DEPLETION-REGION RECOMBINATION IN SILICON SOLAR CELLS: WHEN DOES $m_{DR}=2$? Keith R. McIntosh^a, Pietro P. Altermatt^a and Gernot Heiser^{a,b} ^aCentre for Photovoltaic Engineering, University of NSW, Sydney 2052, Australia. ^bSchool of Computer Science and Engnineering, University of NSW, Sydney 2052, Australia. Tel: +61 2 9385 4054; Fax: +61 2 9385 5412; Email: k.mcintosh@unsw.edu.au ABSTRACT: This paper examines the ideality factor of depletion-region recombination m_{DR} , with a particular emphasis on its maximum value. Several theoretical models of depletion-region recombination are discussed and it is shown that the models with more assumptions tend to overestimate m_{DR} . Numerical simulations are then used to determine the maximum value of m_{DR} for both step-junction and diffused-junction solar cells, for the case when the trap density is uniformly distributed across the depletion region. The maximum value of m_{DR} is found to increase with doping from 1.7 to 2 for step junctions; and to be approximately 1.8 for all practical doping levels of diffused junctions. Keywords: Recombination - 1; Simulation - 2; Modelling - 3. ### 1. INTRODUCTION The recombination that occurs in the depletion region of a solar cell can have a significant influence on the solar cell's efficiency. To quantify this influence, the depletion-region recombination current is often taken to be proportional to $\exp{(qV_j/m_{DR}kT)}$, where m_{DR} is the ideality factor of the depletion-region recombination. m_{DR} distinguishes depletion-region recombination from most other sources of recombination, which have an $\exp{(qV_j/kT)}$ dependence on the junction voltage V_i . To model or characterise the influence of depletionregion recombination in a solar cells requires the magnitude of m_{DR} . Several theoretical models indicate that m_{DR} takes a value between 1 and 2, where the exact value of m_{DR} depends on conditions such as the number of traps in the "forbidden gap", the doping density, and the junction voltage. While the theoretical models predict similar trends for how m_{DR} depends on these conditions, they also predict different values for the actual magnitude of m_{DR} . This paper investigates the discrepency between the theoretical models of depletion-region recombination, and compares the value of m_{DR} predicted by the models to that obtained by numerical simulations. Numerical simulations are then used to determine values of m_{DR} for conditions that are relevent to silicon solar cells, such as diffused asymmetrical p-n junctions (e.g. for bulk-crystalline solar cells) and step p-n junctions (e.g. for thin-film solar cells). Particular attention is paid to the maximum value that m_{DR} can take under a given set of conditions. # 2. GENERAL THEORY OF DEPLETION-REGION RECOMBINATION The general theory of depletion-region recombination is described briefly to provide a qualitative understanding of the factors that influence m_{DR} . The fundamental and defining difference between depletion-region recombination and other sources of recombination is related to the rapid variation of the carrier concentrations that occurs across a p-n junction. This rapid variation can be seen in Fig. 1, which plots the electron n(x) and hole p(x) concentration **Figure 1:** Numerical solution of n(x), p(x), U(x) and $\psi(x)$ for a symmetrical step junction of doping concentration 10^{16} cm⁻³ under special-case conditions. across a symmetrical step junction, and the subsequent variation of the electrostatic potential $\psi(x)$ (at $V_j=0.3$ V). Fig. 1 also plots the recombination rate U(x) in the depletion region. Since at low-to-medium voltages, the dominant source of recombination in a silicon solar cell is due to Shockley-Read-Hall (SRH) recombination, U(x) was determined with the SRH equation: $$U(x) = \frac{n(x)p(x) - n_i^2}{\tau_{p0}(x)[n(x) + n_1(x)] + \tau_{n0}(x)[p(x) + p_1(x)]},$$ (1) which assumes that there is a single trap at an energy level E_t that lies between the conduction and valence bands; $\tau_{n0}(x)$ and $\tau_{p0}(x)$ are the electron and hole lifetime coefficients, $n_1(x)$ and $p_1(x)$ are the electron and hole concentrations when E_t coincides with the Fermi level, and n_i is the intrinsic carrier concentration. For the plot of Fig. 1, U(x) was determined by imposing several conditions that simplify the analysis and lead to a maximum value of m_{DR} . (As described in Section 3, some of the theoretical models are restricted to these "special-case" conditions). The conditions are that the junction voltage is sufficiently large (0.3 V) to ensure that $n(x)p(x) \gg n_i^2$; E_t is equal to the intrinsic Fermi level E_i throughout the depletion region, giving $n_1(x) = p_1(x) = 0$; and the minority carrier lifetime coefficients are equal and uniform throughout the depletion region, giving $\tau_{n0}(x) = \tau_{p0}(x) = \tau_0$. With these restrictions, Eq. 1 simplifies to $$U(x) = \frac{n(x)p(x)}{\tau_0[n(x) + p(x)]},$$ (2) from which it is evident that U(x) is strongly peaked and centered at the point where n(x) = p(x), defined here to be x = 0 (Fig. 1). An estimate for m_{DR} can be attained from Eq. 2 if it is assumed that the quasi-Fermi levels are constant across the depletion region and separated by V_j , that is, $pn=n_i^2\exp(qV_j/kT)$ [4]. Hence, at x=0, $n(0)=p(0)=n_i\exp(qV_j/2kT)$, and Eq. 2 simplifies further to $U(0)=n_i\exp(qV_j/2kT)/\tau_0$. Thus, with the special-case conditions, U(x) is a maximum at x=0 and is proportional to $\exp(qV_j/2kT)$. If the depletion-region recombination current J_{DR} were due solely to the recombination that occurs at x=0, m_{DR} would equal 2. But recombination from other locations in the depletion region also contributes to J_{DR} . Far from the centre of the depletion region, U(x) becomes like bulk SRH recombination and is proportional to $\exp(qV_j/kT)$. (For example, for $p(x) \gg n(x)$, Eq. 2 is simplified to $U(x) = n(x)/\tau_0$, and since as a majority carrier, p(x) depends weakly on V_j , n(x) and U(x) are proportional to $\exp(qV_j/kT)$.) Thus, if J_{DR} were due solely to the recombination that occurs at large |x|, m_{DR} would equal 1. From the above discussion, it is evident that as |x| increases, U(x) changes from being proportional to $\exp(qV_j/2kT)$ to being proportional to $\exp(qV_j/kT)$. This change occurs due to the increasing difference between n(x) and p(x). Since J_{DR} is the integration of U(x) across the width of the depletion region, m_{DR} takes a value between 1 and 2. Further to this discussion on m_{DR} , it is significant that the above discussion is based on the special-case conditions, which cause U(x) to be strongly peaked at x=0. This gives rise to a larger value of m_{DR} (but that is still less than 2). In almost all cases, variations from these conditions lead to a reduction in the value of m_{DR} . Such variation include when $E_t \neq E_i$ [1][2], and when there is more than one trap level [2][3]. The value of m_{DR} is increased if $\tau_{n0}(x)$ and $\tau_{p0}(x)$ are smaller near x=0 than elsewhere in the depletion region, since U(x) would become more strongly peaked about x=0. This latter situation is discussed further in Section 4. In summary, m_{DR} takes a value between 1 and 2 but $m_{DR} \sim 2$ only under very specific conditions that lead to the recombination being very strongly peaked about the point where n(x) = p(x). Figure 2: m_{DR} vs V_j as predicted by the theoretical models and by numerical simulation for the special-case conditions—see text. # 3. COMPARISON OF MODELS FOR DEPLETION-REGION RECOMBINATION There are several theoretical models of depletion-region recombination that can be used to determine a specific value of m_{DR} . Four of these models are compared in this section; they are, a simple model found in some text books (e.g., [4][5]), the ideal model of Sah, Noyce and Shockley (SNS) [1]; the general model of SNS [1]; and the model of Nussbaum [6]. Fig. 2 plots the value of m_{DR} that is predicted by each of the theoretical models, for the same special-case conditions used in Fig. 1. The numerical solution is also plotted for comparison. The figure indicates that there is some discrepency between the models. Following a summary of the assumptions entailed in the models, the reasons for the discrepency are described. (These and other models have also been compared with regards to J_{DR} [9]). # 3.1 Assumptions common to all theoretical models To determine J_{DR} , each of the theoretical models follow a similar derivation. First it is assumed that the current flow across the junction is one-dimensional, so that J_{DR} is given by the integration of U(x) across the width of the depletion region W, $J_{DR} = q \int_W U(x) dx$. To determine U(x), it is assumed the recombination rate follows the SRH formula, which requires that there be a single trap at an energy E_t , and that the semiconductor is non-degenerate. It is further assumed that the traps are uniformly distributed and the lifetime coefficients are constant throughout the depletion region; thus from Eq. 1, U(x) varies only with n(x) and p(x). n(x) and p(x) are determined by assuming that ' are related to $\psi(x)$ following Boltzmann statistics and that the electron and hole quasi-Fermi levels are constant and separated V_i [1]. Finally, by determining an expression for $\psi(x)$, J_{DR} can be found. To simplify the expression for $\psi(x)$, all of the models assume that the junction is a step junction. Once J_{DR} is known, m_{DR} can be determined from $m_{DR}=\frac{q}{KT}\left(\frac{dV_j}{d\ln J_{DR}}\right)$ [3]. # 3.2 "Text book" model A "text-book" model provides the simplest derivation of J_{DR} (e.g., [4][5]). It is restricted to the special-case conditions that lead to Eq. 2 (Section 2). The model assumes that U(x) is constant across the depletion region and equal to U(0). The integration of U(x) across W is then trivial and given by $J_{DR} = qWU(0)$. It can be seen in Fig. 1, that the assumption, U(x) = U(0) leads to an overestimation of J_{DR} . At first glance, the "text book" model appears to show that $m_{DR}=2$, since $U(0) \propto \exp(qV_j/2kT)$. However, W is not constant with V_j ; from the depletion approximation, $W \propto \sqrt{V_{bi}-V_j}$ [4]. It follows that $m_{DR}=2$ only when $V_{bi}\gg V_j$, but this situation does not arise for practical silicon solar cells. Thus the "text-book" model predicts $m_{DR}>2$, contradicting the qualatitive discussion of the preceding section. Fig. 2 shows the value of m_{DR} as a function of V_j for (a) $V_{bi}=0.71$ V and (b) $V_{bi}=0.95$ V, and indicates that the model overestimates m_{DR} . # 3.3 Ideal SNS model With the first paper on the subject, Sah, Noyce and Shockley (SNS) presented an idealised model that provides a good intuitive description of depletion-region recombination [1]. (Nussbaum provides an alternative derivation of the same model [6]). Like the "text book" model, the ideal SNS model is restricted to the special-case conditions that lead to Eq. 2. But rather than setting U(x) = U(0), this model determines U(x)by assuming that the potential gradient $\psi'(x)$ is constant throughout the depletion region and equal to $(V_{bi} - V_j)/W$, where W is again defined by the depletion approximation. Fig. 1 indicates that this assumption becomes increasingly less valid with increasing |x|, as $\psi'(x)$ actually decreases and approaches zero. Consequently, the model overestimates J_{DR} , though to a lesser extent than the "text book" model. The subsequent integration of U(x) across W yields $J_{DR} \propto U_{\max}/\sqrt{V_{bi}-V_j}$ [1][6]. Similar to the "textbook" model, it follows that $m_{DR}=2$ only when $V_{bi} \gg V_j$; otherwise, $m_{DR}<2$. This result indicates that by taking into account the variation of W with respect to V_j , and the recombination that occurs where n(x) and p(x) are not equal, m_{DR} must take a value that is less than 2. As seen in Fig. 2, the ideal SNS model slightly overestimates m_{DR} . # 3.4 General SNS model SNS also provide a more general model of depletionregion recombination for symmetrical step junctions, that is not restricted to the special-case conditions described above [1]. (The model is extended by Choo to include asymmetrical step junctions [8]). Like their ideal model, their general model also makes the assumption that $\psi'(x)$ is constant, and subsequently overestimates both J_{DR} and m_{DR} . As seen in Fig. 2, the general SNS model differs from the ideal SNS model only at low voltages. This difference arises from the simplification in the ideal SNS theory that $p(x)n(x) \gg n_i^2$. #### 3.5 Nussbaum model The most complex and the most accurate of the theoretical models is that presented by Nussbaum [6][7]. Like the general SNS theory, Nussbaum's model is not limited to the special-case conditions, but it differs from the SNS theory in two ways: firstly, $\psi(x)$ is determined with Poisson's equation; and secondly, the depletion approximation is not used to determine W, but rather, the limits of the integral are defined as where $\psi'(x) = 0$. (These integral limits can be redefined to conform with W as calculated by the depletion approximation [9].) Fig. 2 demonstrates that of the four models, the Nussbaum model most closely matches the numerical simulation. ### 3.6 Numerical simulation The semiconductor device simulator, DESSIS [10], was also used to determine m_{DR} . DESSIS solves the fully coupled set of semiconductor differential equations, and does not require any of the afore-mentioned assumptions. Consequently, when appropriately applied, DESSIS can be used to determine the most accurate value of m_{DR} . To provide a meaningful comparison with the theoretical models, the DESSIS model was constructed so that the carrier flow was essentially one-dimensional, and so that U(x) follows the SRH formula (Eq. 1), where $n_1(x) = p_1(x) = 0$, and $\tau_{n0}(x) = \tau_{p0}(x) = \tau_0$. The numerical solutions are shown in Fig. 2. Note that the numerical solution gives the total recombination current and not J_{DR} . To determine J_{DR} (and hence m_{DR}), the diffusion recombination current, which is proportional to $\exp(qV_j/kT)$, was subtracted from the total recombination current. In most cases, however, this subtraction was insignificant in the voltage range of interest (0.2–0.4 V), since at these voltages, J_{DR} was the dominant source of the recombination current. ## 4. MAXIMUM m_{DR} for SILICON SOLAR CELLS DESSIS was used to determine the maximum value of m_{DR} for silicon solar cells, for the case where $\tau_{n0}(x)$ and $\tau_{p0}(x)$ are uniformly distributed across the depletion region; this value occurs when the special- case conditions are applied (Section 2). As well as providing the most accurate estimate of m_{DR} , the numerical solutions can be applied to diffused junctions. For the special-case conditions, m_{DR} is approximately constant with V_j in the range 0.2–0.4 V (Fig. 2). For silicon solar cells, this voltage range is the most appropriate for an investigation into depletion-region recombination, since at lower voltages, $n(x)p(x) \not \leq n_i^2$, and at higher voltages, other sources of recombination contribute significantly to the total recombination current. In the results that follow, the average value of m_{DR} in this voltage range and is shown as the thick Figure 3: Numerical simulation for the maximum m_{DR} for a silicon step junction, where τ_{n0} and τ_{p0} are uniform across the depletion region. Bold line shows the average value and the dashed lines show the limits of m_{DR} between 0.2–0.4 V. line in Figs. 3 and 4. The dashed lines indicate the highest and lowest value of m_{DR} in the voltage range. Fig. 3 plots the maximum value of m_{DR} against the doping density for a symmetrical step junction, when τ_{n0} and τ_{p0} are constant with x. It indicates that for very heavy doping, m_{DR} approaches 2. This result arises from U(x) being extremely peaked about the p-n junction. For lighter doping, m_{DR} decreases to ~ 1.7 . To a good approximation, it was found that m_{DR} takes the value of the more lightly doped side of an asymmetrical step junction, and that m_{DR} is independent of τ_{n0} and τ_{p0} . Fig. 4 plots m_{DR} against the doping density for a diffused n^+ -p junction, when τ_{n0} and τ_{p0} are constant with x. It indicates that for all practical doping levels, the maximum value of m_{DR} is ~ 1.8 . To a good approximation, it was found that m_{DR} is independent of τ_{n0} and τ_{p0} . Note that the values plotted in Figs. 3 and 4 could be exceeded if $\tau_{n0}(x)$ and $\tau_{p0}(x)$ were smaller at x=0 than elsewhere in the depletion region (since this would cause U(x) to be more strongly peaked where n(x)=p(x). Such a situation might arise for a grown step junction where there is a greater number of defects at the boundary between n-type and p-type silicon. The situation is less likely to occur in diffused silicon junctions. In summary, if a solar cell exhibits an m_{DR} that is greater than that plotted in Fig. 3 (for a given doping level), it can be concluded that either the trap density near the location where n(x) = p(x) is greater than elsewhere, or the recombination mechanism does not follow the SRH equation. # 5. CONCLUSION This paper examined the value of m_{DR} , with a particular emphasis on its maximum value. It was demonstrated that there is a discrepency between several theoretical models of depletion-region recombination; the models that contain more assumptions tend to overestimate m_{DR} . Numerical simulations, which make fewer assumptions than the theoretical models, were then used to determine the maximum value of m_{DR} for both step-junction and diffused-junction silicon solar **Figure 4:** Numerical simulation for the maximum m_{DR} for a silicon diffused junction, where τ_{n0} and τ_{p0} are uniform across the depletion region. Bold line shows the average value and the dashed lines show the limits of m_{DR} between 0.2–0.4 V. cells, for the case when the trap density is uniformly distributed across the depletion region. The maximum value of m_{DR} was found to increase with doping from 1.7 to 2 for step junctions; and to be approximately 1.8 for all practical doping levels of diffused junctions. It is concluded from this study that for silicon solar cells that exhibit a strong $\exp(qV_j/2kT)$ recombination current, this recombination current can be explained as a consequence of depletion-region recombination only if the solar cell conatains a very heavily doped step junction, or if it contains a greater denisty of traps at the centre of the depletion region than elsewhere in the depletion region. # REFERENCES - [1] C.-T. Sah et al., Proc. of the IRE, 45 (1957) 1228. - [2] J. Pallarès et al., Solid-State Electronics 41 (1997) 17. - [3] P.J. Anderson and M.J. Buckingham, Electronics Letters, 13 (1977) 496. - [4] S.M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley & Sons, (1981) Chap. 2. - [5] A.S. Grove, Physics and Technology of Semiconductor Devices, Wiley, (1967). - [6] A. Nussbaum, Phys. Status Solidi (a) 19 (1973) 441. - [7] K. Lee and A. Nussbaum, Solid-State Electronics 23 (1980) 655. - [8] S.C. Choo, Solid-State Electronics 11 (1968) 1069. - [9] R. Corkish and M.A. Green, J. Appl. Phys 80 (1996) 3083. - [10] http://www.ise.ch