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Abstract. Fine-grained hardware protection, if it can be done without slowing

down the processor, could deliver significant benefits to software, enabling the

implementation of strongly encapsulated light-weight objects. In this paper we

introduce Legba, a new caching architecture that aims at supporting fine-grained

memory protection and protected procedure calls without slowing down the pro-

cessor’s clock speed.

This is achieved by separating translation from protection, which allows the use

of virtually-addressed caches and moving the TLB off-core. Protection is imple-

mented in two stages. We add protection information in the form of an object

ID to each cache line. This object ID is combined with a per-protection context

identifier, and the result is used to index into a protection cache, which delivers

the access rights. As no range check is required on the protection cache, it can be

set-associative, allowing it to be made large, fast and low-power, compared to a

fully associative TLB. On a cache miss, the object ID is retrieved in parallel to

the cache line fetch, performing the protection range check off-core.

A new switch permission enables Legba to implement protected procedure calls,

where the new context identifier is taken from the instruction cache line’s object

ID. This mechanism is similar to call gates but more flexible. The paper compares

Legba with approaches based on the idea of a protection look-aside buffer, in

particular with respect to coverage.

1 Introduction

Mobile code is becoming increasingly widespread, and thus secure execution of un-

trusted code is presents a significant challenge to modern computer systems [1]. As

well, dynamic extensibility has long been promoted as a way to manage the complex-

ity, and improve maintainability and reliability of operating systems [2–5]. Recently,

the low reliability of some system components, particularly device drivers, has trig-

gered renewed efforts to isolate such components [6, 7].

The common problem here is the need to isolate untrusted (buggy or potentially

malicious) code. In addition, component technology [8–10], which is an attractive way

of constructing extensions, is leading to a reduced granularity of the units of code and

data that require protection or isolation [11].

While a memory-management unit (MMU) provides mechanisms for implementing

protection and isolation, attempts to use these for mobile code or OS extensions has in



the past generally lead to poor performance [1], mostly resulting from the high cost

of protection domain crossings (i.e. context switches). This has lead to a widespread

employment of pure software techniques for protection and isolation of extensions

[3,12–15]. These approaches are generally justified with the high cost and coarse gran-

ularity of hardware-based protection.

This high cost is not unavoidable. Even on present hardware, careful design and

implementation of OS primitives can reduce the cross-domain invocation cost to within

a single order of magnitude of that of a normal function call [16, 17]. While this still

constitutes significant overhead on primitive operations, in terms of overall system ex-

ecution times this is often reduced to a few percent [18,19]. Still, the overheads may be

too high for component software with high invocation frequencies.

However, software-only protection has its cost too: run-time checks cannot be avoi-

ded unless restrictive programming models are imposed, and the size of the trusted

computing base (TCB) dramatically increases due to the inclusion of compilers and

language runtime systems. Perhaps most critically, a single security flaw in a system

employing software-only protection will generally provide an attacker with the full

privileges of the underlying virtual machine [11].

Hardware mechanisms would be the preferred means of providing protection or

isolation, if they provided finer granularity and if the cost of context switches could be

reduced compared to present processors.

This paper presents Legba, a new protection cache architecture, which is designed to

reduce the granularity of protection, without limiting the processor’s clock rate. Legba

furthermore supports a protected procedure call [20,21] mechanism which allows a pro-

gram to change its protection domain in a controlled manner without the need to enter

the operating system (OS) kernel. This enables fast protected component invocation.

The reminder of this paper is organised as follows. Section 2 presents related work,

Section 3 introduces our proposed Legba architecture. Section 4 describes the experi-

mental setup we used, and Section 5 presents the results, followed by conclusions and

future work in Sections 6 & 7.

2 Related Work

2.1 Translation Look-aside Buffer

Current processors employ a translation look-aside buffer (TLB), which caches page

translations as well as access rights. In order to allow sharing of the TLB between differ-

ent processes, and thus reduce context switching costs, the TLB is usually tagged with

an address-space identifier (ASID). The ASID of the currently active process is stored

in a processor register and concatenated with the virtual address on a TLB lookup.

Making protection more fine-grained in such a system would mean reducing the

page size. Small page sizes, however, imply more memory-management overhead in

the OS, and reduced I/O performance when paging. The trend in modern operating

systems is towards larger rather than smaller page sizes. As a single page size is any-

way unlikely to provide good performance under all circumstances, TLBs of modern

architectures support a range of page sizes. Multiple page sizes, however, are in general



implemented via a fully-associative TLB [22]. Since large fully-associative caches are

slow and energy hungry, and since the TLB is on the processor core, TLB capacity is

generally limited to, at most, a few hundred entries. Consequently, TLB coverage is

inherently limited, and would be further degraded by smaller page sizes.

The inadequate coverage of modern TLBs has been highlighted by several studies

[23–26]. Several attempts have been made to address this, including super-pages [22],

sub-blocking [27], in-memory translation [28], virtually-addressed memory hierarchies

[29,30], in-cache translation [31], and even software-managed address translation [32].

However, all these studies focused on improving translation coverage, while protection

issues have at best been a secondary consideration.

2.2 De-coupling Protection From Translation

Given the conflicting requirements on the granularity of translation (which should be

large in order to maximise translation coverage) and protection (which should be small),

it makes sense to consider separating the hardware mechanisms for protection and trans-

lation.

One such approach is that used in the PA-RISC [33] and Itanium [34] processors.

These tag TLB entries with a protection-key, which is used to look up additional access

information in a separate protection cache. On the Itanium this cache is a small (16 on

the first generation processor) fully-associative set of protection-key registers (PKRs)

without context-specific tags.

The small size of the PKR file is probably a result of the lookup being on the critical

path and the lack of a context tag, which means that the PKRs must be invalidated or

reloaded on a context switch. However, there is no obvious inherent limitation on the

size of the PKR file, as it could be made set-associative and tagged with a context ID.

The main advantage of protection keys is that they allow sharing TLB entries of

shared pages, even if different context have different rights to the page, thus somewhat

increasing TLB coverage in the presence of sharing [35]. However, protection keys do

not support protection at sub-page granularity and only partially decouple protection

from translation. Furthermore, they require an additional cache (the PKRs) on the pro-

cessor core (although the lookup latency can be hidden in the pipeline) and the TLB

remains on the processor core.

An alternative approach, the protection look-aside buffer (PLB), completely decou-

ples protection and translation [36]. In this scheme, all protection data is removed from

the TLB, which can then be moved off-core if a virtually-addressed L1 cache is used.

The PLB is essentially a TLB with no translation information (making it smaller), and

thus has essentially the same drawbacks as a classical TLB: it is in the processor’s crit-

ical path, and the need to support a range of protection granularities implies that it is

fully associative. Hence, its speed and capacity (and thus coverage) are limited in the

same way as a TLB.

The recently proposed Mondrian memory protection (MMP) [37] addresses some

of these shortcomings. It assumes a single, shared (virtual or physical) address space

with access rights defined by per-context permissions tables. A PLB is used to cache

these rights. In order to move the PLB off the critical path, Witchel et al. introduce the

concept of sidecar registers, which are associated with each of the processor’s registers



able to hold addresses. These sidecars cache the base, limit and access rights of the

last memory reference via those registers, utilising locality of pointer references. The

sidecars reduce the frequency of PLB accesses and have the advantage that the segment

information they hold does not need to be aligned to any particular block size. Unlike

PLB entries, the sidecars are not tagged with a protection-domain ID, and thus need to

be flushed on a context switch.

2.3 Protected Procedure Calls

The idea of protected procedure entry points goes back to Multics call gates [20], which

were a transparent, secure mechanism for increasing a process’s privileges. Similar

mechanisms exist on the x86 [38] and Itanium [34] architectures. These are tied to the

hierarchical privilege model supported by these architectures. The hierarchical model

has proven to be inflexible, and, with one recent exception [39], no operating system on

x86 uses more than two privilege levels.

The IBM System/38 generalised call gates into a mechanism, called profile adapta-

tion [40], for executing encapsulated (but not necessarily privileged) code. This mecha-

nism is highly dependent on System/38’s capability-based protection model. Recently,

a protection domain switch mechanism was proposed for the Sombrero single-address-

space architecture [41]. The design uses a PLB generalisation, called the range protec-

tion look-aside buffer (RPLB), in order to cache access rights, including for protection-

domain switches. The Sombrero design requires an RPLB entry for each caller-entry-

point combination, which uses up the RPLB very quickly. Furthermore, the RPLB is

unlikely to scale to high clock speeds.

3 The Legba Architecture

3.1 Principle of Operation

What really limits performance, and thus the ability to apply protection at a fine granu-

larity, in schemes designed around some form of TLB or PLB is the need to perform an

associative lookup of an address without knowing the base address of the object whose

attributes are cached. Essentially, a TLB or PLB is limited by the need to mask the page

size in order to obtain the base address.

Any effective solution must avoid a cache lookup for an unknown base address (a

range check). This can be achieved by associating the protection information with each

I/D-cache line.

Placing the actual protection bits in each cache line has been proposed before [42].

However this approach makes the protection bits global (i.e., independent of the pro-

tection context) which can only be avoided by either flushing the caches on a context

switch, or adding a PDID tag to them. In addition, protection updates require that each

cache line’s permissions be updated in a sequential manner.

The main idea behind Legba is to eliminate the range-check problem by adding a

level of indirection. While this has the potential to increase costs, we will show that

it will, in fact, make fine-grained protection feasible, by trading transistors for clock

speed.
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Fig. 1. Legba cache architecture.

Fig. 1 shows the main features of the architecture. We tag cache lines with an object

identifier (OID). On a cache hit, the OID is concatenated with the protection-domain

identifier (PDID) of the presently executing process. The result is used to look up a

protection-key cache (PKC) which holds the protection bits. Neither cache lookup re-

quires a range check, and there is no need for the PKC to be fully associative, allowing

it to be large with less limitations on its speed.

3.2 Protection-Key Caching

The PKC index should be generated from the OID only, in order to support inexpensive

flushing of object accesses. This creates a potential for high collision rates where ob-

jects are heavily shared between many protection domains, suggesting that the PKC’s

associativity should be reasonably high.

As the object name space is completely separate from the address space, it is possi-

ble to re-tag objects dynamically (i.e. change their OID). Generating the PKC indexing

solely from the OID supports dynamic re-tagging, which can then be used by the oper-

ating system to “re-colour” objects if a high rate of PKC collisions is detected.

On a miss, the PKC must be reloaded from a protection-key table (PKT). This is

organised as a two-level hash table, where the OID is used to index the first table, the

object hash table. This contains a pointer to the second table, the protection-domain

hash table, which is indexed by the PDID. This lookup can be done by a fast hardware

walker; on a miss in either table, a software exception is raised.

These tables are themselves memory objects, and can be cached like any data, sim-

ilar to hardware-walked page tables on some architectures. Since they are memory ob-

jects, these hash tables themselves are protected by Legba memory protection. Among

others, this means that object “ownership” can be given to user code by giving it write

access to the protection-domain hash table of the object. The owner can then update the

access control list of the object by modifying its protection-domain hash table.



3.3 Instruction and Data Cache Misses

Storing the object ID in the cache line slightly complicates cache miss handling. The

hardware not only must fetch the cache line, but also the OID. However, since the

cache data and the OID lookup utilise the same address, they can be done in parallel,

potentially allowing the OID lookup latency to be hidden by the cache line fetch.

This relaxation of time constraints allows the use of a large fully-associative cache

to implement (address → OID) mappings. This cache is called the object look-aside

buffer (OLB). It can support multiple page sizes, or even a more expensive (base, limit)

form of segmentation.

The design space contains further alternatives. For example, the OID mapping could

be held in lower-level caches, with software miss handling similar to software-managed

address translation [32].

3.4 Protected Procedure Calls

In addition to the familiar (R)ead, (W)rite and e(X)ecute rights, Legba also supports

a (S)witch permission, similar to that proposed for Sombrero [41], which guards pro-

tected procedure call objects.

A protection-domain crossing in Legba requires two interlocked instructions, which

can be viewed as a replacement for the syscall or trap instructions supplied by most ar-

chitectures. The first is a branch-linked-locked instruction, which differs from a nor-

mal branch-linked by additionally setting a condition flag. That flag requires the branch

target to contain a switch-load instruction, otherwise an exception is raised. Execution

of a branch-linked-locked instruction, like any other instruction, requires X permission

to the code object containing the instruction.

The switch-load instruction marks an entry point into a protection-domain. Unlike

other instructions, its execution requires the S permission to the code object it resides

in. The instruction performs a normal load of a general-purpose CPU register (GR),

but at the same time loads the OID of the code object into the PDID register. Thus,

the execution of the branch-linked-locked/switch-load pair changes the protection

context of the executing thread. The GR load can be used to set up the stack pointer for

the execution of the protected procedure.

3.5 Pipeline Implementation

Since a protection-key cache lookup depends on the OID (obtained from the instruction

or data cache) it should be located in the pipeline after the respective cache. Fig. 2 shows

an example Legba pipeline. Here, a single-issue 5-stage in-order pipeline is employed

with split instruction and data caches (ICache, DCache) as well as split instruction

and data protection-key caches (IPKC, DPKC). The IPKC handles the execution-type

access rights of X and S, while the DPKC handles the data-access rights of R and

W. The IPKC also controls the loading of the current PDID register via the switch

operation.

Because the protection-key caches reside in the pipeline stages after the cache ref-

erences, access permission faults will incur a single cycle delay penalty in addition to

the exception handling overheads.
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Fig. 2. Example Legba pipeline.

For out-of-order pipelines, protection cache (either PLB or PKC) lookups do not

have to complete until instruction retirement, effectively removing them from the pro-

cessor’s critical path. However, the lower access time of the PKC should enable higher

instruction retirement rates, compared to a PLB-based design.

3.6 Sidecar Implementation

To reduce the number of PKC accesses, Legba supports a sidecar optimisation similar

to that proposed in Witchel et. al. [37]. During a memory reference, the OID stored in

the sidecar is compared to the one stored in the cache line. On a match the permission

bits from the sidecar are used, avoiding a PKC access.

As opposed to the range check required by MMP, Legba’s sidecars require a simple

comparison of the OID. This implies that Legba’s register file with sidecars is at most

half of the size the Mondrian model. This size difference should lead to a lower access

energy, which is significant considering the sidecars are accessed on every instruction,

potentially multiple times.

3.7 Summary

Legba can be regarded as a two-stage PLB. The first stage associates an address range

with an object. Because this stage is off-core and only invoked on a data cache miss,

the cost of its range-check can be shielded by the expense of the cache miss3. The

second stage associates the object and current protection-domain context with an access

permission. This stage is on-core and accessed on every cache reference, to validate the

access rights of the reference. The key consequence of the architecture is that the range

check is removed from the core, facilitating the use of protection caches with increased

coverage at lower energy consumption and higher access speeds.

3 The cost of the OLB range-check is only shielded by a cache miss if the access hits in the

OLB.



Legba works equally well for virtually-addressed as for physically-addressed caches.

However, it is most powerful when used with virtually-addressed caches, as this com-

pletely removes the TLB (and thus any range check) from the processor’s core. This is

unlike traditional architectures, where (even with virtual caches) a TLB lookup is still

required to obtain the protection information.

The cost of Legba is an increase in first-level I/D-cache size to accommodate OIDs,

a similar increase in bandwidth requirements for cache line fetches, and the addition of

an off-core OLB. The benefits are increased coverage of the protection-key cache over

TLB- or PLB-based approaches.

4 Experimental Evaluation

The performance evaluation of Legba was done in three stages. Firstly, we generated

memory reference traces for the MediaBench [43] benchmark suite running on a simu-

lated ARM [44] processor.

One of the motivations for this work was fine-grained protection on high-perfor-

mance embedded systems, where processors such as the ARM are common.

Secondly, these traces were fed into a cache-level simulator for a number of cache

architectures: a hypothetical ARM system for the baseline, a Legba system, and a PLB-

based system. Each configuration was run for a range of protection granularities and

protection-cache sizes.

Finally, a cache modeller was used to generate timing and energy profiles for each

architecture and configuration.

The remainder of this section is organised as follows: Section 4.1 introduces the

simulation environment in more detail, while Section 4.2 describes the different cache

architectures. Section 4.3 outlines the benchmarks used and their protection charac-

teristics, and Section 4.4 discusses the anticipated differences between the simulation

environment and a real implementation.

4.1 Simulation Environment

We used the SimpleScalar [45] ISA simulator to generate a set of memory traces. Sim-

pleScalar simulates the user-level portion of a system, forwarding all system calls to an

OS emulation layer inside the simulator, emulating Linux in this case. This results in

traces which do not include any OS interference, especially cache pollution.

To simulate the various cache architectures, we separated SimpleScalar’s cache

functionality into a separate cache simulator called tracesim. This simulator takes in

a memory trace, a set of cache parameters, and a set of object descriptors, and gener-

ates cache statistics for each combination of cache parameters. The simulation output

(number of hits and misses for each cache) was then processed by the CACTI [46]

cache modeller and combined with the time and energy characteristics of SDRAM to

produce a total energy consumption and runtime. The time and energy characteristics

of the register file and sidecar registers, as well other parts of the processor, were not

modelled.



The granularity of objects and protection domains was varied to examine the be-

haviour of these systems under different protection scenarios. Accordingly, PDIDs and

OIDs were generated as follows: for the finest grain of protection domains, each func-

tion was assigned a separate PDID. For the coarse grain protection domains, the ap-

plication code was assigned one PDID, while any libraries — primarily libc — were

assigned another. Finally, to provide fine-grained OIDs each program variable, whether

dynamic or static, was assigned a unique OID.

4.2 Simulation Configuration

Each cache configuration was based on a hypothetical ARM processor modelled after

Intel’s XScale processor, with characteristics as in Table 1.

Table 1. Baseline configuration

Parameter Value

Clock speed 600MHz

I-TLB 32-entry, fully assoc.

D-TLB 32-entry, fully assoc.

I-Cache 32k, 32-way, 32byte line size

D-Cache 32k, 32-way, 32byte line size

Pagesize 4kB

TLB-reload hardware; 2-level page table

Memory 100MHz SDRAM

To simplify the simulation, system data structures, such as page tables, were sim-

ulated as being loaded directly from memory. We also assume that a cache write-back

will require another translation to obtain the physical address.

In the Legba and PLB configurations, a protection table lookup was assumed to use

the minimum number of memory accesses required by the destination object’s size.

For the baseline configuration, the TLB is accessed in parallel to the cache in order

to check permissions.

The Legba configuration is shown in Table 2. As Legba provides an alternate protec-

tion mechanism, the TLB is not required on a cache access, and so was moved off-core.

Sidecar registers were consulted on every memory access (whenever an instruction was

fetched, the PC’s sidecar was consulted), and the respective protection key cache was

only accessed on a sidecar miss. On a cache miss, the OLB was consulted. To model

protection granularity down to that of a single word, an OID was stored per word in the

cache line, as a result the OLB could be consulted multiple times per cache miss if the

OLB entry did not map the entire cache line. This form of word-level granularity is not

particularly compact, leaving room for improvement.

In order to model a protection domain-switch, the I-PKC was accessed and the

sidecars were flushed each time the current protection domain changed (via executing

an instruction tagged with a different PDID).



Table 2. Legba and PLB configurations

Architecture Parameter Value

Legba I-PKC 128-, 256-, 512-, and 1024-entry, 32-way

D-PKC 128-, 256-, 512-, and 1024-entry, 32-way

OLB 128-entry, fully-assoc.

PLB I-PLB 32-, 64-, and 128-entry, fully-assoc.

D-PLB 32-, 64-, and 128-entry, fully-assoc.

S-PLB 32-, 64-, and 128-entry, fully-assoc.

The PLB configuration is also shown in Table 2. As with Legba, the TLB was also

moved off-core. Sidecar registers were consulted on every memory reference, with a

miss going to the respective PLB. If the result was a PLB hit, the PLB’s super-page

entry was copied into the sidecar. On a PLB miss, the segment’s base and limit were

copied into the sidecar and the largest power of two page of the access region loaded

into the PLB.

To provide an equivalent to Legba’s switch instruction for the PLB case, a Switch-

PLB (S-PLB) was simulated. This caches the destination PDID and permissions, and

is tagged with the entrypoint and current PDID. The S-PLB is accessed whenever the

PDID changes. While the S-PLB can be set associative, preliminary benchmarks sug-

gested that the only practical implementation would be fully associative, as lower asso-

ciativities resulted in significantly reduced performance due to conflict misses.

On an S-PLB miss, a 3-level protection table lookup was assumed. As with Legba,

the sidecars were flushed on a PDID change.

4.3 Benchmarks

The MediaBench [43] suite was chosen as representative of embedded applications with

a relatively short run time — a desirable characteristic given the simulation overhead.

Table 3 shows the number of protection domains, object IDs, and protection domain

switches for each benchmark. The benchmarks presented in Section 5 were chosen as

those exhibiting interesting, representative, or significant behaviour.

4.4 Simulation Accuracy

Although our simulation attempts to mirror a real system, time and complexity con-

straints meant that some aspects of the system had to be simplified.

The primary simplification was that all tables would be loaded from main memory.

We expect a real system to reload the protection caches (the PKCs and PLBs) from

in-cache tables, with the TLB and OLB being loaded from main memory.

We believe, however, that our results are still significant; the trends discussed in

Section 5 are inherent characteristics of the two models, and the loading of protection

entries from memory will not significantly effect our results.



Table 3. Properties of benchmarks

No. Protection Domains & Context Switches

Benchmark Coarse context switches Fine context switches OIDs

jpeg 2 13070 866 350681 449

g721 2 6922258 639 25457220 442

mpeg2 2 5813793 746 23286653 652

pegwit 2 1835251 719 4507475 476

pgp 2 1122637 1087 11526264 782

rasta 2 6663146 1000 15959160 1366

adpcm 2 665126 626 679288 433

mesa 2 12885420 1635 37622046 604

gsm 2 281158 732 17631406 489

epic 2 194591 657 965314 575
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Fig. 3. Coarse-grained PDIDs and fine-grained OIDs (left to right: 128-, 256-, 512-, 1024-entry

PKCs, 32-, 64-, 128-entry PLBs) without sidecars (top: execution time, bottom: energy).

5 Results

The results for run time and run energy are presented, normalised to the baseline config-

uration. Fig. 3 shows the time and energy performance for coarse-grained PDIDs and

fine-grained OIDs, when no sidecar registers are employed. While Legba’s time and



energy results improve with increased PKC size, the PLB exhibits a tradeoff between

time and energy. In most cases the 32-entry PLBs have insufficient coverage, requiring

at least 64-entry and sometimes even 128-entry PLBs to match Legba’s performance,

The energy results show the inverse with the larger PLBs using more power; the 128-

entry PLB being generally about 25% more power-hungry than a Legba configuration.

In nearly all cases the 32-entry PLB uses less energy than all the Legba configura-

tions. This is due to the energy overheads of reading out the OIDs from the I/D caches

on each cache reference4. The 64-entry PLBs then lose this advantage, levelling out

with the Legba configurations while the 128-entry PLBs use more energy in every case.
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Fig. 4. Coarse-grained PDIDs and fine-grained OIDs, with sidecars.

Fig. 4 shows the same results with sidecars added. While on average performance

increases only marginally, energy shows a significant decrease. The shielding of the pro-

tection caches (PLB or PKC) by the sidecars causes the core’s energy to be dominated

by the cost of I/D cache references for most benchmarks. Exceptions are benchmarks,

like Rasta, where a larger number of objects are referenced, and a large number of

protection table lookups are pushing up the energy costs.

4 We believe the energy overheads of reading the OIDs from the caches were overstated due to

limitation of simulating them in CACTI.
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Fig. 5. Sidecar miss rates for largest PKC and PLB, coarse-grained PDIDs and fine-grained OIDs.
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Fig. 6. Fine-grained PDIDs and OIDs, with sidecars.

As expected, Legba shows consistent improvements in energy consumption with

increasing PKC sizes, as the energy consumption of the PKC itself is quite insignifi-

cant. The PLB results, while generally showing a decrease in energy consumption with

increasing PLB size, show several cases where the opposite is true. This shows that the

optimal PLB size, with respect to energy, is quite application dependent.

Fig. 5 shows the sidecar miss rates for the largest PKC/PLB configurations. Legba’s

sidecars clearly exhibit much higher hit rates. This is a result of how sidecars are loaded



on a miss: as PLB entries are aligned power-of-two ranges, in many cases several PLB

entries are required for a single segment, leading to sidecars not covering the complete

segment after a reload form the PLB. Only on a PLB miss are full (base, limit) entries

loaded into the sidecar.

Fig. 6 shows the results for both fine-grained objects and protection-domains. On

average Legba’s increased coverage manages fine-grained protection more effectively.

Out of the PLB configurations, only the 128-entry one consistently approaches Legba’s

performance, however it nearly always fares worse in terms of energy. The exception is

the Rasta benchmark, where Legba’s increased table accesses cause it to be both slower

and use more energy.

Fig. 7 shows, once again, that the Legba’s sidecar miss rate is much lower than the

PLB setup.
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Fig. 7. Sidecar miss rates for largest PKC and PLB, fine-grained PDIDs and OIDs.

To try and get a feel for the how 64-bit addressing would impact performance we

reran the time and energy simulations using a 5-level protection table to reload both

Legba’s OLB and the PLBs. The results showed little variation to the 3-level table.

Besides fairly consistent degradation in time and energy for both Legba and the PLB,

the only notable result was that for fine-grained PDIDs and OIDs, Legba’s time and

energy for the Rasta benchmark out-performed that of the PLB.

6 Conclusions

In this study we have introduced the Legba cache architecture for fine-grained protec-

tion and evaluated its time and energy performance to that of the PLB. The results show

that Legba’s protection caches scale more effectively than the PLB organisation. In

particular while increases in the size (and hence coverage) of the PKC show modest in-

creases in energy and time costs. Similar increases in PLB coverage need to be weighted

against the significant energy and time impact of their fully-associative nature.

One of the most significant result of the study has been to show that with the use

of MMP’s sidecar registers, Legba or PLB based protection combined with an off-core



TLB makes fine-grained protection cheaper in both energy and time (for the majority

of the benchmarks evaluated) than a on-core TLB with only page-based protection.

We also show that Legba’s sidecars are simpler and have lower miss rates than

MMP’s range-based sidecars. However, one drawback of the Legba approach that has

limited its performance in this evaluation environment has been the cost of additional

memory accesses over the PLB. Because both the OLB and PLB were loaded from

hardware walked tables, the overhead of a PLB miss is negligible compared to that of a

PKC miss, as both require on average two memory references. A major focus of future

work will be to reduce this overhead through more intellegent OID mapping tables and

protection-key tables.

7 Future Work

While the results of this evaluation have shown Legba to an attractive architecture for

fine-grained protection environments, a number of limitations in the both the evaluation

and architecture still need to be addressed.

A major limitation of the evaluation was the lack of any OS modelling, and that the

protection and translation tables were loaded from main memory and not the caches.

This leaves significant uncertainty about the overheads that both the Legba and PLB

architectures will incur in a real system. In addition, any future studies will need to

look at the effects of 64-bit architectures and software loaded tables.

Further work is required to investigate the ability of the Legba architecture to pro-

vide effective support for word- and even byte-grained protection. We are currently

exploring a number of approaches resulting in small, constant increase in the size of

the L1 caches. A related issue is that of OLB organisation. The segmented (base, limit)

nature of protection attributes suggest that OLBs with some form of support for seg-

mentation in the OLB would improve its hit rate, particularly if multiple segments could

be mapped per OLB entry. Again we are currently exploring a number of designs that

provide just this.
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