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Abstract

In this paper we examine three interfaces for secure

method invocation in single-address-space operating sys-

tems. We examine the advantages and drawbacks of each

model, and how these models relate to linking and loading

in the single address space. A model is chosen based on

its ability to securely interface multiple languages with low

overhead.

1. Introduction

Single-address-space operating systems (SASOS) sim-

plify sharing of data between programs running on a sys-

tem. Furthermore, instances of a program are able to easily

share program text and read-only data in place.

Sharing text in-place with data located at different ad-

dresses requires a different model of linking and loading to

multiple-address-space operating systems (MASOS).

Our approach is somewhat different to that of the Neme-

sis [Ros94] system because we present a more traditional

programming interface in which you are free to have global

state within a program.

The issues surrounding linking and loading programs in

Mungi has been addressed in earlier work [DH99]. This

paper presents a new linking and loading model in Mungi

that allows transparent cross-module calls.

We evaluate several protected procedure call models that

allow components to share program text while enforcing en-

capsulation of data in separate data segments using hard-

ware memory protection. Furthermore, this new model pro-

vides a language independent, high performance compo-

nent interface for executing protected procedure calls.

2. Mungi

Mungi [HEV+98] is a research operating system devel-

oped at the University of New South Wales. Mungi pro-

vides a single global address space in which all data can be

accessed using only its virtual address.

The virtual address does not lose its meaning when

passed between programs or nodes, eliminating the need

for explicit file or network operations within a distributed

Mungi system. Instead, programs communicate via shared

memory.

A traditional operating system uses address spaces as the

unit of protection, and all threads in an address space have

equal permissions to each part of that address space. The

Mungi address space instead is divided into regions called

objects, the permissions on which are defined by capabili-

ties. Threads execute inside a protection domain — a col-

lection of capabilities that defines what objects can be ac-

cessed and with what permissions.

Because all object references are the same format they

can be used as opaque handles and stored in components

such as the Mungi naming service, used by most programs

in the system to look up services and data. Mungi is de-

signed to take advantage of processors with virtually in-

dexed caches because all data is accessed through the same

virtual address.

2.1 Protection domain extension

To be secure, a system needs a controlled mechanism

to call procedures across protection boundaries. In a tra-

ditional operating system this is done through mechanisms

such as pipes, sockets, signals and System V IPC to separate

address spaces. All of these mechanisms involve sending a

message from one thread of execution to another, possibly

via a queue.

For cross domain calls Mungi has a protected procedure

call called PDX. A PDX call logically migrates a thread

from its current protection domain to a kernel registered en-

try point in another protection domain. For the duration of

the call the thread may carry with it permissions to access

parameters or shared data structures.



2.2 A component system on Mungi

Mungi lends itself naturally to a component software

model [EH01]. Protection domains and PDX offer a simple

yet powerful method of encapsulation. Rather than utilis-

ing a marshal and message paradigm like typical systems,

threads flow naturally through the execution of the program

across protection boundaries.

In a typical operating system, serial execution of RPCs is

the norm. A thread takes messages out of a message queue

and processes them serially, or pushes them off onto other

threads. Mungi instead offers parallel execution as the de-

fault. Mungi handles any thread management operations it-

self. Threads only need include serialising operations such

as locks when they are required.

prettyPrintAST( parse_node* root );

Figure 1. An abstract syntax tree pretty-

printer interface

The single address space (SAS) helps simplify remote

invocation even further. When a thread migrates from one

protection domain to another, all pointers maintain their

meaning. For example, the method shown in Figure 1 can

use a pointer to denote the root of the object and follow the

pointers inside the objects without any need for modifica-

tion. In the example, a parser can share read-only references

to a data structure and the module can securely operate on

the data in-place.

Traditionally this type of communication would require

marshaling the data in the form of serialisation to a textual

or binary form and then re-parsing it back into the original

structure on the callee side. A MASOS system with shared

memory need not marshal the data, however it must still

translate pointers between address spaces.

The PDX model simplifies component model features

such as aggregation. Multiple namespaces that exist when

using pipes or IPC, implies that a client must decide through

which pipe or queue to send requests based on methods and

interfaces. In Mungi all entry points are in the same names-

pace, so invocations may go to arbitrary component imple-

mentations transparent to the caller.

2.3 Language-based security

Recent language-based security [SMH00] developments

in systems such as Java [GJS96] attempt to develop ap-

proaches for ensuring the integrity and trustfulness of third-

party programs.

While systems such as J-Kernel [HCC+98] implement

multiple protection domains for Java-based code, ensur-

ing safety cannot always be guaranteed as applications fre-

quently need to utilise the functionality of existing modules

or other applications.

Providing a method for secure, cross-domain invocation

allows applications to call other modules or applications

while enforcing encapsulation, is discussed in Section 4.

3. Linking and loading

Linking and Loading in a SASOS is very different to that

of a typical MASOS [CLFL94]. In a MASOS you have

the concept of both statically linked and dynamically linked

executables.

A statically linked binary has to be loaded at a fixed lo-

cation in its address space because it contains absolute ref-

erences to code and data.

A dynamically linked (shared) library is somewhat dif-

ferent. Shared libraries are modules loaded into another

process’ address space and linked at runtime. Because

shared libraries must work in varying address space layouts

with other shared libraries, they cannot have absolute ref-

erences to code or data. Shared libraries must be position-

independent.

.plt .text .got .plt.off .data .opd

module instance

Figure 2. Layout of program sections in a tra-

ditional operating system.

Figure 2 shows a typical layout of a loaded module in a

MASOS. All sections are loaded in a fixed layout at an ar-

bitrary (but aligned) base address. The fixed layout means

that code can always locate pointers in the global offset ta-

ble (GOT) through PC-relative addressing. It is the job of

the dynamic linker to resolve these indirect pointers at mod-

ule instantiation time.

Linking in a SASOS is a combination of both the static

and dynamic linking of a MASOS. This is because all in-

stances of a module in a SASOS can share the same text seg-

ment, but require separate data segments. Code can contain

absolute references within its own text segment or read-only

data segment. These absolute addresses can be resolved ei-

ther at install time or by linking the objects in-place if com-

piling from source.

In a SASOS, as shown in Figure 3, the data segment of a

module instance is not at a fixed offset from the text. Oth-

erwise, all module instances would incorrectly refer to the

same data segment. To allow for multiple module instances
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read/execute−only read−write

.plt .text .got .plt.off .data .opd.got .plt.off .data..

in−place text data template

.....

module instance

Figure 3. Layout of program data in single-

address-space.

we can either make a separate copy of the text segment for

each instance of the library, which is inefficient, or not rely

on a fixed offset between text and data.

To instantiate a module, the template data is copied to a

free region of the SAS. The dynamic linker then fixes re-

location entries in the data segment for the new module in-

stance. All indirect pointers are maintained in a global offset

table (GOT) which is pointed to by the global pointer (GP)

register. The GP register removes the need for text and data

to be loaded in a fixed layout. Shared libraries in a MASOS

typically use a GP register to increase the speed with which

global data can be referenced.

Depending on the architecture, the GP is set up either be-

fore or after a function call is made. A caller loaded system

such as Itanium [Int00] sets up the GP prior to executing a

function. Callee loaded systems compute the GP as a fixed

offset from the instruction pointer (IP) upon entry into the

function.

The need for a caller loaded GP register implies that a

function is no longer denoted just by its entry point. A func-

tion entry point is ambiguous as to the data segment context

in which the code should run. A function is therefore an

IP and GP pair, denoted by (ip, gp). This is expressed on

architectures such as Itanium using a function descriptor. A

function descriptor is a small (ip, gp) structure allocated by

a linker.

.plt .text .got .plt.off .data .opd.got .plt.off .data

1

IP GP .....

4

2

3

.. .....

function descriptor

Figure 4. Execution path of a component

function call.

A module instance contains two sets of function descrip-

tors in its data segment: .plt.off and .opd. This is

necessary to accommodate both function calls and function

pointers.

Figure 4 shows a call to an exported function in a caller-

loaded architecture like Itanium. To preserve standard link-

ing semantics at runtime, it is necessary that a call to an

exported function is resolved by performing a lookup in the

procedure linkage table (PLT).

A function call involves a relative jump from the text seg-

ment to the PLT. The code stub in the PLT locates the func-

tion descriptor in the .plt.off section by a fixed link-

time offset from the GP. The old GP is stacked and the new

(ip, gp) pair is loaded from the function descriptor. The

code then jumps to the new IP. On return the original GP is

reloaded from the stack.

Function pointers are used in C/C++ to provide late bind-

ing. In a caller loaded ABI the function pointer is actually

the address of the official procedure descriptor (OPD). The

OPD is a function pointer that resides in the data segment

of the module instance exporting that function. It is neces-

sary to have a specific OPD to allow comparison of function

pointers.

Invoking a function by its pointer causes the code to

load the new GP and jump to the IP. This allows transpar-

ent cross-module calls at the cost of loading via an indirect

pointer. It is an optimisation for the linker to cache a copy

of an OPD in the .plt.off section allowing a GP-relative

load.

It is the role of the dynamic linker to ensure that the func-

tion descriptors point to the appropriate code.

4. Protected procedure call models

To execute a procedure call of a component instance, the

ability to specify not only the entry point of the procedure,

but also a data segment pointer that refers to the appropriate

component instance is required.

To enforce encapsulation, the kernel is required to au-

thenticate the procedure call before it is executed. This re-

quires the kernel to be aware of the format of these calls.

The model of protected procedure call is closely related

to the linking model and calling convention of languages.

Below we discuss three implementations of protected pro-

cedure calls.

4.1 Model 1: Kernel holds a code and data pointer

ObjCrePdx( pd, ip, gp, passwd );

PdxCall( ip, gp, parameter );

The naive solution is simply to place the (ip, gp) pair into

the kernel for each protected procedure call. The (ip, gp)
pair uniquely identifies a procedure call within a particular

module instance.

A PDX entry point is registered with ObjCrePdx by

explicitly specifying both the IP and GP to be used on

an invocation. The kernel stores both these internally and

uses the GP to discriminate between different instances of a

3



module. This ensures that permission for a client to call an

instance of a module in no way implies permission to call

any other instances of that module.

The PDX entry point is invoked by calling PdxCall

with the (ip, gp) pair and an optional parameter.

This model requires applications to handle a pair of

pointers that do not easily map to a unique SAS address.

This makes the process of looking up a PDX entry point

more complex, or requires modifications to applications to

handle multi-word addresses. Practically this complicates

user code in many ways.

Furthermore, this model exposes low-level implementa-

tion details of the architecture’s ABI to the user.

Any modification of the system ABI would require

changing any code that exports or calls a PDX entry point.

This would limit the portability of a system using this

model. A change to the ABI would result in changes to

the API. For example, PowerOpen ABI [TL03] uses 3-word

function descriptors. A PDX call would therefore need to

specify (ip, gp) on Itanium and (ip, gp, environment) on

Power. This provides no transparency for RPC invocations

across different architectures. While it would be possible to

implement PowerOpen ABI using a pseudo-gp that pointed

to the real procedure descriptor, it is messy and a perfor-

mance problem to emulate at the ABI level.

4.2 Model 2: Kernel holds a function descriptor
pointer

ObjCrePdx( pd, fd*, passwd );

PdxCall( fd*, parameter );

In an attempt to solve some of the problems in Model 1,

an alternative model similar to the function descriptors used

in caller loaded ABIs is presented.

The function prototypes are shown above. Instead of

passing an explicit (ip, gp) function descriptor pair, the

caller passes a pointer to this pair (shown by fd* in the

function prototype).

For lookup and validation, the kernel need only store this

pointer in its internal structures. On a PdxCall the caller

supplies this pointer for the kernel to look up. It is impor-

tant to note that the client need not actually have any per-

missions on the pointer, except the right to invoke it. On the

callee side the kernel executes a short piece of stub code in

the callee’s protection domain to load the (ip, gp) pair from

the function descriptor pointer and then executes it.

As for Model 1, we can still differentiate between dis-

tinct instances of a module because the function descriptor

data pair exists in the instances’ private data segment, mak-

ing it unique to each instance.

However, because a single pointer references a PDX en-

try point, the code to handle PDX invocation is far simpler

in both the kernel and application programs. The kernel

only needs to work with a single pointer for comparison

and storage. User code can safely handle and store an entry

point in the same way it does any other pointer.

Importantly, this also allows cross-platform transparency

because all architectures use the same size pointer. It is up

to the callee’s kernel’s stub code to interpret the data pointer.

This model has a potential problem of aliased function

descriptors. It is possible to register two distinct function

descriptors that have the same (ip, gp) pair. Practically,

however, this has not proven to be a problem.

A minor drawback of this module is that during module

creation, the loader must create a ’fake’ function descriptor

in the new program’s domain for the kernel code to load.

While this is somewhat unclean, in practice this code is in-

frequent and for highly specialised uses, so it is not consid-

ered a problem.

While this solution alleviates most of the problems with

Model 1, it still has problems. Of particular concern, the

structure of the function descriptor that stub code loads is

specific to the C ABI for the callee platform. This is an

inconvenience for languages such as Java or Python [Fou03]

which, while their virtual machines use the C ABI, code

written in these languages themselves has no concept of a

GP. This limits cross-language compatibility.

For a non-C language to implement a PDX service it

needs to generate short C-ABI function code stubs at run-

time for each non-C function to be called as a protected

procedure entry point. While it would possible to add an-

other opaque pointer registered with the kernel to provide

a method number selector, this would suffer from all the

problems of Model 1, only partially alleviating the original

problems.

4.3 Model 3: Kernel holds a handle and a code
pointer

ObjCrePdx( pd, handler, handle*, passwd );

PdxCall( handle*, parameter );

Removing the dependency on the C-ABI also removes

the cross-language limitations of Model 2. This yields

the function prototypes above. Essentially we introduce a

model shift. Instead of “calling to a specific instruction

pointer” you “invoke a method handle”. While the actual

changes to application code are minimal, it allows for a far

more flexible implementation of the kernel.

ObjCrePdx now takes a handler parameter, the IP (not

function descriptor) of code to be run on invocation, with

the opaque handle* as the parameter. The PdxCall how-

ever, takes only the corresponding handle* as the argument.

This means the kernel needs to store extra state over Model

2 — the handler as well as the handle*. However, on a
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PdxCall, the handle* alone describes the actual entry

point.

Essentially this is a generalised version of Model 2.

Standard C code registers a function descriptor as the han-

dle and the equivalent of the kernel stub to load the (ip, gp)
pair and jump to it. Other architectures register similarly

and cross-platform calls work the same as Model 2.

The advantage of this model comes from being able to

register anything as the handle and define your own ABI.

Another scripting language, for example, may register a

pointer to a string which is the script to execute as the han-

dle, and the interpreter code as the handler.

handle handler perms

0x1200

0x3700

shared

object
1

IP GP
0x3700

2

4

5

3

PdxCall(0x3700, arg);

domain 1 domain 2

kernel

r/x

0x6f31

handler(0x3700, arg);

Figure 5. Protected procedure call in Model 3.

Figure 5 demonstrates the steps to execute a full PDX

call in Model 3. Firstly the calling thread executes the

PdxCall system call, specifying the handle and an argu-

ment. The kernel receives control and searches for an entry

point with a matching handle. A permission check is made

to ensure that caller has the right to invoke the callee. The

kernel then migrates the thread into the callee domain and

executes handler with the passed handle and argument.

When the callee returns, the kernel migrates the thread back

to the caller domain with the return value.

struct python_method_desc

{

void *interpreter; /* gp */

PyObject *method; /* bound method */

};

Figure 6. An example python method descrip-

tor.

Figure 6 is an example method descriptor that would be

used in Python. Essentially it defines a Python ABI. This

allows the same (ip, gp) pair to be re-used (that of the inter-

preter) but because each python method in an instance has a

separate descriptor, each method can be registered with the

kernel. There is no need for runtime code generation.

This model cleans up module startup code. There is no

need to create false function descriptors because the start

of a program can be specified with the entry point as the

handler and a NULL handle.

This model also has the advantage that it can make the

alias issue of Model 2 a potential feature. Applications are

free to define their own ABI, independent of the caller and

the operating system. Programs can annotate entry points

with whatever data they need, such as permissions. This al-

lows multiple references to the same code and data segment

but with varying application defined parameters.

This could be utilised in interfaces where a method invo-

cation can perform actions at different privilege levels. One

such system would be an SQL command evaluation method

in a database. One handle may restrict execution to only SE-

LECT queries while an administrative handle for the same

entry point would allow all operations.

Without these annotations it is necessary to implement

access control measures in the application protocol. This

may involve either adding an extra authentication mecha-

nism or changing the interface so that no method can per-

form an operation at more than one permission level. We

believe this is an unacceptable limitation for the interface

designer.

The cost for this added flexibility is an increased num-

ber of registered entry points in the kernel. It is yet to be

seen whether this has an impact on kernel performance and

caching.

5. Performance

A cross-domain method invocation system is useless if

the performance of the system is prohibitive in using it. We

ran benchmarks on Mungi and Linux to demonstrate the

cost of a PDX call in reference to traditional function and

cross module calls.

Call type Linux Mungi

Local function 5–15 5–15

Cross module 7–15 7–15

Cross protection domain 4600 624

Table 1. Performance of procedure calls mea-

sured in cycles.
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Table 1 shows the cost in cycles of local and cross mod-

ule function calls. These results were obtained using a

900Mhz Itanium-II. In Linux, the cross protection domain

mechanism is implemented using a 2.6-series kernel prim-

itive called futexes. These provide locking and semaphore

building blocks that are significantly faster than using Sys-

tem V IPC or pipes.

The local function call results show the cost of executing

a function compiled directly into a program. The cross mod-

ule call results show the cost of executing a function that is

in a different module from the caller, such as a library. As

expected, these results are the same for both platforms as

the compiler generates the same code.

For local function and cross module calls we obtained a

range of results. The best results correspond directly to a

cycle count of the instructions executed for each call type.

Different results were obtained due to function alignment at

compile time as well as cache alignment and data position

issues at runtime that are not always under the control of the

programmer or compiler.

The results show that the cost of the extra steps involved

in a cross module call are approximately 2 additional cycles

with hot caches.

The cross protection domain call results show the poten-

tial of the PDX mechanism for a fast, light-weight module

invocation.

The additional overhead of a PDX call is mostly due to

context switch overhead when switching from the caller’s

address space to the callee’s address space and back when

the call returns.

For Mungi, we believe the added cost of execution is

well within a reasonable range due to the fast context switch

and low PDX overheads Mungi provides.

The primitives used in Linux are not designed with a fast

cross protection domain crossing in mind. While context

switch time is the dominating cost, Linux is optimised more

for interactive work. This adds scheduling overhead in the

path of execution for a PDX call.

6. Conclusions

Our work has shown that PDX offers an attractive model

for cross module calls in a component system providing

hardware protection. The thread migration model works

naturally with the flow of program execution. The light-

weight nature of PDX allows protection boundaries to be

introduced in programs with lower overhead than in more

traditional operating systems.

The new semantics of PDX, based on the linking and

loading model of the SAS simplify a number of fea-

tures including application defined ABI, transparent cross-

language invocations and heterogeneous distribution.

The single-address-space model of Mungi promotes

sharing between applications at the memory level allowing

data to be shared across protection boundaries and code to

be shared between instances of modules in-place.
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