
Capability-Based Protection

in the Mungi Operating System

Jerry Vochteloo� Stephen Russell Gernot Heiser

(Full Paper)

School of Computer Science and Engineering

University of New South Wales, NSW Australia 2033

July 23, 1993

Abstract

A single address space operating system is an excellent environment for the im-

plementation of distributed object-based systems. The issue of providing effective

and efficient protection of objects in such an environment has, however, not been

addressed satisfactorily. This paper presents the protection mechanism of Mungi1,

which is based on password capabilities. A system-maintained data structure called

the capability tree is used for the long-term storage of capabilities, and reflects the

hierarchical structure of object privacy. A second system data structure, the active

protection domain, allows the system to find capabilities quickly when validating

memory accesses. The model supports inheritance of protection domains, as well

as temporary extension of protection domains to support privileged procedures.

Untrusted programs can be confined to run in a restricted protection domain. The

protection system performs efficiently on conventional architectures, and is simple

enough that most programs do not need to be aware of its operation.

1 Introduction

In the past it has been difficult to allow sharing in a distributed environment due to the

difficulties of implementing a global object naming scheme [1]. As we have pointed out

earlier [2], a clean and elegant solution to this dilemma is to provide an all-encompassing

single address-space, which contains the virtual memory of all processes on all nodes

in a distributed computing system. Such a global virtual memory system (GVMS) is

provides a persistent object store. The recent advent of 64-bit microprocessors (MIPS

�e-mail: jerry@cs.unsw.oz.au
1Mungi is an Australian Aboriginal word for “message stick”, which is analoguous to the role of capabil-

ities in this system

1



R4000 [3] and DEC Alpha [4]) makes such a single address-space operating system

possible.

In the Mungi GVMS, user processes only see a single, flat virtual memory. An

individually allocated segment of virtual memory is called an object2; objects are

page-aligned and are the basic unit of protection. All data are referenced in a uniform

manner by issuing an address, and addresses can be passed around freely. Sharing is

therefore extremely simple, and is not limited by any system-imposed restrictions other

than protection against unauthorised access. Distribution is transparent and data can

migrate freely between computing nodes; whenever a non-resident page is referenced

by a process it is obtained from whichever node currently holds that page. The network

is in this sense just an extension of the local paging disk. More details of the system,

its support for replication, migration and fault tolerance, can be found in [5].

One of the more difficult problems associated with a single address-space is the

implementing of security. Protection in traditional operating systems mostly depends on

the fact that processes are running in different address-spaces: since it is impossible for a

process to address an object outside its own address-space, explicit system intervention

is required to make such objects accessible. The system has full control over such

accesses and can reliably impose a protection model.

In a single address-space, however, every object is visible to each process, and no

explicit system interaction is required to access an arbitrary object. Different protection

mechanisms, which do not depend on address-space separation, must be employed in a

GVMS. Mungi provides a protection system based on password capabilities [6], which

is largely transparent to the user, yet maintains a level of protection comparable to

traditional approaches. In particular it gives users control over their protection domains

and allows them to deal safely with untrusted programs. A set-uid-like service for

temporary extension of protection domains is also provided.

The remainder of this paper focuses on the implementation of the Mungi protection

system. Section 2 presents the password capability scheme that forms the basis of the

protection model. Section 3 describes the system-maintained data structure where users

store capabilities, while Section 4 describes how the system performs access validation.

Section 5 explains how protection domains can be inherited, restricted or expanded by

user processes. Section 6 compares our proposal with other systems described in the

literature, and Section 7 contains our conclusions.

2 Capabilities in Mungi

2.1 Password Capabilities

Capabilities represent a location-independent object name, and are therefore ideally

suited to a GVMS. There are three kinds of capabilities [7]: Tagged capabilities are

distinguished from normal data by system-maintained hardware memory tags. Since

2Although we use the word object, our objects are more coarse grained than those in other object oriented

systems.

2



this involves specialised hardware, they were not considered suitable for our system.

Partitioned capabilities are kept in protected segments that cannot be manipulated by

user programs. As we do not wish to impose any restrictions on the use of pointers by

application programs, we have chosen the third alternative: sparse capabilities. These

are simply long bit strings which are protected from forgery by the fact that only a very

small number of all possible strings are valid capabilities.

We have opted for password capabilities, rather that other sparse capability schemes

which require encryption [7], making creation and validation of capabilities expensive.

The capabilities consist of two parts: a 64-bit address and an (at least) 64-bit password.

Therefore there are two kinds of pointers in the system: plain 64-bit addresses, and

capabilities which contain an address as well as the corresponding password. Both

kinds of pointers can be freely passed around by users, and can be stored in any user-

level data structure. The advantage of allowing capabilities (as pointers) to reside in

user-level data structures has been pointed out by Jones [8].

To make the system easy to use, the protection system aims to be as unobtrusive

as possible. In the normal case of a plain address being used for accessing memory, a

capability must somehow be presented to the system so that it can validate the access.

In particular, as long as a process is only accessing its “own” objects, it should not have

to worry at all about protection. The system should somehow automatically recognise

the user’s protection domain (PD) which, in our system, is the set of all capabilities a

user holds.

An explicit open operation would restrict the need for presenting capabilities to

the first access only. Unlike traditional approaches, however, an open operation is

not required in a GVMS, as there is no need to instruct the system to map files into

the user’s address-space. An implicit open operation can therefore be used. This

requires, however, that the system can find the associated password when the address

is first presented. The data structures to facilitate finding passwords are described in

Sections 3 and 4.

2.2 Capability Types and Access Modes

Protection in our system is object-based; i.e., a capability always defines access rights

for a whole object. The system view of objects is simply that of a contiguous, page-

aligned segment of virtual memory. Any further structure on objects is the responsibility

of higher software layers.

For this low-level protection, we propose four access modes: read (r), write (w),

execute (x),3 and destroy (d). Any capability permitting all the four basic access modes

is called an owner capability. Whenever an object is created, i.e. virtual memory is

allocated, the system returns an owner capability to the creator process. Its password

is a random number generated by the system. Note that there does not exist a unique

owner process or user for each object; any process which presents an owner capability

3There is a special form of execute mode, called protection-domain-extension, which is explained in

Section 5.2.

3



to the system has permission to perform any operation on the object.

When an object is created, the system records its base address, length, and owner

password in a global data structure called the object table (OT). The OT obviously

contains sensitive data that must be protected from any access by user programs. The

capability to read the OT is our system’s equivalent to the root password in UNIX

systems, and so must be protected.

2.3 Derived Capabilities

As well as owner capabilities, the system provides capabilities with more restricted

access rights, such as read-only. A scheme is provided which allows users to derive

less powerful capabilities as required. This method is similar to one proposed for

Amoeba [9].

From the owner capability, C
rwxd

, a new capability C

rwx

= f(C

rwxd

), where

f is a well-known one-way function, can be derived which only gives permission

to read, write and execute the object. That capability can be further restricted to

C

x

= f

x

(C

rwx

), which allows only execution, and C

rw

= f

rw

(C

rwx

), which allows

only reading and writing. f

rw

and f

x

are related one-way functions, i.e. f with a

constant string (s
x

; s

rw

) XOR-ed with its argument, so that f
rw

(s) = f(s

rw

� s),

f

x

(s) = f(s

x

� s). The former capability can be further restricted to C

r

= f(C

rw

),

which only allows reading. The capability hierarchy is shown in Figure 1.

hier-prot.id

31� 64 mm

f

f

f
x

f
rw

drwx

rwx

xrw

r

Figure 1: Hierarchy of derived capabilities

When an object is created, the system derives a full set of capabilities from the

randomly generated owner password. All five passwords of these capabilities, together

4



with their corresponding permission bits, are stored in the OT. Any process holding a

valid capability to an object can then derive a weaker (more restricted) capability to the

object by applying the well-known one-way function.

In addition to directly deriving less powerful capabilities from existing ones, the

owner (that is, any process holding an “owner” capability) can also create new capabili-

ties for an object. To do this, the owner provides a new password and the corresponding

access rights to the system, which will record the new password in the OT, together with

all of its derived passwords. Similarly, the owner can ask the system to remove certain

passwords from the OT, thus selectively revoking access rights to the corresponding

object. The owner can also obtain a complete list of valid capabilities from the system.

We restrict the addition of capabilities to owners, to ensure that they have full

control over objects. If non-owners were allowed to add capabilities, an owner could

not reliably revoke access to the object.

3 Capability Tree and Protection Domains

Data structures are needed which allow users to store and manipulate their capabilities,

as well as allowing the system to quickly find capabilities after a protection fault. These

data structures should also reflect the user’s intuitiveview of the protectionmodel. Most

existing operating systems support a hierarchical model of protection. In UNIX, for

example, files have three sets of permissions, which govern access by the owner, the

owner’s group, and everybody else. This hierarchy seems to map well to actual use,

as a system typically has files which are needed by everyone (e.g. programs in /bin),

those which are relevant to a particular group of users (e.g. project-related programs

and documents), and those which are private.

3.1 The Capability Tree

To support a similar hierarchy of protection, we organise our capability store as a tree,

the capability tree (Ctree), which is a single object shared by all kernels in the system.

A node of this tree is called a protection node (Pnode) and is linked to a group of

capabilities.

Capabilities for the most public objects are stored with the root node of the Ctree,

while private capabilities are stored with the leaves. Group capabilities are stored with

Pnodes at intermediate levels. When the system searches the tree, it will search from

some Pnode all the way to the root, thus encountering the more private capabilities first.

We call the set of capabilities encountered when traversing the Ctree from a particular

Pnode to the root a regular protection domain (RPD). Any pointer to a Pnode defines an

RPD. Note that RPDs are not strictly hierarchical, as the same capability can be stored

at different Pnodes.

Each Pnode contains a pointer to a capability list (Clist). While the Ctree is a system

data structure, the Clists are completely under user control. Every user holding a valid

capability can modify a Clist by adding or removing capabilities, thus modifying the

5



correspondingRPDs. Of course, normal users will only hold capabilities to their private

Clists (belonging to Pnodes distant from the root), while only the system administrator

will hold capabilities for the root Pnode’s Clist.

Each Pnode may also contain a pointer to a user-provided protection fault handler

which provides an alternative search strategy. This is discussed further in Section 4.1.

Figure 2 shows the structure of the capability tree.

ctree.id
133� 110 mm

h

h h

nil

Pnode

Clist

Handler

Figure 2: The capability tree

3.2 Operations on the Capability Tree

Each user of the system has an associated RPD, which is defined by a pointer stored in

the system’s user directory and which points to the appropriate Pnode. When a user is

added or removed from the system, the system administrator adds or deletes a node in

6



the Ctree. This requires that the system administrator holds the capability to execute

maintenance routines which themselves hold the capability to the Pnodes.

Users are also allowed to add Pnodes to the Ctree. To do this, the user provides a

capability for a new Clist, and a pointer to an existing Pnode which becomes the parent

of the new Pnode. To perform this operation, the user must have read permission on

the parent’s Clist. Similarly, users may delete a Pnode if they hold a write capability to

the node’s Clist.

4 Active Protection Domains

While the Ctree reflects the hierarchy of protection that users might expect, it is not

necessarily the most efficient or flexible way of maintaining protection domains. One

problem is that processes cannot modify their protection domain, e.g. to restrict it

before calling untrusted programs, without affecting the protection domains of other

processes. Another problem is that it is difficult to determine how many pointers exist

for a given Pnode, which makes it impossible to reclaim unreferenced Pnodes, and so

the Ctree may grow indefinitely. This is particularly a problem with processes that

terminate abnormally without removing any Pnodes have they added to the Ctree.

To overcome these problems, we introduce an active protection domain (APD),

which is a data structure defining the protection domain in which a process is executing.

APDs are similar to local name spaces in HYDRA [10], and process resource lists in

CAP [11], and consist of an array of Clist and protection fault handler pointers held

in the PCB. When a user logs into the system, the login process’ APD is initialised

from the user’s RPD by traversing the Ctree, starting at the Pnode pointer found in the

user directory, and copying all Clist and protection fault handler pointers into the APD.

Subsequently, the user process is free to modify its APD by adding or removing Clists.

Figure 3 shows the relation between the Ctree and an APD. Note that not all Clists need

to appear in the Ctree.

4.1 Access Validation

Since Clists are user data structures, the system cannot rely on them to contain valid

capabilities. They must be validated by matching them against the passwords stored in

the OT to determine their valid access modes.

When an object is accessed for the first time, a protection fault is generated, as the

system has no information on the validity of the access. The system then consults the

OT to obtain the base address of the object containing the faulting address, as well

as the passwords and access modes belonging to that object. Next, the process’ APD

is searched for a matching capability granting at least the required access mode. If

the validation is successful, the protection and translation tables described below are

updated and the access is allowed to proceed.

To give users more freedom in the organisation of capabilities, we allow them

to provide protection fault handlers (PFHs), which are upcalled by the kernel while

7



apd.id

140� 85 mm

Active
Protection
Domain

Clists

Pnode
Ctree

Figure 3: Capability tree and active protection domain

searching the APD. A PFH is given the faulting address and the desired access mode

and will return a capability to be validated, or a failure indication which causes the

search to continue. This allows users to implement faster lookup schemes such as

hashing.

For performance reasons, it is essential that the system can search a process’ APD

quickly when validating a memory access. We therefore use a fixed-size list in the PCB

which can hold up to 16 Clist and handler pointers. This size is based on the experience

of the CAP project [11], which also used pointers to capability segments, and which

found that six were sufficient (even though there was space for 16). As usage patterns

in our system are likely to be somewhat different, we allow for a larger list than what

was found to be sufficient in CAP.

4.2 Caching Access Rights

It is of course impossible to perform this validation on every memory access, so it is

essential that validation information is cached. The obvious way to do this is by using

the page table. Once an access to an object has been validated, the page table entries

will reflect the access right(s) found with the matching password.

8



This scheme does not work well with conventional hardware page tables. It requires

each process to have a separate page table, even though all page table entries for shared

pages contain the same translation information in the GVMS’ single address-space, and

differ only in their protection bits. This makes it difficult to maintain the consistency

of the page table entries.

A further complication is that translation information cached in the translation

lookaside buffer (TLB) may have to be invalidated on a process switch, as processes

sharing a page may have different rights to it.4 However, some of the translation

information in the TLB may still be relevant to the new process. Hence the TLB entries

will have to be invalidated even though their contents are correct except for a few bits,

or the TLB needs to be tagged with the process ID.

A solution to the problem of multiple page tables is to use a software-loaded

TLB. The system can now maintain a single translation table and separate per-process

protection tables. On a TLB miss, the data from the translation table and the current

protection table are merged to reload the TLB. On each process switch the system

changes to a different protection table. This approach still requires invalidating some

TLB entries, however.

An alternative solution is based on the idea of completely separating the hardware

support mechanisms for translation and protection. The TLB then contains the usual

translation information, but no access rights bits. In addition, there is a protection

lookaside buffer (PLB) which caches process-specific validation data.5 On each access,

the TLB and the PLB are searched in parallel. A successful TLB search returns the

physical address, an unsuccessful one generates a translation fault. The PLB search

generates a protection fault if unsuccessful. The TLB is thus completely process-

independent and does not need to be flushed at all. The PLB does not need to be flushed

if it is tagged with a process ID. The PLB can also be smaller if it is object-based rather

than page-based. Recent work suggests that such a device could be feasible [13].

5 Changing Protection Domains

5.1 Tailoring Protection Domains

Enlarging an APD by adding new capabilities is necessary to allow processes to create

and share objects. Reducing an APD is essential in order to safely deal with untrusted

programs: a user should be able to execute an untrusted program in a PD which contains

only those capabilities the program needs to perform its duties. Both of these situations

require services to initialise and modify APDs.

When a process is created, the parent provides a pointer to an initial APD data

structure. This structure, for example, could be obtained from an RPD using a standard

4In the common case of read-only or execute-only sharing of system objects, the access modes are likely

to be the same.
5A similar approach has been proposed by Koldinger et al. [12]

9



service routine, or could be specially constructed by the parent. A common case would

be for the child to inherit the parent’s APD.

APD modifications can be performed in one of two ways. A process may, provided

it holds the appropriate capabilities, modify the actual Clists pointed to by the APD list

in its PCB. Such a change will, of course, influence all processes whose APDs contains

those Clists. Alternatively, system calls are provided to allow the process to modify

the array of Clist and handler pointers in its PCB.

5.2 Temporary Extension of Protection Domains

In UNIX systems it is possible to substitute temporarily one protection domain by

another using the set-uid mechanism. This is extremely useful to let normal users

perform special operations in a controlled manner via a privileged program6. We

propose a special kind of procedure, the PDX (protection domain extension) procedure,

to perform a similar task in Mungi. This mechanism is transparent to the caller, who

does not need to know of the special status of the procedure.

PDX procedures have associated with them a list of valid entry points. Restricting

access to controlled entry-points avoids security problems such as entering a procedure

after its validation code. The ability to associate different sets of entry points with each

PDX capability allows selective access control to the methods of the object.

Each time a user process attempts to call a PDX procedure, the system consults the

object table in the usual manner to validate the execute capability for the procedure.

The system then discovers that the object is a PDX procedure, which has an associated

list of valid entry points and a single Clist pointer. If the call attempted by the user is

consistent with the entry-point list, the system pushes the Clist pointer on the caller’s

APD and, prior to transferring control to the procedure, swaps the stacked return address

with a dummy value. When the protected procedure returns, the dummy return address

will cause a protection fault, which is caught by the kernel. The kernel restores the

original APD and lets the user program resume execution from the original point of

call.

Note that, unlike the UNIX set-uid facility, the PDX mechanism does allow access

to the caller’s environment. However, the caller can tailor a protection domain before

calling the procedure if necessary.

5.3 Confinement

At times, a user needs to run an untrusted procedure and wants to ensure that these

procedures cannot pass information onto another user. In this situation we need to

confine the procedure to run in a certain protection domain. Mungi provides mechanism

for confining procedures.

When a user wants to call an untrusted procedure, they create a process which

constructs a confined environment using the methods described in Section 5.1 above.

6For example, Mungi system calls are implemented using this method.

10



The confinement flag is then set by the process, which disables changes to the APD

of the executing process. This prevents the process from modifying its protection

domain. The confinement flag also prevents explicit presentation of capabilities. These

restrictions prevents the procedure from transmitting any information to any other

source, except those set up by the caller. The process can then safely call the untrusted

procedure.

6 Comparison

In this section we contrast our proposal to other approaches to protection in distributed

virtual memory systems. Other GVM-like systems have recently been proposed, but

these have either ignored protection [14, 15, 16], or have failed to provide sufficient

details of its operation [17].

6.1 MONADS

The MONADS project has long recognised the value of a global address-space for the

support of persistence. The system was designed to provide strong support for software

engineering principles, such as modularisation and encapsulation. The MONADS

protection model is a reflection of this fact. The system ensures that modules can

only be accessed via well-defined entry points, and that the internal structure remains

inaccessible otherwise. Besides modules (large-grain objects), MONADS also supports

fine-grained objects within a module. The two kinds of objects are supported by

different access and protection mechanisms, a reflection of differing usage patterns [18].

The main disadvantage of MONADS is that it is based on a specialised architecture,

and so cannot easily make use of advances in processor design. Porting MONADS

to a SPARC, for example, required the development of several items of customized

hardware, which was a major investment in effort [19]. Our design is based on a

conventional architecture, though it is most suited to machines with a software-loaded

TLB.

Furthermore we believe that the address-space of a general-purpose workstation

operating system should be flat (unlike MONADS use of structured addresses), to

minimise the restrictions on the implementation of higher software layers. We also do

not want to impose limitations on the storage of capabilities, whereas MONADS uses

partitioned capabilities which are kept in user-inaccessible system areas.

6.2 Amoeba

Althoughnot a distributed virtual memory system, Amoeba [9] uses sparse capabilities,

consistingof the port number of the server responsible for the object, an object id, access

rights, and a signature. The signature is computed by applying a one-way function to

the access rights and a random number which is stored with the object. Capabilities are

always presented explicitly as part of a typical client-server interaction. Less powerful

11



capabilities can be derived with the help of one-way functions, but selective revocation

of access rights is not possible, as only one “password” exists for each object.

Full validation of a capability (by encrypting the password and access rights and

comparing this with the presented capability) is required each time the server receives

a request for an operation on an object. This is acceptable in Amoeba’s environment

but is completely unfeasible in a GVMS. Furthermore, Amoeba has protected directory

servers, which contain capabilities. In our system we have completely separated naming

from protection by introducing separate data structures. Hence, directory servers do

not require special privileges in our system.

6.3 Opal

The protection system in Opal [1] bears some similarity to our model. The Opal system

uses a form of password capabilities called protected pointers to control access to

objects. The protected pointers also contain portal numbers which are used in cross-

domain procedure calls. As well, the Opal group is investigating hardware mechanisms

to support the separation of translation and protection [12].

Opal also provides two methods of validating access to an object. The first is

by explicitly presenting a capability to the attach system call. Attempts to access

unattached objects cause a protection fault and the system then attempts to validate the

access implicitly. It is not clear, however, what role protected pointers play in implicit

validations, or whether an alternative protection method is involved.

Opal’s cross-domain procedure calls serve a purpose similar to our PDX procedures.

They are, however, different from normal procedure calls in that a special instruction

is required and different parameter passing mechanisms are used. Therefore, the two

kinds of procedures are not transparent to the caller.

6.4 Psyche

In Psyche [20] the unit of data encapsulation and sharing is called a realm, which

consists of a collection of code and data. Psyche arranges for each realm to have a

globally unique virtual address, which allows for uniform addressing. Each realm has

an associated list of <key,right> pairs which control access to data and operations for

the realm. The keys are arbitrary large numbers, similar to the passwords in Mungi.

Permission to operate on a realm is granted to a process if it possesses a matching key

in its key list.

Invocation of realm operations can be protected in a manner analoguous to Mungi

PDX procedures. A protection domain is the collection of realm invocations that have

been validated by the system. It is not clear, however, how individual operations are

protected by the invocation mechanism.

12



7 Conclusions

A single address-space is a good environment in which to implement distributedobject-

based systems: a global address space ensures that all object names are valid throughout

the system. The single address-space, however, implies that completely different

mechanisms must be used to provide protection in the system, unlike earlier systems

which are based on the existence of a separate address-space for each process. We have

proposed a novel protection system based on password capabilities which addresses

this issue.

The Mungi capability system fits well into the single address-space concept in

that it gives users full freedom for sharing data, while at the same time effectively

preventing unauthorised data access. A system-maintained persistent data structure, the

capability tree, provides users with a convenient and safe store to keep their capabilities.

The capability tree also defines a user’s login protection domain. Rapid lookup of

capabilities when validating a memory access is achieved using per-process active

protection domains, which also allow flexible manipulation of the process’ protection

environment.

Protection is mostly transparent to users, and they do not require a detailed un-

derstanding of its operation. There is scope, however, for users who are aware of the

underlying mechanism to tailor the security environment in which they execute. In

particular, the system allows processes to inherit a protection domain, and to expand

(when obtaining new capabilities) or reduce (when calling untrusted programs) their

own protection domain. A transparent set-uid-like temporary modification of protec-

tion domains is supported. Adding new capabilities to objects is possible, as is selective

revocation of access rights.

8 Acknowledgements

The authors acknowledge the assistance and support of our colleagues in the Computer

and Systems Technology Laboratory at UNSW. In particular, we would like to thank

Kevin Elphinstone, Ian Gorton and Keith Burston for their valuable contributions.

References

[1] J. S. Chase, H. M. Levy, E. D. Lazowska, and M. Baker-Harvey. Lightweight

shared objects in a 64-bit operating system. In Conference on Object-Oriented

Programming Systems, Languages, and Applications, 1992.

[2] S. Russell, A. Skea, K. Elphinstone, G. Heiser, K. Burston, I. Gorton, and

G. Hellestrand. Distribution + persistence = global virtual memory. In Cabr-

era and Jul [21], pages 96–99.

13



[3] MIPS Computer Systems, Inc., Sunnyvale, CA. MIPS R4000 Microprocessor

User’s Manual, 1st edition, 1991.

[4] Digital Equipment Corp., Maynard, MA. Alpha Architecture Handbook, 1992.

[5] G. Heiser, K. Elphinstone, S. Russell, and G. R. Hellestrand. A distributed single

address space system supporting persistence. School of Computer Science and

Engineering Report 9302, University of NSW, Kensington, NSW, Australia, 2033,

March 1993.

[6] M. Anderson, R. Pose, and C. Wallace. A password-capability system. The

Computer Journal, 29(1):1–8, 1986.

[7] M. Anderson and C. Wallace. Some comments on the implementation of capabil-

ities. The Australian Computer Journal, 30(3):122–33, 1988.

[8] A. Jones. Capability architecture revisited. Operating Systems Review, 14(3):33–

5, 1980.

[9] S. J. Mullender and A. S. Tanenbaum. The design of a capability-based distributed

operating system. The Computer Journal, 29:289–99, 1986.

[10] E. Cohen and D. Jefferson. Protection in the HYDRA operating system. In ACM

Symposium on OS Principles, volume 5, pages 141–59, 1975.

[11] R. Needham and R. Walker. The Cambridge CAP computer and its protection

system. In ACM Symposium on OS Principles, pages 1–10, 1977.

[12] E. J. Koldinger, J. S. Chase, and S. J. Eggers. Architectural support for single ad-

dress space operating systems. In Proceedings of the 5th International Conference

on Architectural Support for Programming Languages and Operating Systems,

pages 175–86, 1992.

[13] J. Kaiser and K. Czaja. ACOM: An access control monitor providing protection

in persistent object-oriented systems. In Proceedings of the 5th International

Workshop on Persistent Object Systems, pages 359–73, Pisa, Italy, 1992. Morgan-

Kauffman.

[14] D. Cohn, A. Benerji, P. Greenawalt, M. Casey, and D. Kulkarni. Workstation

cooperation through a typed distributed shared memory abstraction. In WWOS-III

[22], pages 70–4.

[15] M. L. Scott and W. Garrett. Shared memory ought to be commonplace. In

WWOS-III [22], pages 86–90.

[16] A. Bartoli, S. J. Mullender, and M. van der Valk. Wide-address spaces—exploring

the design space. Operating Systems Review, 27:11–17, January 1993.

14



[17] J. B. Carter, A. L. Cox, D. B. Johnson, and W. Zwaenepoel. Distributed operating

systems based on a protected global virtual address space. In WWOS-III [22],

pages 75–9.

[18] J. Rosenberg. Architectural support for persistent object systems. In L.-F. Cabrera,

V. Russo, and M. Shapiro, editors, Proceedings of the 1st International Workshop

on Object Orientation in Operating Systems, pages 48–60, Palo Alto, USA, 1991.

IEEE.

[19] D. Koch and J. Rosenberg. A secure RISC-based architecture supporting data

persistence. In J. Rosenberg and J. L. Keedy, editors, International Workshop

on Computer Architectures to Support Security and Persistence of Information,

pages 188–201, Bremen, Germany, 1990. Springer-Verlag.

[20] M. L. Scott, T. J. LeBlanc, and B. D. Marsh. Multi-mode parallel programming

in Psyche. In Cabrera and Jul [21], pages 70–78.

[21] L.-F. Cabrera and E. Jul, editors. Proceedings of the 2nd International Workshop

on Object Orientation in Operating Systems, Dourdan, France, 1992. IEEE.

[22] IEEE. Proceedings of the 3rd Workshop on Workstation Operating Systems, Key

Biscayne, Florida, 1992.

15


