Fault Tolerance and Avoidance in Biomedical Systems

Shane Stephens & Gernot Heiser
School of Computer Science and Engineering
University of New South Wales

Abstract

It is important for a variety of reasons that biomedical
systems execute without errors. One useful approach to-
wards error-free software is to design a range of fault tol-
erant properties into applications software. In addition, by
restricting the behaviour of an application and requiring
explicit allocation of resources such as memory, errors can
be caught while an application is still being written, rather
than once an application has been released. This paper in-
vestigates how an operating system can support biomedical
applications using these approaches.

1 Introduction

A biomedical system is one which interfaces with hu-
mans in a medical context. Examples include life-support
devices such as pace makers, diagnostic and monitoring de-
vices such as electrocardiographs, and prosthetic limbs and
organs.

Fault tolerance in this context refers to recovery from a
fault in such a way that the faulty service can recover, and
continues to be offered to the user. Fault avoidance refers
to increasing the stringency of a system in such a way that
bugs are easier to find.

While fault tolerance and avoidance is important in all
systems, it is especially important to ensure that biomedical
devices work as intended. In some cases, the patient is un-
able to survive without the assistance of the device, while
in others, the patient relies upon the correctness of informa-
tion the device provides. Therefore the methodologies used
in conventional software are inappropriate for Biomedical
software.

One approach to fault tolerance is formal verification of
code [3]. The author is currently involved in an attempt
to verify the L4 microkernel [4], and we are confident that
our approach will succeed. Another feature of L4 that sets
it apart from traditional embedded kernels is that it imple-
ments memory protection. Memory protection is useful in
this context as it limits the damage that can occur due to
malfunctioning code.

However, executing on a verified kernel is not sufficient
protection for biomedical systems - even in the presence of
a perfect kernel, user applications can fail. One solution to
this problem is to require that the user applications them-
selves be verified in a similar manner to the kernel. Given
the magnitude of effort required to verify code, however,
this may not be a practical approach: there are many more
user applications than kernels.

Fault tolerance and avoidance should therefore be exam-
ined as an alternative in cases where full verification of user
code is not a feasible option. It is a central thesis of this
paper that an appropriately designed operating system can
support and aid programmers of user applications who wish
to write fault tolerant code.

A prototype version of such an operating system,
Biomedical Operating System (BiOS), has been written,
and further research is currently in progress. Some key as-
pects of this operating system are presented below.

2 TheBiOSDesign

BiOS provides a small set of user-level services, imple-
mented on top of L4. These services include a pager, a
system-call server, and a packet server. Given the size and
modularity of these services, verification should be possi-
ble.

The domain of embedded biomedical applications has
several important properties that have influenced the design
of BiOS. These properties are:

e that embedded biomedical applications typically re-
quire only a small number of concurrent threads of
execution. A general purpose system that allows arbi-
trary execution of multiple applications is not required.

o that biomedical devices will typically not be required
to run code which was not produced by the developer
of the device. In general, faults will occur because of
programming bugs, not malicious code.



o that typical biomedical applications involve the contin-
uous or semi-continuous processing of packetised data.
This is exploited by the provision of a highly optimised
streams abstraction which lies at the base of many of
the fault-tolerant properties of BiOS.

e that because of limitations in human perception and
the relatively slow rate of events within the human
body, most biomedical applications have a data acqui-
sition/production frequency in the order of only tens of
Hertz. In addition, the human body itself adapts grace-
fully to delayed deadlines on the milliseconds scale -
jerky video streams are still watchable, and a delay be-
tween action and effect can often be adapted to. Hence
hard real-time guarantees are not required in general.

Given these properties, a decision was made to base
BiOS inter-process communication around a streams ab-
straction. Although this abstraction is quite different to
existing UNIX abstractions, BiOS is not intended to be a
general-purpose operating system. In addition, provision of
this abstraction allows biomedical developers to think about
streams-based problems in a more natural manner. Finally,
soft real-time schedulers for streams exist (see for instance
Loser et. al. [5]), and adaptation of an existing scheduler
to the BiOS system should be possible if soft real-time is
required.

BiOS streams connect several participating threads to-
gether in an ordered fashion. When a stream is created,
it is initialised with a fixed number of packets that can be
passed along the stream. At any given time, each packet
may only belong to one thread (or “stream element”). Ad-
jacent stream elements communicate by transferring own-
ership of a packet from one element to another.

This promotes a user view of an application as a set of
communicating, modular stream elements. Ideally, each el-
ement performs a single logical action, and each logical ac-
tion is distinct in its execution from the rest of the system.

BiOS enforces this abstraction by providing only a
streams interface to the system drivers. This also increases
the efficiency of the system - BiOS streams are designed to
provide a zero-copy communications mechanism.

3 Modularity

Providing applications developers with a system in-
terface that promotes modularity has several advantages.
Firstly, the task of writing an application is simplified, as
the design approach essentially consists of identifying can-
didate stream elements, designing an interface between ad-
jacent elements, and writing each element.

Secondly, modular applications are easier to debug, as
accidental memory accesses are more likely to cause a pro-
tection fault than a side-effect.

Finally, modular applications are easier to verify [2] (if
verification is considered absolutely necessary), as the ap-
plication is already split into a set of orthogonal sections
that communicate via a well-defined interface.

4 Protection vs Performance

To provide an efficient zero-copy mechanism for
streams, BiOS must place all packets in globally shared
memory. However, this weakens interprocess protection,
because stream elements can write to packets that they do
not own.

To solve this problem without sacrificing performance,
BiOS provides two completely separate implementations of
the streams interface. The first implementation enforces
protection by manipulation of virtual memory using an L4
memory primitive known as “grant”. Grant operates on one
or more contiguous pages of memory, and can be thought
of as a transfer of the underlying frames from one address
space to another.

The safe streams interface provides an operating system
service known as the “packet server”. When a new stream
is created, that stream’s packets are initialised within the
packet server’s address space, one per page, and are only
granted to participating threads as required. Similarly, when
a thread decides to send a packet, this packet is granted back
to the packet server. In this manner, illegal accesses within
the region of memory containing the packets are detected
by the system, and the developer is notified.

However, due to the relatively high cost of page grant-
ing, this implementation is quite slow. Given the nature
of many biomedical applications, this limitation may not
be significant. However, if more efficient communication
is required, BiOS provides a second implementation of the
streams interface. This implementation provides a perma-
nently mapped region of memory for the stream. Packets
reside in this region, and illegal accesses are not caught.

This interface is fast for three reasons. Firstly, expensive
virtual memory operations are not required. Secondly, be-
cause the user applications are given a pointer to a buffer
rather than supplying one, the stream can be used to im-
plement zero-copy transfer of data all the way along the
stream (including to and from operating system drivers). Fi-
nally, the operating system does not play a heavy role in the
streams mechanism (being involved only in blocking stream
elements that are waiting on packets which have not been
sent), which reduces execution time substantially.

Because the two implementations provide exactly the
same interface, switching from the safe implementation to
the fast implementation simply requires toggling an initial-
isation flag. As a result, user code which executes safely on
the slow interface can still be considered safe when running
on the fast interface.



It is evident that carefully written malicious code could
seem to execute correctly on the protected implementation,
yet perform illegal accesses on the high-performance imple-
mentation. However, the purpose of the BiOS dual streams
implementation is not to protect against malicious code, but
instead to detect accidentally programmed bugs. This re-
striction explicitly excludes consideration of Byzantine fail-
ures.

5 Fault Recovery

The programmer’s view of BiOS applications is that of
a cooperating system of stream elements. This view allows
the programmer to implement several fault recovery mech-
anisms at user level with a minimum of difficulty.

BiOS can be configured to restart a task when an excep-
tion is raised by that task. Rather than using the *main’ entry
point, BiOS will start the task at an additional, user-defined
entry point (much like a light-weight version of UNIX sig-
nals). All stream memory and mappings in the task are pre-
served, and the user code must then determine what error
occurred and handle the error appropriately.

A simple mechanism for dealing with an error may be
simply to discard the most recent packet of data and request
the next one. Alternatively, the user module may simply be
restarted with all of its state re-initialised. More compli-
cated mechanisms may simply attempt to process the faulty
packet with an alternative algorithm, or execute an internal
consistency check before continuing.

The user can also insert stream elements which perform
explicit bounds-checking at various points of the stream.
These elements can be registered with BiOS as additional
exception-generators, and can be programmed to trigger if
packets are detected with erroneous or nonsensical data.

Such stream elements could look for signs of malfunc-
tion such as packets that contain unexpected values (for in-
stance, negative values in a frequency field); or an unreason-
able time without a new packet becoming available. Other
user-defined signs could also be implemented if required.

This approach provides mechanisms by which users can
write fault-tolerant code, rather than dictating operating-
system level fault-tolerant procedures to the programmer.

6 N-Version programming

N-Version programming is a popular existing technique
for writing fault-tolerant software where proof of an algo-
rithm is impractical. Essentially, the approach consists of
processing data with several implementations of the same
algorithm, and attempting to find a consensus of the re-
sults [1].

This approach can readily be implemented with little
overhead using BiOS streams. Several alternate implemen-

tations of the required algorithm can be implemented as sep-
arate threads or processes, and registered in a stream. A de-
multiplexing stream element can then make several copies
of a packet and pass a copy to each implementation. Finally,
a consensus element could collect each implementation’s
result, and use any of the existing approaches to choose an
acceptable outcome based upon the results gathered.

7 Conclusion

Provision of a reliable system is the responsibility of
both the operating system provider and the application
writer. This paper has examined some operating system fea-
tures that can aid the application writer in construction of a
fault-tolerant application.

References

[1] A. Avizienis. The methodology of n-version programming.
In Software Fault Tolerance, pages 23-46, 1995.

[2] K. Havelund and J. Skakkebaek. Practical application of
model checking in software verification. In Proceedings of
the 7th Workshop on the SPIN Verification System, Sept. 1999.

[3] C.A.R.Hoare. An axiomatic approach to computer program-
ming. Commun. ACM, 12:576-580, 1969.

[4] M. Hohmuth, H. Tews, and S. G. Stephens. Applying
source-code verification to a microkernel — the VFiasco
project. Technical Report TUD-FI02-02—Médrz 2002, Dres-
den University of Technology, 2002. Available from URL:
http://os.inf.tu-dresden. de/vfiasco/.

[5] J. Loser, H. Hartig, and L. Reuther. A streaming interface
for real-time interprocess communication. Technical Report
TUD-FI01-09-August 2001, Dresden University of Technol-
ogy, 2001.



