
DEPLETION-REGION RECOMBINATION IN SILICON SOLAR CELLS:

WHEN DOES mDR = 2?

Keith R. McIntosh
a
, Pietro P. Altermatt

a
and Gernot Heiser

a,b

a
Centre for Photovoltaic Engineering, University of NSW, Sydney 2052, Australia.

b
School of Computer Science and Engnineering, University of NSW, Sydney 2052, Australia.

Tel: +61 2 9385 4054; Fax: +61 2 9385 5412; Email: k.mcintosh@unsw.edu.au

ABSTRACT: This paper examines the ideality factor of depletion-region recombination mDR, with a

particular emphasis on its maximum value. Several theoretical models of depletion-region recombination

are discussed and it is shown that the models with more assumptions tend to overestimate mDR. Numerical

simulations are then used to determine the maximum value of mDR for both step-junction and di�used-

junction solar cells, for the case when the trap density is uniformly distributed across the depletion region.

The maximum value of mDR is found to increase with doping from 1.7 to 2 for step junctions; and to be

approximately 1.8 for all practical doping levels of di�used junctions.
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1. INTRODUCTION

The recombination that occurs in the depletion region

of a solar cell can have a signi�cant in
uence on the

solar cell's e�ciency. To quantify this in
uence, the

depletion-region recombination current is often taken

to be proportional to exp (qVj=mDRkT ), where mDR

is the ideality factor of the depletion-region recombina-

tion. mDR distinguishes depletion-region recombina-

tion from most other sources of recombination, which

have an exp(qVj=kT ) dependence on the junction volt-

age Vj .

To model or characterise the in
uence of depletion-

region recombination in a solar cells requires the mag-

nitude of mDR. Several theoretical models indicate

that mDR takes a value between 1 and 2, where the

exact value of mDR depends on conditions such as the

number of traps in the \forbidden gap", the doping

density, and the junction voltage. While the theoret-

ical models predict similar trends for how mDR de-

pends on these conditions, they also predict di�erent

values for the actual magnitude of mDR.

This paper investigates the discrepency between

the theoretical models of depletion-region recombina-

tion, and compares the value of mDR predicted by

the models to that obtained by numerical simulations.

Numerical simulations are then used to determine val-

ues of mDR for conditions that are relevent to silicon

solar cells, such as di�used asymmetrical p{n junc-

tions (e.g. for bulk-crystalline solar cells) and step

p{n junctions (e.g. for thin-�lm solar cells). Particu-

lar attention is paid to the maximum value that mDR

can take under a given set of conditions.

2. GENERAL THEORYOFDEPLETION-REGION

RECOMBINATION

The general theory of depletion-region recombination

is described brie
y to provide a qualitative under-

standing of the factors that in
uence mDR.

The fundamental and de�ning di�erence between

depletion-region recombination and other sources of

recombination is related to the rapid variation of the

carrier concentrations that occurs across a p{n junc-

tion. This rapid variation can be seen in Fig. 1, which

plots the electron n(x) and hole p(x) concentration
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Figure 1: Numerical solution of n(x), p(x), U(x) and

 (x) for a symmetrical step junction of doping concen-

tration 10
16

cm
�3

under special-case conditions.

across a symmetrical step junction, and the subse-

quent variation of the electrostatic potential  (x) (at

Vj = 0:3 V).

Fig. 1 also plots the recombination rate U(x) in the

depletion region. Since at low-to-medium voltages, the

dominant source of recombination in a silicon solar cell

is due to Shockley{Read{Hall (SRH) recombination,

U(x) was determined with the SRH equation:

U(x) =
n(x)p(x)� n

2

i

�p0(x)[n(x) + n1(x)] + �n0(x)[p(x) + p1(x)]
,

(1)

which assumes that there is a single trap at an energy

level Et that lies between the conduction and valence

bands; �n0(x) and �p0(x) are the electron and hole life-

time coe�cients, n1(x) and p1(x) are the electron and



hole concentrations when Et coincides with the Fermi

level, and ni is the intrinsic carrier concentration.

For the plot of Fig. 1, U(x) was determined by

imposing several conditions that simplify the analy-

sis and lead to a maximum value of mDR. (As de-

scribed in Section 3, some of the theoretical mod-

els are restricted to these \special-case" conditions).

The conditions are that the junction voltage is su�-

ciently large (0:3 V) to ensure that n(x)p(x) � n
2

i ;

Et is equal to the intrinsic Fermi level Ei through-

out the depletion region, giving n1(x) = p1(x) = 0;

and the minority carrier lifetime coe�cients are equal

and uniform throughout the depletion region, giving

�n0(x) = �p0(x) = �0. With these restrictions, Eq. 1

simpli�es to

U(x) =
n(x)p(x)

�0[n(x) + p(x)]
, (2)

from which it is evident that U(x) is strongly peaked

and centered at the point where n(x) = p(x), de�ned

here to be x = 0 (Fig. 1).

An estimate for mDR can be attained from Eq. 2

if it is assumed that the quasi-Fermi levels are con-

stant across the depletion region and separated by Vj ,

that is, pn = n
2

i exp(qVj=kT ) [4]. Hence, at x = 0,

n(0) = p(0) = ni exp(qVj=2kT ), and Eq. 2 simpli�es

further to U(0) = ni exp(qVj=2kT )=�0. Thus, with the

special-case conditions, U(x) is a maximum at x = 0

and is proportional to exp(qVj=2kT ). If the depletion-

region recombination current JDR were due solely to

the recombination that occurs at x = 0, mDR would

equal 2.

But recombination from other locations in the de-

pletion region also contributes to JDR. Far from the

centre of the depletion region, U(x) becomes like bulk

SRH recombination and is proportional to exp(qVj=kT ).

(For example, for p(x) � n(x), Eq. 2 is simpli�ed to

U(x) = n(x)=�0, and since as a majority carrier, p(x)

depends weakly on Vj , n(x) and U(x) are proportional

to exp(qVj=kT ).) Thus, if JDR were due solely to the

recombination that occurs at large jxj, mDR would

equal 1.

From the above discussion, it is evident that as

jxj increases, U(x) changes from being proportional to

exp(qVj=2kT ) to being proportional to exp(qVj=kT ).

This change occurs due to the increasing di�erence

between n(x) and p(x). Since JDR is the integration

of U(x) across the width of the depletion region, mDR

takes a value between 1 and 2.

Further to this discussion on mDR, it is signi�cant

that the above discussion is based on the special-case

conditions, which cause U(x) to be strongly peaked

at x = 0. This gives rise to a larger value of mDR

(but that is still less than 2). In almost all cases,

variations from these conditions lead to a reduction

in the value of mDR. Such variation include when

Et 6= Ei [1][2], and when there is more than one trap

level [2][3]. The value of mDR is increased if �n0(x)

and �p0(x) are smaller near x = 0 than elsewhere in

the depletion region, since U(x) would become more

strongly peaked about x = 0. This latter situation is

discussed further in Section 4.

In summary, mDR takes a value between 1 and 2

but mDR � 2 only under very speci�c conditions that

lead to the recombination being very strongly peaked

about the point where n(x) = p(x).
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Figure 2: mDR vs Vj as predicted by the theoretical

models and by numerical simulation for the special-

case conditions|see text.

3. COMPARISONOFMODELS FORDEPLETION-

REGION RECOMBINATION

There are several theoretical models of depletion-region

recombination that can be used to determine a speci�c

value of mDR. Four of these models are compared in

this section; they are, a simple model found in some

text books (e.g., [4][5]), the ideal model of Sah, Noyce

and Shockley (SNS) [1]; the general model of SNS [1];

and the model of Nussbaum [6].

Fig. 2 plots the value of mDR that is predicted by

each of the theoretical models, for the same special-

case conditions used in Fig. 1. The numerical solution

is also plotted for comparison. The �gure indicates

that there is some discrepency between the models.

Following a summary of the assumptions entailed in

the models, the reasons for the discrepency are de-

scribed. (These and other models have also been com-

pared with regards to JDR [9]).

3.1 Assumptions common to all theoretical models

To determine JDR, each of the theoretical models fol-

low a similar derivation. First it is assumed that the

current 
ow across the junction is one-dimensional, so

that JDR is given by the integration of U(x) across the

width of the depletion region W , JDR = q
R
W
U(x)dx.

To determine U(x), it is assumed the recombi-

nation rate follows the SRH formula, which requires

that there be a single trap at an energy Et, and that

the semiconductor is non-degenerate. It is further as-

sumed that the traps are uniformly distributed and

the lifetime coe�cients are constant throughout the

depletion region; thus from Eq. 1, U(x) varies only

with n(x) and p(x).

n(x) and p(x) are determined by assuming that
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they are related to  (x) following Boltzmann statistics

and that the electron and hole quasi-Fermi levels are

constant and separated Vj [1].

Finally, by determining an expression for  (x),

JDR can be found. To simplify the expression for

 (x), all of the models assume that the junction is

a step junction.

Once JDR is known, mDR can be determined from

mDR =
q

KT

�
dVj

d lnJDR

�
[3].

3.2 \Text book" model

A \text-book" model provides the simplest derivation

of JDR (e.g., [4][5]). It is restricted to the special-case

conditions that lead to Eq. 2 (Section 2). The model

assumes that U(x) is constant across the depletion re-

gion and equal to U (0). The integration of U(x) across

W is then trivial and given by JDR = qWU (0). It can

be seen in Fig. 1, that the assumption, U(x) = U (0)

leads to an overestimation of JDR.

At �rst glance, the \text book" model appears to

show that mDR = 2, since U (0) _ exp(qVj=2kT ).

However, W is not constant with Vj ; from the deple-

tion approximation, W _

p
Vbi � Vj [4]. It follows

that mDR = 2 only when Vbi � Vj , but this situation

does not arise for practical silicon solar cells. Thus

the \text-book" model predicts mDR > 2, contradict-

ing the qualatitive discussion of the preceding section.

Fig. 2 shows the value of mDR as a function of Vj for

(a) Vbi = 0:71 V and (b) Vbi = 0:95 V, and indicates

that the model overestimates mDR.

3.3 Ideal SNS model

With the �rst paper on the subject, Sah, Noyce and

Shockley (SNS) presented an idealised model that pro-

vides a good intuitive description of depletion-region

recombination [1]. (Nussbaum provides an alterna-

tive derivation of the same model [6]). Like the \text

book" model, the ideal SNS model is restricted to the

special-case conditions that lead to Eq. 2. But rather

than setting U(x) = U(0), this model determines U(x)

by assuming that the potential gradient  
0

(x) is con-

stant throughout the depletion region and equal to

(Vbi � Vj) =W , where W is again de�ned by the deple-

tion approximation. Fig. 1 indicates that this assump-

tion becomes increasingly less valid with increasing jxj,

as  
0

(x) actually decreases and approaches zero. Con-

sequently, the model overestimates JDR, though to a

lesser extent than the \text book" model.

The subsequent integration of U(x) acrossW yields

JDR / Umax=
p
Vbi � Vj [1][6]. Similar to the \text-

book" model, it follows that mDR = 2 only when

Vbi � Vj ; otherwise, mDR < 2. This result indi-

cates that by taking into account the variation of W

with respect to Vj , and the recombination that occurs

where n(x) and p(x) are not equal, mDR must take a

value that is less than 2. As seen in Fig. 2, the ideal

SNS model slightly overestimates mDR.

3.4 General SNS model

SNS also provide a more general model of depletion-

region recombination for symmetrical step junctions,

that is not restricted to the special-case conditions de-

scribed above [1]. (The model is extended by Choo to

include asymmetrical step junctions [8]). Like their

ideal model, their general model also makes the as-

sumption that  
0

(x) is constant, and subsequently

overestimates both JDR and mDR.

As seen in Fig. 2, the general SNS model di�ers

from the ideal SNS model only at low voltages. This

di�erence arises from the simpli�cation in the ideal

SNS theory that p(x)n(x)� n
2

i .

3.5 Nussbaum model

The most complex and the most accurate of the theo-

retical models is that presented by Nussbaum [6][7].

Like the general SNS theory, Nussbaum's model is

not limited to the special-case conditions, but it dif-

fers from the SNS theory in two ways: �rstly,  (x)

is determined with Poisson's equation; and secondly,

the depletion approximation is not used to determine

W , but rather, the limits of the integral are de�ned

as where  
0

(x) = 0. (These integral limits can be

rede�ned to conform with W as calculated by the de-

pletion approximation [9].) Fig. 2 demonstrates that

of the four models, the Nussbaum model most closely

matches the numerical simulation.

3.6 Numerical simulation

The semiconductor device simulator, DESSIS [10], was

also used to determine mDR. DESSIS solves the fully

coupled set of semiconductor di�erential equations,

and does not require any of the afore-mentioned as-

sumptions. Consequently, when appropriately applied,

DESSIS can be used to determine the most accurate

value of mDR.

To provide a meaningful comparison with the the-

oretical models, the DESSIS model was constructed so

that the carrier 
ow was essentially one-dimensional,

and so that U(x) follows the SRH formula (Eq. 1),

where n1(x) = p1(x) = 0, and �n0(x) = �p0(x) = �0.

The numerical solutions are shown in Fig. 2.

Note that the numerical solution gives the total

recombination current and not JDR. To determine

JDR (and hence mDR), the di�usion recombination

current, which is proportional to exp(qVj=kT ), was

subtracted from the total recombination current. In

most cases, however, this subtraction was insigni�cant

in the voltage range of interest (0:2{0:4 V), since at

these voltages, JDR was the dominant source of the

recombination current.

4. MAXIMUM mDR for SILICON SOLAR CELLS

DESSIS was used to determine the maximum value of

mDR for silicon solar cells, for the case where �n0(x)

and �p0(x) are uniformly distributed across the deple-

tion region; this value occurs when the special- case

conditions are applied (Section 2). As well as provid-

ing the most accurate estimate of mDR, the numerical

solutions can be applied to di�used junctions.

For the special-case conditions, mDR is approxi-

mately constant with Vj in the range 0:2{0:4 V (Fig.

2). For silicon solar cells, this voltage range is the most

appropriate for an investigation into depletion-region

recombination, since at lower voltages, n(x)p(x) 
 n
2

i ,

and at higher voltages, other sources of recombiantion

contribute signi�cantly to the total recombination cur-

rent. In the results that follow, the average value of

mDR in this voltage range and is shown as the thick
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Figure 3: Numerical simulation for the maximum

mDR for a silicon step junction, where �n0 and �p0 are

uniform across the depletion region. Bold line shows

the average value and the dashed lines show the limits

of mDR between 0:2{0:4 V.

line in Figs. 3 and 4. The dashed lines indicate the

highest and lowest value of mDR in the voltage range.

Fig. 3 plots the maximum value of mDR against

the doping density for a symmetrical step junction,

when �n0 and �p0 are constant with x. It indicates

that for very heavy doping, mDR approaches 2. This

result arises from U(x) being extremely peaked about

the p{n junction. For lighter doping, mDR decreases

to � 1:7. To a good approximation, it was found that

mDR takes the value of the more lightly doped side

of an asymmetrical step junction, and that mDR is

independent of �n0 and �p0.

Fig. 4 plots mDR against the doping density for a

di�used n
+
{p junction, when �n0 and �p0 are constant

with x. It indicates that for all practical doping lev-

els, the maximum value of mDR is � 1:8. To a good

approximation, it was found that mDR is independent

of �n0 and �p0.

Note that the values plotted in Figs. 3 and 4 could

be exceeded if �n0(x) and �p0(x) were smaller at x =

0 than elsewhere in the depletion region (since this

would cause U(x) to be more strongly peaked where

n(x) = p(x). Such a situation might arise for a grown

step junction where there is a greater number of de-

fects at the boundary between n-type and p-type sil-

icon. The situation is less likely to occur in di�used

silicon junctions.

In summary, if a solar cell exhibits an mDR that is

greater than that plotted in Fig. 3 (for a given doping

level), it can be concluded that either the trap density

near the location where n(x) = p(x) is greater than

elsewhere, or the recombination mechanism does not

follow the SRH equation.

5. CONCLUSION

This paper examined the value of mDR, with a partic-

ular emphasis on its maximum value. It was demon-

strated that there is a discrepency between several the-

oretical models of depletion-region recombination; the

models that contain more assumptions tend to over-

estimate mDR. Numerical simulations, which make

fewer assumptions than the theoretical models, were

then used to determine the maximumvalue ofmDR for

both step-junction and di�used-junction silicon solar
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Figure 4: Numerical simulation for the maximum

mDR for a silicon di�used junction, where �n0 and

�p0 are uniform across the depletion region. Bold line

shows the average value and the dashed lines show the

limits of mDR between 0:2{0:4 V.

cells, for the case when the trap density is uniformly

distributed across the depletion region. The maximum

value of mDR was found to increase with doping from

1.7 to 2 for step junctions; and to be approximately

1.8 for all practical doping levels of di�used junctions.

It is concluded from this study that for silicon so-

lar cells that exhibit a strong exp(qVj=2kT ) recom-

bination current, this recombination current can be

explained as a consequence of depletion-region recom-

bination only if the solar cell conatains a very heavily

doped step junction, or if it contains a greater denisty

of traps at the centre of the depletion region than else-

where in the depletion region.
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