahigtworthy and can be followed up by
verification of other components of the TCB. Formal veriiimatis, for the foreseeable future, only
possible for moderately-complex systems, the microkgeuisisting of about 10,000 loc) is at the limit
of this, the Linux kernel is way beyond.

8 Availability

Wombat has been running in our lab since late February 20t peesently runs on x86, ARM and
MIPS. It is scheduled for public release in late October 2004ile Wombat itself (i.e., the contents of
the arch/14/ directory) is naturally under the GPL, the Iguana systenh vélreleased under a BSD-
style license.

References

[Arc] Arcturus Networks Inc.uClinux. http://www.uclinux.com.
[Chu04] Peter Chubb. Get more device drivers out of the Kenmume 1, pages 149-161, 2004.

[Dik00] Jeff Dike. A user-mode port of the linux kernel. Rroceedings of the 4th Annual Linux Showcase
and ConferenceAtlanta, Georgia, USW, October 2000.

[EDC03] Embedded systems software development surveyedras report, Evans Data Corporation, Santa
Cruz, CA, USA, Fall 2003.

[FSM] FSMLabs. RTLinux.http://www.fsmlabs.com/products/openrtlinux/.

[HEV'98] Gernot Heiser, Kevin Elphinstone, Jerry Vochteloop&tsn Russell, and Jochen Liedtke. The Mungi
single-address-space operating systeBoftware: Practice and Experienc28(9):901-928, July
1998.

[HHL*97] Hermann Hartig, Michael Hohmuth, Jochen Liedtke, Stiha Schonberg, and Jean Wolter. The per-
formance ofu-kernel-based systems. Rroceedings of the 16th ACM Symposium on OS Principles
(SOSP)pages 66—77, St. Malo, France, October 1997.

[L4K] L4Ka Team. L4Ka::Pistachio microkernéhttp://l4ka.org/projects/pistachio/.

[LAKO1] L4Ka Team. L4 eXperimentalKernel Reference Manualniversity of Karlsruhe, version 4-x.2 edi-
tion, October 2001http://I4ka.org/projects/version4/l14-x2.pdf.

[LEST97] Jochen Liedtke, Kevin Elphinstone, Sebastian Schignttéerrman Hartig, Gernot Heiser, Nayeem
Islam, and Trent Jaeger. Achieved IPC performance (sglftundation for extensibility). Iffro-
ceedings of the 6th Workshop on Hot Topics in Operating 8ys{elotOS)pages 28-31, Cape Cod,
MA, USA, May 1997.

[Lie93] Jochen Liedtke. Improving IPC by kernel design Pimceedings of the 14th ACM Symposium on OS
Principles (SOSR)pages 175-88, Asheville, NC, USA, December 1993.

12 REFERENCES

[Lin04] Linux now top choice of embedded developers. http://www.linuxdevices.com/news/
NS2744182736.html, August 2004.

[MHHO2] Frank Mehnert, Michael Hohmuth, and Hermann HiirtCost and benefit of separate address spaces
in real-time operating systems. Austin, TX, USA, 2002.

[Mot04] Motorola launches enterprise Linux smartphone imna. http://www.linuxdevices.com/news/
NS5920529122.html, February 2004.

[MS96] Layy McVoy and Carl Staelin. Imbench: Portable tolasperformance analysis. IRroceedings of
the 1996 USENIX Technical Conferen&an Diego, CA, USA, January 2996.

[NIC] National ICT Australia’s L4 microkernel verificatiopilot project. http://nicta.com.au/director/
research/programs/fm/research_projects.cfm.

[RTA] RTAI — realtime application interfacehttp://www.aero.polimi.it/~rtai/.

[SM04] Dipankar Sarma and Paul E. McKenney. Issues withctgdescalability features of the 2.6 kernel.
2004.

[WHO00] Adam Wiggins and Gernot Heiser. Fast address-spatetsng on the StrongARM SA-1100 pro-
cessor. InProceedings of the 5th Australasian Computer Architectbomference (ACAC)ages
97-104, Canberra, Australia, January 2000. IEEE CS Press.

[WTUHO03] Adam Wiggins, Harvey Tuch, Volkmar Uhlig, and GetrHeiser. Implementation of fast address-
space switching and TLB sharing on the StrongARM procedsoBth Australasian Computer Sys-
tems Architecture Conference (ACSAGizu-Wakamatsu City, Japan, September 2003. Springer Ver
lag.

