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Abstract

Energy has become a critical component of computer
system design, particularly in the embedded space where
the source of energy is often finite. While hardware design
has the more significant effect on the system’s power con-
sumption, well designed system and application software
make an important contribution to controlling the energy
consumed.

In order to optimise software systems to reduce energy
consumption, feedback is required. Traditional techniques
rely heavily on models of the system which have various dis-
advantages. We examine the benefits of using live power
measurements using statistical sampling for both off-line
and on-line feedback on application power consumption. A
hardware platform is manufactured, operating system mod-
ifications made, and extensive validation carried out. We
conclude that the idea shows promise and justifies further
investigation.

1 Introduction

Computer power usage has become an important area of
research for a number of reasons. High-performance sys-
tems are limited by problems with thermal dissipation, and
portable and embedded systems are often supplied power
from a limited source (batteries, solar panels). In both cases,
energy efficiency is a key quality determining computer sys-
tem utility. Energy awareness and management is critical in
improving the energy efficiency of a computer system. This
is loosely termed power management.

There are three key problems which power management
research has attempted to solve. Generally, these problems
are:

• determining how, and why, power is used in a com-
puter system;

• configuring hardware to match power and performance
requirements (dynamic voltage scaling and low power
idle states have become standard on modern hard-
ware);

• adapting software to use available resources efficiently.

We observe that it is useful to know, to some level of de-
tail, how and why a computer uses power. Such information
is used to evaluate and analyse the operation of power man-
agement algorithms, can help to optimise application and
operating system code with respect to power consumption,
and supports the generation of off-line schedules. We fur-
ther hypothesise that, should the information be available at
run-time, it would be useful as the basis for some classes of
power management algorithms, particularly for intelligent
throttling of system components (CPU via frequency scal-
ing, hard disk via spin-down, etc).

This paper presents the details of an investigation into
obtaining power usage information through direct measure-
ment of the current supplied to the computer’s processor
core, memory and IO subsystems. Hardware and software
infrastructure for making these measurements is developed,
the overheads examined, and the accuracy of the system as-
sessed.

The initial version of the system was used as an off-line
analysis tool. The same methodology can be used to per-
form on-line measurements, giving feedback to the operat-
ing system and user-level processes, and allowing the sys-
tem to block processes which exceed an energy quota. The
effectiveness of these techniques is examined, leading to
ways in which the information can be used, both for off-line
analysis and for on-line accounting/power-management.



2 Previous work

A variety of energy-estimation techniques have been de-
veloped with a view to programmer feedback, power man-
agement research evaluation, and on-line accounting. Many
of these techniques rely on indirect measurements coupled
with a model of the system in order to estimate the power
used. There are several disadvantages to a model-based ap-
proach with regard to power estimation:

• A sufficiently detailed model is required in order to ob-
tain a given accuracy. Computational complexity must
be traded with the detail and accuracy of the model,
and sufficient information must be available in order
to construct it. Circuit-level simulations require the ac-
tual circuit design, etc.

• Modifications and additions to the system require
changes to the model — a significant engineering ef-
fort.

• The model must be verified against real-world mea-
surements.

• Most established simulators concentrate on the CPU
rather than the entire system.

• Models will inevitably miss details: the model of a
hard disk is unlikely to take into account the physical
condition and situation of the disk, which might affect
power consumption.

• Similar to execution times the manufacturers are reluc-
tant to provide the details required, since it may give
advantageous information to competitors.

One advantage of model-based estimation techniques is that
the parameters fed to the model are often useful in their own
right.

Simulators are often proposed as an off-line analysis tool
[5, 7, 10–12]. Typically, trace output from an architecture-
level simulator (such as SimpleScalar [?]) is obtained, and
an energy associated with each instruction in the trace. The
energy used is usually pre-calibrated via measurement of
the actual hardware, since it is rare that the detailed de-
sign information necessary to accurately determine this via
circuit-level simulation is available.

Event-counter based techniques, typified by Bellosa and
Weissel’s work [14], use live data generated by CPU per-
formance counters as the input to a model. The counters
are configured to measure events which are significant to
the energy consumption (cache misses, instructions retired,
etc), and a model interprets these results to estimate the to-
tal CPU power consumption. The accuracy of the system

is therefore determined by the amount of information avail-
able (the number of event counters and measured proper-
ties). The model used is typically simple and the simpli-
fications can lead to inaccuracies in the estimation. These
systems have the advantage that they can efficiently be used
on-line, allowing the information obtained to be used by
power management algorithms. This technique has only
applied to CPUs, since performance counters are generally
not available in peripherals. The only exception to this are
memories, which could be observed, albeit indirectly, by
counting cache misses and write back operations.

State-based accounting techniques such as those em-
ployed in ECOSystem [16] instrument operating system
software to track the state of the CPU and its peripherals
(e.g. for a disk, whether it is spun up or down and whether
it is active or idle). The power in each of these states is
pre-calibrated, and the time spent in each used to determine
the energy consumed. In ECOSystem the energy is then ac-
counted to the processes causing the device to transition out
of its lowest-power state. These techniques have the advan-
tage of being an all-software solution which can simulate
the entire system, however they fail to capture any variation
of the power within a given state. The accuracy of the tech-
nique therefore depends on the number of states (detail of
the model).

Jejurikar and Gupta introduce a system which uses off-
line and on-line analysis to reduce the energy usage of their
applications [8]. The off-line part produces the slowdown
factor in such a way that under the assumption that ev-
ery task runs for its worst-case execution time (WCET) all
deadlines are just met. In the real system deployment this
will hardly be the case as most applications almost never
run for their WCET. The on-line part takes advantage of this
”gain time” to increase the slowdown in order to keep CPU
utilisation high. Such an approach would complement the
proposed measurement technique we are presenting here,
which may be used to produce the input values for their op-
timisation. Similarly, AlEnawy and Aydin look at on-line
and off-line methods [2]. Their results are produced by sim-
ulations rather than using direct measurements our system
would enable.

An alternative to using model-based power estimation
techniques is proposed by Flinn [6]. He uses statistical
sampling techniques (as are widely used in sampling pro-
filers such as Shark [3]). Measurements of the power con-
sumed by a computer are taken periodically, along with
the program counter, and process ID. This information is
stored and later analysed by attributing each power sam-
ple to a process and to a symbol within the process’ code.
Although the sampling rate is slow in comparison to the
CPU’s clock rate, over time enough samples are attributed



to each piece of code (process/symbol) that a statistically
significant average is obtained. This information is more
detailed than either state-based or event-counter-based tech-
niques can provide, and comparable with (and potentially
more accurate than) results obtained via simulation. Flinn
called his energy-profiler Powerscope.

Using these direct measurements counters the disadvan-
tages of model-based approaches, however there are several
problems which were not addressed in the original and sub-
sequent Powerscope work.

One of particular importance is the inability of the sys-
tem to account for background activity (activity which is not
associated with the process which is running on the CPU)
such as blocking disk reads and writes). In the original
Powerscope system this activity is accounted to the running
process rather than the blocked process which is actually
responsible for the activity. It is impossible to distinguish
between the power consumed by the disk (which should be
attributed to the blocked process) and the power consumed
by the processor (which should be attributed to the running
process).

A related issue is not being able to understand how and
where energy is being used in the system. For example,
it is not possible to discern between energy consumed by
the CPU and memory subsystems (without estimating via a
system model).

Other problems include the cumbersome hardware se-
tups (the original Powerscope work involved a second com-
puter connected to an external multimeter in order to per-
form the power measurements. The low sampling rate
which was used means very short functions are not mea-
sured accurately (owing to an effective low-pass filter at the
measurement input). Lastly, the information can not be used
at run-time, since the measurements are taken using a dif-
ferent computer.

3 Measurement system

Many of the problems identified in Powerscope can be
avoided by building a computer with hardware support for
taking the measurements. one of these problems is, for ex-
ample, the attribution of background activities, such as net-
work traffic or hard-disk data transfer, to the wrong process.
By splitting up the measurements into separate entities for
these devices and associating those with modules instead of
processes, a deferred attribution to processes is possible.

For example, a system with a CPU, memory, network
card, and hard disk, would measure the power consumed
by each of these independently. The system can then asso-
ciate the CPU measurement with the running process, the
network card with processes which have submitted or re-

ceived packets, the disk with processes using file systems,
and the memory system with processes causing memory bus
accesses (which may be associated with devices, owing to
DMA).

3.1 The PLEB 2 Platform

PLEB 2 is a single-board computer based on the Intel
XScale PXA255 [1]. It was custom-designed primarily as
a reference to be used in embedded systems research, but
secondarily as a platform for applications implementation.

The PXA255 was chosen as being representative of high-
performance CPUs designed for embedded systems. It con-
sists of a 400MHz ARMv5TE compatible core combined
with a set of on-chip peripheral units including memory, in-
terrupt, DMA and LCD controllers.

The main processing core consists of the CPU, SRAM
and flash memory. Three switching power supplies gener-
ate core, memory and IO power from lithium-ion battery
voltage. A minimal set of peripherals (infra-red, USB, and
serial port) are provided on-board, and supplied from IO
power. An 8-bit microcontroller (an Atmel AVR) resides
on-board in a supervisory role. This models a typical em-
bedded system. Un-used pins on the XScale are connected
to two connectors which allow for other peripheral electron-
ics to be added.

Linux 2.4.19, Linux 2.6.8 and L4ka::Pistachio [9] have
been modified to run on PLEB 2 hardware.

Of particular interest in this context are the device’s fea-
tures designed to support power management. The CPU
core, and memory clock frequencies can be changed in
(very roughly) 30MHz and 10MHz intervals respectively
(the intervals are smaller for the lower frequencies), al-
though not all combinations of clock frequency, bus fre-
quency, memory frequency, etc. are possible.

One problem encountered with frequency scaling
(changing the frequency on-the-fly to adapt to performance
requirements, thereby saving energy) is that there is an over-
head associated with changing frequencies. The XScale at-
tempts to solve this by offering a turbo mode which is a sec-
ond frequency mode. Changing between the run (normal)
mode, and turbo mode is much faster than changing be-
tween arbitrary frequencies because the system can perform
a synchronous switch between the modes, without having
to disturb the memory controller, LCD controller, and other
peripherals.

As well as being capable of setting its core clock fre-
quency, the CPU can enter a number of low-power states.
These states disable circuitry within the CPU: the more cir-
cuitry disabled, the longer it takes to re-activate. Therefore
it is necessary to ensure that the energy saved by being in



the sleep for a period of time is enough to offset the energy
used to sleep and wake up.

Techniques for voltage scaling have also seen a lot of at-
tention in the literature (most notably by Weiser [13], but
also others too numerous to cite) - at a lowered frequency,
the CPU’s core voltage can be reduced, allowing quadratic
energy savings (at half the frequency, the system will use a
quarter of the power). The power supply used on PLEB 2
supports setting the voltage between 0.8 and 1.5V in 0.1V
increments. The chip communicates with the PXA255 via
I2C (a bidirectional serial bus). Similarly, the memory volt-
age can be set to either 3.3V or 2.5V, depending on speed
and peripheral requirements.

Lastly, the Micron SDRAM used can place itself in
power-down and self-refresh modes. These low-power
states can save significant amounts of power. The Intel flash
memory used for non-volatile storage has power-saving fea-
tures, but they are not controllable, and therefore are of little
interest in terms of power management.

3.2 Power measurement hardware

In support of embedded systems research, PLEB 2
was designed with power-measurement hardware on-board.
Each of the three power supplies (nominally for the CPU
core, memory and IO)1 are instrumented with current sen-
sors. Each power supply is well regulated to its designated
voltage, therefore the voltage is assumed to be constant and
the current is proportional to the power (P=IV).

The microcontroller on-board has an integrated
analogue-to-digital converter and can read the sensors at up
to 15kHz. Since it can only measure one of the sensors at a
time, this equates to a maximum of 5kHz on the individual
sensors when all are measured at equal rates.

Samples are transferred from the microcontroller to the
PXA255 as they are taken (as described further in Section
4). Communication between the microcontroller and the
PXA255 is via I2C. This is a significant limitation since
I2C transfers data slowly (400kbps). Thus, in order to avoid
excessive overhead, the transfer of each measurement re-
quires several interrupts (one per byte — each measure-
ment requires two data bytes to be transferred, along with
the I2C bus’ addressing byte). Furthermore, the maximum
sampling rate is limited by the rate at which data can be
transferred between the processors.

Figure 1 details the protocol for taking measurements:
once enabled, the microcontroller interrupts the PXA255

1Note that, should peripherals (such as a network interface) be con-
nected to the system, they will be connected to one of the three power
supplies. This breaks the power-supply-per-device concept.

I/O Data

Memory Data

Sample

Sample

CPU Data

Sample

CPU Data

Sample

Offline
only

Xscale

t

150us

t

Atmel

t t

Data Available: GPI/O IRQ

Start: GPI/O IRQ

Read Address: I2C

Databyte 2: I2C

Databyte 1: I2C

Sample: GPI/O IRQ

30us

34us

44us

44us

1.15ms

3.9ms

Xscale Atmel

Figure 1. On-board communications timing of
on-line analysis

periodically. The PXA255 initiates a measurement by as-
serting an interrupt line on the ATMEL chip. After a fixed
delay the measurement of one of the three sensors is started.
At the same moment the interrupt at the PXA255 is asserted.
The interrupt handler records the state of the system (PC,
PID, etc.) when the interrupt occurred. Once the analogue-
to-digital converter has completed, the microcontroller in-
terrupts the XScale a second time, triggering the XScale to
start a transfer using I2C by sending a read command over
the bus. This generates three further interrupts. After a short
pause (which controls the sampling frequency) the micro-
controller moves on to the next sensor to be sampled and
the process repeats. The data transferred is stored by the
XScale along with the PID and PC information previously
recorded.

4 Off-line analysis

The experiments presented in this paper were conducted
using Linux 2.4.19 because of its immediate availability.
Kernel modules, as well as minor changes to the kernel it-
self, were used to implement communications with the mi-
crocontroller, the off-line analysis and energy accounting
and budgeting (Section ??).

Off-line analysis in this context implies that the system
collects data at run-time, and stores it for later examination.
Power and time used by each process running on the system,
as well as each function within the process and its shared
libraries can be obtained from the data collected [6].

The off-line analysis facility is based on a port of the
Powerscope code to the PLEB 2 platform which has been



Benchmark No profiling Off-line % overhead On-line % overhead

gzip 10.025 10.83 8.03 10.784 7.57
mpg123 30.256 31.213 3.16 31.071 2.69
vision 54.664 55.902 2.26 55.803 2.08
celp 85.397 87.34 2.28 87.17 2.08

Table 1. Time Overhead Introduced by the Measurement System in seconds

extended in order to take advantage of the extra hardware
features available.

The Powerscope framework obtains samples via the pro-
tocol outlined in Section 3.2. It stores the samples for later
analysis via a user-level daemon which reads from a ker-
nel buffer (un-modified from the original implementation).
The tool designed to analyse the data was modified to ac-
commodate the three current sensors which do not sample
concurrently.

This arrangement has a number of advantages over the
original Powerscope implementation:

• Three current sensors are sampled, giving a user in-
sight into how power is used in the system (it is possi-
ble to distinguish between memory and CPU power,
for example). Further sensors can be added easily
within the same software infrastructure.

• Because each of the three current sensors are con-
nected to measure the major functional units, asyn-
chronous activity (e.g. IO) can be accounted to the
correct process and code. (ie. we can distinguish be-
tween background activity and activity directly cor-
related with the program counter and present process
ID).

• The device is an integrated unit with no external ap-
paratus required (Powerscope used a second computer
and multimeter to reduce overhead on the system be-
ing profiled). This makes using the tool as easy as any
other profiling tool. This also means there is only one
data file which needs to be analysed, saving the need to
move copy samples and data files to the same location.

The information gathered can be used in various ways.
One way would be to guide the trade off between memory
hierarchy and performance. Applications depending heav-
ily on the CPU might benefit from the increased reuse of
previous computation results stored in main memory, while
applications with a large memory-bandwidth requirements
can be optimised by recomputing values instead of relying
on results stored in memory. In such a way the performance
and energy usage could be optimised.

5 On-line analysis

5.1 Energy accounting

Because the XScale is set up to receive its own power
measurement data, the information can be used on-line at
run-time. The method of receiving data is very similar to
the off-line system. For each sample, the value obtained
is accumulated in Linux’s process control (task) structure,
and a field indicating the number of samples is incremented.
Using this, the information is made available at user-level
via the Linux /proc interface.

The method of taking direct measurements of the power
consumed has numerous advantages over other methods of
estimating the power consumed on-line:

• It does not employ a model, and therefore is not hin-
dered by inaccuracies in that model. Furthermore, the
extensive development time required to build an accu-
rate model is avoided.

• Computation associated with accurate model-based
simulations effectively prohibits their use for on-line
power estimations.

• When comparing with state-based power estimators
[15], which are often used for on-line power manage-
ment in the literature, the measurement-based system
can capture variation within a single state (for exam-
ple, network interface power will vary greatly depend-
ing on whether it is sending, receiving, or both. The
likelihood of these states can not be predicted by the
operating system. Furthermore, the energy expended
per packet will depend on the availability of the net-
work).

• The approach does not only cover the CPU, but all
the components within a system which are usually not
covered in indirect measurement or simulator-based
approaches.

• It is also possible, with little effort, to extend the ap-
proach to charge background IO activity to the process



Powerscope CPU LEA CPU Powerscope Mem LEA Mem

copymem 0.306 0.308 0.347 0.352
fillmem 0.310 0.314 0.405 0.412

fp-exercise 0.315 0.318 0.211 0.212
add bench 0.268 0.211

Table 2. Comparison of some typical results for on-line (LEA) and off-line (Powerscope) measure-
ments. All measurements in Watts.

initiating this activity, rather than to whichever process
is running during this background activity. This gives
similar capabilities (with better accuracy) to the state-
based currentcy system [15].

5.2 Energy budgeting

The on-line accounting technique has been used to im-
plement an energy budgeting system. The information
available allows the operating system to make scheduling
decisions based on energy related criteria. The implementa-
tion is similar to the currentcy approach (cf. [15]) described
in Section 2.

The OS process control structure is augmented with an
energy remaining and energy budget field. The energy ac-
counting system is used to decrease the energy remaining.
Periodically (in the present implementation, once per sec-
ond), the energy remaining field is reset to the budget value.
The scheduler was modified to ignore processes with a neg-
ative energy remaining field. This halts processes whose
budget has been exhausted until it is replenished.

The system is able to control the processes’ power us-
ing direct measurements, rather than state-based account-
ing, as was deployed in the currentcy work. This allows the
processes to be throttled more accurately. A Linux /proc

interface allows to set the budget for each process.
The energy budgeting system allows control over how

much energy processes use. This is a mechanism by which
power management algorithms can throttle processes (ig-
noring quality of service constraints). Desired goals achiev-
able include obtaining a desired battery lifetime, or main-
taining a maximum CPU temperature. Further work will
revolve around validating the energy budgeting system and
leveraging the infrastructure to implement power manage-
ment algorithms.

Throttling the processes via this energy budgeting tech-
nique is a mechanism rather than a power management al-
gorithm. In order to meet deadlines and other quality of ser-
vice objectives, the processes would have to degrade grace-
fully. This degradation is likely to be application specific,

although it could potentially be built into middleware.
Techniques such as voltage scaling and the use of low-

power processor modes are complementary and can be used
to eliminate idle time and increase the “work” done by the
system per joule.

6 Results

Of major concern is the perceived overhead of taking
measurements, both in terms of power and time. We have
chosen four benchmark programs to discuss the impact of
the measurement system on the application:

• gzip represents a compression algorithm, which may
be used to reduce memory footprint of data — in this
case, a 1.4MB MP3 — the output is discarded;

• mpg123 is an MP3 player operating on the same
1.4MB MP3 file and is representative of a typical mul-
timedia application — the output is discarded;

• vision is computer vision software, which uses a low
resolution (128x128) greyscale image and identifies
the type, location and orientation of an object within
the image;

• celp is a codebook excited linear predictor and has
been adapted from version 3.2 of the US DoD’s
Federal-Standard-1016 implementation for a lossy
speech compression algorithm.

The benchmark applications cover a wide range of embed-
ded applications. Compression algorithms are common to
reduce the amount of data to be transmitted over low band-
width interconnect and field buses. Multimedia applications
like the MPEG decoding example mpg123 are common in
most 3G phones and PDAs. Similarly the celp example
stresses audio compression technique for mobile commu-
nication over a low bandwidth carrier. The vision example
is typical for software used in industrial manufacturing au-
tomation involving simple, low resolution and robust image
processing software.



The data presented in Table 1 shows the time overhead
introduced by the measurement system with the main pro-
cessor running at 199MHz, the system bus at 99MHz, and
the memory bus at 99MHz. It suggests that the impact of the
off-line measurements is not unreasonable. The overhead
comes from three sources: the Linux interrupt handling
code, the measurement system interrupt handling code, and
the associated cache-related costs of running these two. The
comparably large impact on gzip can be explained by its
heavy memory and cache dependency. The Linux inter-
rupt overhead code is much larger than the actual measure-
ment system code. One possibility is that Linux pollutes
the caches, badly affecting the working set of gzip. An-
other possibility is that the interrupt code and page mapping
are evicted from the cache and TLB when running memory-
intensive applications, leading to overhead when the inter-
rupt is triggered.

In the case of the on-line system, the overheads presented
in Table 1 are not unreasonable for a prototype system.
gzip is adversely affected in the same way as in the off-
line measurements. The on-line measurement system shows
slightly lower overhead than that of the off-line system as a
result of its not having to store large amounts of data (a run-
ning total, rather than a complete history, is maintained),
and smaller interrupt handler code size.

Future versions of the system will make use of the
XScale’s fast interrupt queue (FIQ) vector, avoiding over-
heads associated with the Linux interrupt code, while at
the same time reducing interrupt latency and improving
the measurement accuracy because the sampled program
counter will be better synchronised with the actual measure-
ment. Furthermore, the interrupt handler could be pinned in
the cache and TLB, avoiding the particular effect on cache-
intensive applications.

The measurement based monitoring technique may be
used for real-time systems, especially when the interrupt is
moved to a separate interrupt queue, the TLB entry pinned
and handler is locked into cache. In the context of real-
time systems the off-line measurements may be obtained at
the same time as the traces for a measurement based worst-
cases execution-time analysis as in [4]. This would make
effective use of the test scenarios created.

It is necessary to take into account the potential latency
added by other interrupt service routines. We believe that
it is safe to assume that enabling the measurement sys-
tem does not extend the WCET of any task being analysed.
The testing undertaken may well be used in a measurement
based WCET approach, as described by Bernat et al [4].

The accuracy of the measurements has been validated by
checking:

• sanity: for a variety of benchmarks and combinations
of benchmarks, measuring the total average current
consumed at the input and comparing with the total
power given by the measurements;

• proportionality: running benchmarks with a consis-
tent power consumption and comparing the ratio be-
tween the CPU and memory power for both the output
of the measurement system and the voltage presented
to the microcontroller by the current sensors;

• consistency: running different combinations of bench-
marks and checking consistency of the measured re-
sults (i.e. in the absence of cache effects or other cross-
coupling of the process’ power, the measured power
should be the same independent of what programs are
running concurrently).

In order to measure the system’s instantaneous power
consumption, it was necessary to use artificial benchmarks
which hold the power consumption at a constant level
(while that benchmark is running).

• fillmem repeatedly fills a 1MB block of memory with
meaningless numbers.

• copymem repeatedly copies a 1MB block of memory.

• fp exercise performs some CPU intensive opera-
tions.

• mul bench repeatedly executes the mul instruction.

• add bench repeatedly executes the add instruction.

In order to obtain a larger variety of powers to be mea-
sured, the frequency of the main processor core was ad-
justed to 99MHz, 199MHz, and 398MHz. The processor’s
internal bus was also adjusted according to half the core fre-
quency.

There is some advantage given to the measurement sys-
tem by keeping the benchmarks at a constant power: band-
width limitations and mis-alignment of the analogue and
digital samples will have less impact. This could be further
examined by comparing identical functions run in different
programs, or comparing the total energy consumed rather
than the power. However, in these cases, the measurement
system accuracy will be reduced because of a smaller num-
ber of samples. Furthermore, as the size of the entity being
measured is reduced, the assumption that the power of the
entity is not affected by the surrounding program (or pro-
grams) becomes less valid. Lastly, since it is unlikely that
the entity would be passed the same input each time, its
power would further vary. The latter two are not inaccuracy
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in the measurement system, but a natural variation in the
power. Further validation forms part of the future work in
this area.

Figure 2 compares the power overhead with the actual
system power without the measurement system running.
The extra power used by the measurement system is found
to be approximately constant, with a similarly constant per-
centage of the time executing. This is consistent with data,
since there will be no change in input power if the mea-
sured software is using the same power as the measurement
system. (i.e. the power will be constant). Mathematically:

Pmeas = (1 − r)Pin + rPsys (1)

where Pmeas is the power when the measurement sys-
tem is running, Pin is the power when its not running, and
r and Psys are constants describing the proportion of time
running the measurement system and the measurement sys-
tem power respectively. Fitting this model to the data using
least squares, we find that the measurement system uses ap-
proximately C = 700mW for r = 2.7% of the time. This
is approximately the same as thees time overheads shown in
Table 1.

A sanity check was performed by comparing the input
power (obtained by measuring the input current and voltage
with two multimeters) with the sum of the (CPU, memory
and IO) measurements for a given constant-power bench-
mark as given by the on-line measurement system. However
due to the nature of the circuit the sum of the power con-
sumed by the sum of the CPU, memory and IO power will
not equate with the input power. There are several sources
of power dissipation which must be considered in order to
compare the two sets of measurements:

• The system uses several DC-DC converters to convert
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from the main supply voltage to the CPU, memory and
IO voltages required. These converters have an effi-
ciency which varies with the current and difference
in voltage. For simplicity we assume a constant effi-
ciency for each converter.

• A small amount of current consumed on the IO line.
While PLEB2 has been designed to allow this line to be
monitored, the components to do it were not available.
The supply was physically measured using a current
meter, and shown to be 20mA.

• There is a linear regulator to supply a clean voltage to
the XScale’s phase-locked loop, and another to supply
the DC-DC converter logic.

• Other power drains are not accounted by the measure-
ment system. Their power dissipation varies with the
main supply voltage. We suspect these are resistive
loads within the power-supply circuits.

For the purposes of checking the measurements, a sim-
plified model was developed and fit to the measured values.
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where η represents efficiency, P represents power, V

represents voltage, and RDCDC represents an equivalent re-
sistive load in the DC-DC converter chip. DC-DC converter
quiescent power, the power consumed by the linear regula-
tors, and non-linearities in η are ignored for simplicity.

The data was fit to the above model numerically using
least squares. The efficiency of the DC-DC converters was
found to be approximately ηcpu = 86% and ηmem = 95%.



The rated efficiency in the data sheet for the DC-DC con-
verter circuit is 90% (the figures could be distorted by
sources of power loss not considered in the model).

Figure 3 compares the corrected total power against the
input power (measured with two multimeters) — i.e. each
side of Equation 2. The maximum error between the two
for these measured cases is 8mW (1.29%), showing that
the measurement system is indeed making sane measure-
ments (much of the error is likely to stem from the simpli-
fied model used to compare the input and measured power).

The defining feature of the measurement system is the
ability to distinguish between the power used by differ-
ent pieces of software running concurrently. This ability
is proven by running several benchmark processes concur-
rently (i.e. with the Linux scheduler switching between
them). Each benchmark should cause a near constant power
draw during its period of execution. Varying the bench-
marks which are run concurrently changes the system’s av-
erage power consumption. The measurement system should
be capable of distinguishing the different processes’ con-
stant power in each case.

Tables 3 and 4 show consistency between the measure-
ments. Each of six tests was formed via a combination of
one or more of the benchmarks and the power measured us-
ing the off-line system. It can be seen in the CPU results
that the system varies by 2mW(0.6%) for the CPU power,
and 9mW(2.6%) for the memory power (for this small sam-
ple size). The small variation in memory power can be ex-
plained by the increased cache misses caused by running
concurrent processes. This effect varies due to cache place-
ment, concurrent cache refills and write-back.

While these measurements presented were performed
using the on-line system for convenience, the conclusions
should apply to off-line measurements (i.e. the off-line and
on-line results should be equal). Table 2 shows typical mea-
surements for the constant-power benchmarks measured us-
ing both the off-line and on-line systems for comparison.

In summary, it was shown that the measurement sys-
tem measurements can be equated with the observed input
power. Then, that the measurements are consistent when
run with a variety of benchmarks. Lastly we present some
samples from both the on-line and off-line systems for com-
parison. We conclude that the system is useful as a tool for
making power measurements.

7 Conclusions and future work

Direct power measurements, correlated with the in-
system activity, provide a good way to obtain information
to be used in analysing power use in computer systems. The
implementation presented has low overheads and provides

accurate results. It is easier and neater to use than previ-
ous implementations. The system can be used for off-line
static analysis, and adds support for on-line accounting and
budgeting.

A major advantage of the proposed approach over pre-
vious work is the ability to measure from more than one
current sensor, allowing accounting for background activ-
ity, as well as more detailed information about how power
is used in the system. Further advantages include not having
a requirement for a detailed system model.

Future work will investigate several ideas:

PLEB 2 was designed as a general purpose research plat-
form, and so was designed with the basic power monitoring
features described in the previous sections. Given experi-
ence with PLEB 2 and a greater knowledge of the require-
ments placed on the measurement system, more appropriate
hardware could be designed. An FPGA, rather than a mi-
crocontroller, could be used to coordinate current measure-
ments. This would allow significantly reduced overheads,
since the link via I2C could be replaced by a connection
directly to the PXA255’s memory bus, speeding and sim-
plifying the data transfer. The FPGA could perform any
necessary integrations or scaling.

Instead of measuring the current supplied by each power
supply, a current sensor could be installed per device, al-
lowing the system to measure the current consumed. This
would mean each IO device would be individually moni-
tored allowing users of the off-line analysis tools to under-
stand how and why each device consumes power as well
as allowing the on-line tool to accurately account for back-
ground activity.

Energy accounting could be done in the FPGA in order to
improve the accuracy and and reduce the measurement sys-
tem overheads. An FPGA with memory could be informed
of a context switch, allowing it to track the power consumed
by running processes without interrupting the system.

Applying the techniques discussed would both validate
the ideas, and provide useful feedback about the behaviour
of a typical system. Two possibilities are: compare a num-
ber of proposed dynamic voltage scaling techniques to de-
termine how they perform at a system level (rather than
using the CPU-specific power estimations), analysing the
power consumption of a range of benchmarks, and integrat-
ing with timing analyses.

A more detailed investigation of the sensitivity to sam-
pling frequency and process power variation would also be
desirable.



Test 1 2 3 4 5 6

copymem 0.306 0.307 0.308 0.307
fillmem 0.310 0.311 0.311 0.311

fp exercise 0.315 0.315 0.315
add bench 0.268

Table 3. Comparison of CPU power measurements by Powerscope for four benchmarks in six com-
binations. All measurements in Watts.

Test 1 2 3 4 5 6

copymem 0.347 0.349 0.340 0.340
fillmem 0.405 0.405 0.405 0.397

fp exercise 0.211, 0.211 0.211, 0.211 0.211
add bench 0.211, 0.211

Table 4. Comparison of memory power measurements by Powerscope for four benchmarks in six
combinations. All measurements in Watts.
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