
Static Analysis Support for Measurement-based WCET Analysis

Stefan Schaefer ♦† Bernhard Scholz † Stefan M. Petters ♦‡ Gernot Heiser ♦‡

♦ National ICT Australia∗
† School of IT

University of Sydney

‡ School of Computer Science
and Engineering

University of NSW
{stefan.schaefer,stefan.petters,gernot}@nicta.com.au

scholz@it.usyd.edu.au

Abstract

Guaranteeing that the worst-case scenario has been
covered for each basic block individually is a major
challenge in measurement-based WCET analysis. On
the static analysis side the accuracy of hardware mod-
els used are also subject to doubt as they are based
on available documentation provided by vendors which
may be not detailed enough nor correct or both. Even
for verified models the question remains whether sub-
sequent chips adhere to the same specification. We
introduce a new approach to enhance measurement-
based WCET analysis by deploying static analysis to
ensure test coverage on basic block level and reduce
pessimism. In particular, our work focuses on the ques-
tions how detailed does the hardware specification have
to be to make the measurements trustworthy.

1 Introduction

Response time analysis for real-time systems requires
the worst-case execution time (WCET) of all code in
the system to be known a priori, but finding the WCET
of programs is difficult at best. Current microproces-
sor architectures are highly complex as they incorpo-
rate pipelines, branch prediction units, multiple execu-
tion units and caches.

There are currently two major approaches for WCET
analysis: (1) static analysis of programs and (2)
measurement-based techniques. Static analysis in-
volves modelling of the target architecture. Current

∗National ICT Australia is funded through the Australian Gov-
ernment’s Backing Australia’s Ability initiative, in part through the
Australian Research Council.

CPU architectures feature a rich set of mechanisms to
accelerate the execution time of programs, e.g., caches,
pipelines and branch prediction units. Most of these
features are transparent for programmers and programs
and act in a speculative way. Models of processors are
pressed hard to keep track of all these features, but due
to a complexity problem most models do not implement
them and place extremely heavy restrictions on code,
which results in very pessimistic upper WCET bounds
and compensates the advantage that it does not depend
on actual execution-time measurements of code.

Creating an accurate and precise model for static
analysis is difficult at least, as:

• Vendors lose flexibility once they published spec-
ifications. Unpublished specifications can be sub-
ject of a future change much more easier.

• Handware manufacturers keep their economic
benefit in mind. In most cases, manufacturers do
not benefit from publishing specifications.

• Finally, the translation from documentation to the
model used for static analysis is also an error prone
process.

This has to be seen against the backdrop of an increas-
ing number of real-time systems, in particular those de-
ploying high performance architectures invading every
day life.

Measurement-based analysis techniques are still cur-
rent practice in industry. In principle, execution time
measurements are taken with an assumed worst-case in-
put. Besides being tedious, this does not give a satisfy-
ing answer for the WCET because it is impossible to
enumerate all possible (infinite many) inputs for a pro-



gram and measure each execution time. Measurement-
based analysis techniques always raise the question
whether there exists a more pessimistic scenario, in
which the execution time exceeds the WCET observed
so far.

The major problem with that approach is that the exe-
cution time of a basic block differs when different input
parameters are provided as different input causes dif-
ferent paths to be taken to reach this basic block during
execution and the correlation between input and exe-
cution time is not obvious. The worst-case behaviour of
a basic block can be exposed easily, but this is gener-
ally considered as not being sufficient since it is hard to
prove that this is the case.

Our approach aims to combine the strength of the
static and measurement-based approaches and involves
two steps: In a first step, measurements of basic block
execution time profiles (ETPs) are taken through mea-
surements. Static analysis methods will validate these
ETPs with the help of a simple hardware model. If the
validation fails, the static analysis requests more mea-
surements with different input. In a second step, ETPs
of larger syntactical constructs are computed. Finally,
static analysis comes in to improve the tightness of the
upper WCET bound.

We develop and test our approach within NICTA’s
Potoroo project, which aims to establish the WCET of
all code of the L4 microkernel. Performance and trust-
worthiness are the main objectives of the L4 kernel im-
plementation used within the project. Trustworthiness
covers functional as well as temporal behaviour. Be-
ing able to estimate the WCET of these systems’ micro-
kernels makes them trustworthy in the temporal sense,
while minimality is an important step to achieve func-
tional trustworthiness, as a formal proof of functional
correctness, as anticipated by the project L4.verified, is
only possible if the code base is small.

Our report is organised as follows. In Section 2 we
survey the related work. In Section 3 we introduce our
new hybrid approach and in Section 4 we draw our con-
clusion.

2 Related Work

Pure static WCET analysis methods try to find the great-
est execution time explicitly by computing of implic-
itly by find the execution path that causes this execu-
tion time. It is well accepted that find this longest path
is undecidable in the general case. This does not hold

for real-time contexts due to heavy restrictions on the
source code like bounded loops, absence of dynamic
structures and forcing of annotation were made such as
in the works of Chapman et al. [5] and Blieberger et
al. [4]. Engblom et al. introduce Co-Transformation [7]
to establish execution time informations between the
source code and the object code in order to overcome
the massive restructuring of code done by the optimisa-
tion stages of compilers.

Timing schemata were used by Lim et al. [11] to
model the WCET behaviour of RISC processors. Our
approach uses timing schemata as well. The general
idea of a timing schema is to associate to each program
construct a worst-case timing abstraction that accounts
hardware features that affect the WCET.

Formal methods such as Symbolic Analysis [1], Code
Transformation [12], Model Checking [15] and regular
expressions [13] are other approaches to obtain an up-
per WCET bound through static analysis.

The most important technique is Integer Linear Pro-
gramming (ILP). The problem of finding the longest
execution path into an ILP problem is done by Li
and Malik [10], which avoids the explicit enumera-
tion of all feasible paths of a given control flow graph
(CFG). Their implementation cinderella performs
static WCET analysis by that approach and targets the
Intel i960 processor.

Another ILP-based approach, aiT, is discussed by
Ferdinand [8]. This tool computes an upper WCET
bound based on a detailed hardware model. The main
feature is its use of abstract interpretation. However,
this tool puts some restrictions on the programmer, i.e.,
the absence of dynamic structures. Furthermore, it
does not consider task switches, threads, parallelism
and specified return addresses. The major drawback of
ILP-based approaches in general is that all ILP solvers
can only give an upper WCET bound, but cannot con-
clude to the actual path that caused this specific execu-
tion time.

Hardware simulation is a technique used by Colin
and Puaut [6]. The authors introduce a framework for
WCET analysis based on CFGs and simulate instruc-
tion caches, branch prediction units and pipelines stati-
cally to obtain the WCET of a program.

White et al. introduce a framework to bound worst-
case instruction cache performances and a tool that
bounds the worst-case data cache performance predic-
tions [16]. While timing predictions for instruction
caches with pipeline simulation are as tight as pre-
dictions for direct-mapped caches, the worst-case data



cache performance prediction can be tightened signifi-
cantly.

Another tool for estimating WCET with a hybrid
method is pWCET [3]. This tool performs probabilistic
worst-case execution time analysis. It combines static
analysis and measurement-based methods and consists
of two parts. The basic block level ETPs obtained
through measurements are combined with the help of
the computational tree and timing schemata in order
to obtain an overall ETP. The approaches developed
within the Potoroo project and the approach described
in this report are extensions of the approach in pWCET,
in particular regarding obtaining WCETs for compound
syntactical constructs, and the reader is referred to
the publications above for details on the measurement-
based approach.

The most relevant related work is [9]. Kirschner et
al. introduce a new hybrid method that combines static
analysis and measurement approaches. This technique
guarantees that every feasible path of the target program
is executed and its execution time is measured. The
static analysis performs flow fact extraction from the
source code and modelling of an execution-time model
based on the target architecture. An abstract syntax tree
(AST) traversal annotates sub-trees with upper WCET
bounds. A WCET bound for a compound construct is
computed from the WCET bounds of all sub-constructs
with the help of timing formulas. Due to the nature of
an AST, only local flow informations can be used. A
path-based search focuses on a bottom-up WCET esti-
mation. The third method, Implicit Path Enumeration
Technique (IPET), transforms the structure of a pro-
gram into a set of constraints of the CFG. ILP is then
used as the back-end to solve the WCET problem. With
the help of this technique, all possible execution paths
are considered implicitely. However, this is essentially
an exhaustive search which becomes quickly infeasible
even for code with very moderate complexity. Further-
more, execution time is not just dependent on control
flow, but is also substantially influenced by data local-
ity (i.e. caching effects), which is not considered in that
work.

The thesis [14] involves an exhaustive search com-
bined with measurements. In this case, control flow dur-
ing measurements was enforced. To deal with complex-
ity, partintiong the application into measurement blocks
provided a manageable number of paths to be explored.
These blocks were insulated against each other by forc-
ing a worst-case state of caches and branch prediction
between measurement blocks, making sure the worst

case has been captured.

3 Approach

3.1 Measurement-Based Analysis

The measurement-based approach this work comple-
ments relies on execution traces gathered during exe-
cution of the code. The traces may be generated us-
ing instrumentation code, debug tracing tools, or cycle
accurate simulators. However, cycle accurate simula-
tors suffer the same uncertainty of their models as pure
static analysis and is hence not considered a good solu-
tion. The traces contain tuples of a time stamp and an
basic block identifier, which connects the time stamp
with the execution of a basic block. The basic blocks
are matched to their corresponding nodes in the com-
putational tree that is obtained from the CFG of the
executable. In this manner, we get an execution-time
profile (ETP) for each basic block. Such an ETP re-
veals cache misses occured during execution through
their execution time penalty. Basic block ETPs are then
combined to ETPs of higher order nodes in the compu-
tational tree with the help of timing schemata and sur-
premal convolutions. Surpremal convolutions are math-
ematical operators that describe the convolution of the
ETPs such that the resulting ETP considers every de-
pendency between the two argument ETPs. In this man-
ner, we cover any possible dependency between the two
basic blocks. The root node of the tree contains the
ETP describing the WCET behaviour of the entire code.
The details of the whole analysis method can be taken
from [2]. Within this report, we will focus on the ETPs
of basic blocks and issues when combining them. Pic-
ture 1 depicts an overview of the operations performed
during WCET analysis.

GNU
objdump

Computation

Objectcode
Analysis

Executable

disassembled
Objectcode

Traceparser

computed
ETPs

measured
ETPs

Traces
ExecutionExecution/

Simulation

CFG2Tree

CFG.xml

CTree.xml

Figure 1: Our Current Tool Chain



3.2 Coverage Checking

As mentioned before, the major problem of approaches
based on basic block level measurements is to guaran-
tee that sufficient measurements have been taken. Our
proposed approach is to supplement the measurement-
based WCET analysis by static analysis. The static
analysis part is focusing on first order effects like
caches. Second order effects like pipelining are not con-
sidered. The main motivation of this limitation is that
any risk involved in underestimating the WCET, if all
cache effects have been surely covered, is very small.
The variabilities of first order effects is large in relation
to the those of second order effects.

In a first stage our aim is to predict possible numbers
of cache misses in basic blocks. Creating a model of
caching behaviour is easy compared to, for example, the
interlocking dependencies between pipeline, cache and
arithmetic model. It can be ported easily and the com-
plexity pressed upon the computational stage is kept
low. Cache size, associativity, and cache line size can
usually be taken straight from the data sheets, but the
replacement algorithm if often not specified or given as
“pseudo-random”. This allows the vendors for some
leeway in changing implementations without changing
documentation. In the end, only a small number of re-
placement algorithms are used, with the clock algorithm
and least recently used (LRU) being very popular. All
these can easily be identified and verified by simple test
programs testing for the boundary cases.

The static analysis stage decomposes the object code
of executables into basic blocks and keep track of mem-
ory accessing operations within each basic block. In
this manner, a cache miss profile for each basic block
is obtained. The results of the cache prediction model
are then compared to the ETPs observed during mea-
surements. The granularity difference between caching
and other effects allows an easy comparison between
the ETPs and the model results.

Our hybrid approach uses the idea of a feedback
mechanism as shown in Figure 2. As indicated, more
measurements are taken if the measured outcome devi-
ates from predictions. If a basic block is not exhibiting
the predicted worst-case behaviour for an extended pe-
riod of time the process is stopped and manual interven-
tion necessary. The manual intervention can be either to
craft input data to create the worst-case scenario for an
basic block or to dismiss such a worst-case scenario as
being impossible to achieve. The latter may happen as
the approach so far does not take infeasible paths into

account in the computational stage. However, we aim
at minimising such interventions to make the problem
managable.

Figure 2: The Feedback Loop for our Hybrid Approach

Figure 3 shows the correlation of the cache misses of
one basic block. The upper part shows the execution
time penalties predicted by the static analysis. These
penalities are variable as the cache itself has a vari-
able execution time when writing back a cache line.
The lower part shows the clusters of execution times
around cache misses observed during running the basic
block. These clusters arise from second order effects
like pipelines. In order to etablish these correlations,
matching the cache miss profiles and the ETPs is the key
point. As indicated, the predictions obtained from the
hardware model may differ from those obtained from
the ETP in which case more measurements are neces-
sary. The granularity that separates one cluster from a
neighboring cluster is one of the most fundamental is-
sues on this matching problem.

As pointed out, our aims are microkernels running on
embedded systems. In particular, the L4 microkernel
developed at NICTA has system call functions whose
execution times in general are short since not much
code is involved. This assists to minimise the space of
possible cache states that might be achieved during ex-
ecution. As a matter of fact, we have very little to no
eviction of cache contents.

3.3 Overestimation Reduction

In order to obtain save results, the measurement-based
approach makes no assumptions regarding dependency
of execution times between basic blocks, but rather
makes sure that any form of dependency is conserva-
tively covered through surpremal convolutions. This



Figure 3: Correlation between Model and Execution
Time Profile

leads to inherent overestimation.
As a next step after verifying that sufficient measure-

ment data has been obtained, our approach focuses on
identifying dependencies between execution times of
basic blocks. In the previous section we have described
how to establish a connection between an ETP and a
cache miss profile. In this step we establish now de-
pendencies between the cache miss profiles of different
basic blocks, which can than be taken into account in
the computational stage of the approach using the mea-
sured ETPs.

Figure 4 depicts the established cache miss depen-
dencies between two basic blocks A and B. The upper
part shows the dependency establishment with the help
of the hardware model. These dependencies may then
be considered when combining the ETPs of the two ba-
sic blocks using timing schemata, which is shown in the
lower part. The space of possible cache state transitions
is reduced massively such that we can make statements
like “If this cache miss occures in A, then it will not
occure in B”.

4 Conclusions

In this report we have detailed our work to en-
hance trustworthiness of measurement-based worst-
case execution-time analysis by deploying static anal-
ysis techniques. In order to avoid a common problem
of lack of trustworthiness of the models deployed in
static analysis, we aim to use only a minimalistic model
considering caching, opposed to modelling the entire
processor and peripheral units. This model can be eas-

Figure 4: Establishing Dependency Structure

ily validated on any given hardware platform. Building
on top of the trustworthiness analysis of the measured
ETPs of basic blocks, we also aim to use the technique
to tighten up on existing sources of overestimations by
describing dependencies between basic blocks which
can then be used in the later computational stages. Fu-
ture work will focus on implementing and validating
this approach.

References

[1] Guillem Bernat and Alan Burns. An approach to
symbolic worst-case execution time analysis. In
25th IFAC Workshop on Real-Time Programming.
Palma (Spain)., May 2000.

[2] Guillem Bernat, Antoine Colin, and Stefan M.
Petters. WCET analysis of probabilistic hard real-
time systems. In Proceedings of the 24th IEEE
Real-Time Systems Symposium, pages 279–288,
Austin, Texas, USA, December 3-5 2002.

[3] Guillem Bernat, Antoine Colin, and Stefan M.
Petters. pWCET: a tool for probabilistic worst-
case execution time analysis of real-time systems.
Technical report YCS353 (2003), University of
York, Department of Computer Science, York,
YO10 5DD, United Kingdom, April 2003.

[4] Johann Blieberger. Timing Analysis of Object-
Oriented Real-Time Programs. (submitted), Insti-
tute for Informatics, Technische Universität Wien,
Vienna, Austria, 1995.



[5] Roderick Chapman, Andy Wellings, and Alan
Burns. Integrated Program Proof and Worst-Case
Timing Analysis of SPARK Ada, June 1994.

[6] Antoine Colin and Isabelle Puaut. A Modular and
Retargetable Framework for Tree-based WCET
Analysis. In Proceedings of the 13th Euromi-
cro Conference on Real-Time Systems, pages 191–
198, Delft, Netherlands, June 13-15 2001.

[7] Jakob Engblom, Peter Altenbernd, and Andreas
Ermedahl. Facilitating worst-case execution time
analysis for optimized code. In The 10th Euromi-
cro Workshop on Real-Time Systems (ECRTS98),
Berlin, Germany, June 1998.

[8] Christian Ferdinand. Worst-Case Execution Time
Prediction by Static Program Analysis. In 18th
International Parallel and Distributed Processing
Symposium (IPDPS 2004), Santa Fe, New Mex-
ico, USA, April 26-30 2004. IEEE Computer So-
ciety.

[9] Raimund Kirner, Ingomar Wenzel, Bernhard
Rieder, and Peter Puschner. Using Measurements
as a Complement to Static Worst-Case Execution
Time Analysis. In Intelligent Systems at the Ser-
vice of Mankind, volume 2. UBooks Verlag, Dec.
2005.

[10] Yau-Tsun Steven Li and Sharad Malik. Perfor-
mance Analysis of Embedded Software Using Im-
plicit Path Enumeration. In Proceedings of the
32nd ACM/IEEE Design Automation Conference,
pages 456–461. ACM, June 1995.

[11] Sung-Soo Lim, Young Hyun Bae, Gyu Tae Jang,
Byung-Do Rhee, Sang Lyul Min, Chang Yun Park,
Heonshik Shin, Kunsoo Park, Soo-Mook Moon,
and Chong-Sang Kim. An Accurate Worst-Case
Timing Analysis for RISC Processors. IEEE
Trans. Software Eng., 21(7):593–604, 1995.

[12] Hemendra Singh Negi, Abhik Roychoudhury, and
Tulika Mitra. Simplifying WCET analysis by
code transformations. In 4th Intl. Workshop on
Worst-Case Execution Time Analysis, Catania,
Italy, June 30 2004. Satellite Workshop of the 16th
Euromicro Conference on Real-Time Systems.

[13] Chang Yun Park. Predicting Program Execution
Times by Analyzing Static and Dynamic Program
Paths. Journal of Real–Time Systems, 5(1):31–62,
1993.

[14] Stefan M. Petters. Worst-Case Execution Time
Estimation for Advanced Processor Architectures.
PhD thesis, Institute for Real-Time Computer Sys-
tems, Technische Universität München, Munich,
Germany, September 2002.

[15] Sergio Vale Aguiar Campos and Edmund M.
Clarke and Wilfredo R. Marrero and Marius
Minea. Verus: A Tool for Quantitative Analysis
of Finite-State Real-Time Systems. In Workshop
on Languages, Compilers and Tools for Real-Time
Systems, pages 70–78, 1995.

[16] Randall T. White, Frank Mueller, Christopher A.
Healy, David B. Whalley, and Marion G. Har-
mon. Timing analysis for data and wrap-around
fill caches. Real-Time Systems, 17(2-3):209–233,
1999.


