Automatic Synthesis of High-Assurance Device Drivers

GERNOT HEISER, NICTA, Australia
LEONID RYZHYK, MICHAEL STUMM, University of Toronto, Canada
PAavoL CERNY, University of Colorado Boulder, USA
ALASTAIR F. DONALDSON, Imperial College London, UK

1 Executive summary

Device drivers are hard to develop and are notoriously
unreliable [13,20]. While constant innovation in the area
of electronic design automation has led to dramatic im-
provements in the IC design process, device driver de-
velopment practices have not changed much since the
days of mainframe computers. As a result, it is common
nowadays for a product release to be delayed by driver
rather than silicon issues [42].

To address this long-standing problem, we propose
a new driver development methodology that will allow
faster creation of device drivers with fewer defects. The
innovation at the heart of our methodology is the au-
tomatic synthesis of correct-by-construction device
drivers from a formal model of the hardware device and
a specification of the driver/OS interface.

Our methodology has the following crucial properties.

e Dramatic reduction in cost of driver develop-
ment, maintenance and QA. This is achieved
by synthesizing drivers automatically from existing
device specifications provided by hardware design-
ers as transaction-level device models (TLMs).

e Support for hardware/software co-design and
co-verification. Our approach allows device
drivers to be created, tested, and formally verified
early in the product design workflow, before the
hardware device is available in silicon. The avail-
ability of the device driver in turn facilitates evalu-
ation and validation of the hardware design.

e Strong functional correctness guarantees. Our
correct-by-construction approach to synthesis,
combined with formal verification to detect bugs
in input specifications and the synthesis algorithm,
yields a high degree of confidence in the resulting
device driver code.

e Broad application. Our approach is applicable to
a wide range of modern I/O devices, including SoC
IP blocks, communication devices, media and stor-
age adapters, etc.

Research vectors addressed

This project will primarily attack the following research
vectors identified in the Intel RFP.

e Driver synthesis This project will advance state of
the art in game-based reactive synthesis resulting in
the first practical driver synthesis tool applicable to
a wide range of complex I/O devices.

e Driver validation We combine synthesis and veri-
fication to achieve a high degree of assurance that
the produced drivers are functionally correct. This
goes well beyond what is possible with existing
driver analysis tools, which are limited to detecting
specific classes of defects.

e Hardware/software co-design & co-verification
By reusing hardware device specifications in driver
synthesis, we achieve tighter integration between
driver and hardware design workflows to the ben-
efit of both software and hardware designers.

Expected impact

This work will lead to a radical change in the way device
drivers are developed. It will provide a solid scientific
and engineering foundation that is missing in the cur-
rent development practice, and thus enable the creation
of consistently high-quality drivers with predictable, and
faster, development times.

Quantitatively, we require that our tools can syn-
thesize and verify drivers for high-end devices within
20 minutes, yielding code whose efficiency and size is
within 10% of manually crafted drivers. We aim to re-
duce overall driver development time from the current
average of 6-12 months to less than one month.

Team and partners

The investigatory team’s combination of complementary
skills covers the wide range of research areas neces-
sary to execute this ambitious project. Principally, these
are Computer Systems (Heiser, Ryzhyk, Stumm), Pro-
gram Synthesis (Cerny and Ryzhyk), Software Verifica-
tion (Donaldson, Cerny and Ryzhyk) and Concurrency
(Donaldson and Cerny). We have also secured the sup-
port (see attached letter) of Byron Cook, Principal Re-
searcher at Microsoft Research, who was a key player in
Microsoft’s SLAM project on device driver verification.

2 Background and details of proposed
technology

2.1

Device driver reliability problems have drawn a lot of at-
tention in both industry and academia. Previous research
identified several key sources of driver defects [13, 29,
34,36]. First, driver development is currently not well
integrated into the hardware design process: driver writ-
ers typically work from device data sheets provided by
hardware designers, which are often ambiguous or in-
complete, and are prone to errors. These flaws adversely
affect the quality of resulting drivers. Further, driver
development typically starts after hardware design has
been completed, putting driver development on the crit-
ical path to product delivery and limiting the time that
can be spent on driver quality assurance.

The second major source of device driver bugs is the
complex interface between drivers and the OS. Modern
OSs define complex rules on driver-OS interactions that
are neither well documented not stable across different
OS releases. Furthermore, the OS can invoke the driver
from multiple concurrent threads, which leads to numer-
ous possibilities for race conditions and deadlocks.

Previous research has made major progress in using
automatic verification methods to detect, or prove ab-
sence of, defects in driver code related to the driver-OS
interface [3,14,15,19,21]. While this is a major step for-
ward, current work cannot detect defects in device man-
agement code, which constitutes the core of any device
driver, and does not scale to large device drivers which
make extensive use of program features that are chal-
lenging for verification, such as sophisticated pointer
manipulation, indirect function calls and bit-level arith-
metic. Existing work has thus had an important but mod-
est impact on the quality of device drivers.

State-of-the-art and its limitations

2.2 Overview of our methodology

We put forward a radically different approach to solv-
ing device driver reliability problems. Instead of fixing
or isolating bugs in existing drivers, we propose to au-
tomatically derive correct-by-construction driver imple-
mentations from device specifications. By reusing ex-
isting device specifications created by hardware design-
ers, this approach allows creating drivers early in the
product design cycle and with minimal manual effort.
To achieve strong functional correctness guarantees, we
propose formal techniques for automatically validating
the synthesized driver.

Our proposed methodology comprises two main com-

Complex driver written using
high-assurance C subset

Verification
engine

Correctness Bug
verified detected

‘ OS spec H Device spec (TLM) ‘

Driver synthesis
engine

Correctness
proof

Synthesized
driver

Proof

/ validated
Proof /'P]
roof incorrect
checker => fix synthesis

engine
Figure 1: Overview of the driver synthesis methodology.

ponents, driver synthesis and driver verification, which
are illustrated graphically in Figure 1. We now summa-
rize the role and contributions of each component.

Driver synthesis The core innovation underpinning
our method is a technique and tool for automatic synthe-
sis of correct-by-construction device drivers, indicated
by the driver synthesis engine in Figure 1. The key in-
sight behind this innovation is that the problem of syn-
thesizing device drivers from device specifications can
be precisely formalized using the apparatus of game-
based reactive synthesis. To this end, we interpret in-
teractions between the driver, the device, and the OS as
a game, where in order to win the driver must satisfy any
possible sequence of OS requests given any feasible de-
vice behavior. Driver synthesis then consists of finding
a winning strategy in the game on behalf of the driver.

The synthesis process starts with two input specifica-
tions: the device specification and the OS specification.
The device specification is a transaction-level model of
device behavior created by hardware designers as part of
the standard design workflow. The OS specification de-
scribes the communication protocol between the driver
and the OS. This specification is developed by driver
framework designers and is generic across a class of
similar devices, e.g., Ethernet controller devices, thus a
single OS specification for a device class can be used to
synthesize many drivers for devices from this class.

Given the input specifications, the synthesis tool com-
putes a winning driver strategy and generates a complete
driver implementation in C. Optionally synthesis can be
guided by user input to improve the structure of synthe-
sized code, making it more more human readable and
easier to maintain.

The driver implementation synthesized at this step as-
sumes a sequential OS environment that serializes all
requests to the driver. The next step in this project is

to automatically extend this sequential implementation
with synchronization code required to handle concurrent
driver invocations from multiple OS kernel threads, sat-
isfying the requirement that invocations of a driver re-
turn the same results in the multi-threaded setting as
they would if all the calls to the driver were serial-
ized. Implementing this simple specification manually
is difficult and error-prone. By synthesizing synchro-
nization code automatically we fully harvest the bene-
fits of synthesis—unburdening programmers from diffi-
cult details of synchronization code, while letting them
use generic, reusable correctness specifications. In syn-
thesis for concurrency, we will also focus on perfor-
mance aspects, mainly by developing techniques that
minimize the necessity for locking and other synchro-
nization primitives, but also by using quantitative per-
formance models.

Driver verification Our driver synthesis technique
will be designed to generate drivers that are correct-
by-construction with respect to the input specifications.
Correctness of the synthesized driver is guaranteed pro-
vided that the input specifications are correct and the
synthesis tools have been implemented correctly. We
will investigates methods for checking the latter, de-
termining cases where bugs in the implementation of
our synthesis algorithm lead to defects in the synthe-
sised device drivers. In addition, we will investigate
language- and tool-support for direct construction of
high-assurance device drivers: for especially complex
and highly parallel devices, such as graphics adapters,
direct driver synthesis may be out of scope. In this
case we will provide a “high-assurance” subset of C, de-
signed to facilitate formal verification, so that drivers for
such devices can be written to high quality standards and
checked using rigorous tools.

Verification of input specifications The correctness of
drivers generated by our synthesis technique depends on
the validity of input specifications: the TLM description
of a device, and the description of OS interface specifi-
cation. In this proposal we do not address the problem
of checking input specification correctness. There is sig-
nificant existing technology (especially within Intel) for
TLM/RTL cross-checking. The OS interface specifica-
tion is simpler than the device TLM and is therefore eas-
ier to get right; on the other hand it is very hard to verify,
as this specification is implemented by hundreds of thou-
sands lines of low-level kernel code, therefore we regard
formal validation of the OS interface specification is out-
side the scope the proposed project.

Driver cross-verification Assuming correct input speci-
fications, a bug can only be introduced in the synthesized
driver due to a defect in synthesis tools. We will explore
two complementary approaches to validating the results
of synthesis. The first approach will use model check-
ing to automatically check that the generated driver does
indeed implement a winning strategy in the game, and
hence that it is correct with respect to the input specifi-
cations. This is indicated by the verification engine pro-
cess of Figure 1: the engine is used to analyse a driver
post-synthesis. The second, more complicated but po-
tentially more reliable approach, consists of extending
our synthesis tools to produce a formal correctness proof
of the synthesized driver. This proof can be validated by
a theorem prover such as Isabelle [28] or Coq [6], as in-
dicated by the proof checker process in Figure 1. Proof
validation provides a strong guarantee that the driver is
correct with respect to the device and OS specifications
that were used as input to synthesis.

Verification and language support for development of
complex drivers 'We are confident that our novel syn-
thesis techniques will be capable of generating drivers
for a wide range of devices. Nevertheless, drivers for
highly complex and concurrent devices such as graphics
adapters will be difficult to obtain via synthesis alone. To
support the development of complex drivers for parallel
devices (see Figure 1) we will investigate language sup-
port to allow such drivers to be expressed using a subset
of C that is “high-assurance” in the sense that it is de-
liberately restricted for simplicity of coding and ease of
formal analysis. The verification engine component of
Figure 1 will be extended with novel algorithms to ver-
ify drivers written in this high-assurance language sub-
set, with a particular focus on scalable reasoning about
concurrency.

2.3 Further background: TLMs

Transaction-level device models (TLMs) [9] are com-
monly used in modern hardware design. A TLM de-
scribes device operation in terms of high-level transac-
tions rather than clock cycles. A transaction represents
an event such as a bus transfer, a device configuration
change, or transmission of a network packet. Being
much faster to develop than RTL, TLMs enable rapid
architectural exploration early in the design flow. They
are also commonly used in building functional system
simulators long before the device becomes available in
silicon. Finally, TLMs are used at the RTL verification
stage, to ensure that the resulting design behaves accord-

ing to the model. Because TLMs operate at the level of
abstraction relevant to driver developers, they are ideal
for use in driver synthesis. In particular, a TLM focuses
on describing externally visible device behavior, rather
than its internal architecture, and on wall-clock timing
of device operations rather than cycle-accurate timing.

3 Detailed technical rationale, approach,
and research plan

Our aim is to develop scalable algorithms for driver syn-
thesis and verification. We will implement these algo-
rithms in a practical driver synthesis toolkit and evaluate
them by synthesizing and verifying drivers for a vari-
ety of I/O devices, ranging from simple integrated sen-
sors and hardware accelerators to high-end devices such
as Intel Gigabit Ethernet controllers, Wi-Fi controllers,
storage controllers, audio and graphics adapters.

We now present a detailed technical plan for the
project as three work packages: Guided Sequential Syn-
thesis (WP 1), Synthesis for Concurrency (WP 2) and
Formal Verification (WP 3). The work packages are re-
lated and together constitute an ambitious plan of work.
To reduce the risk of the project producing “all or noth-
ing” results, the work packages are loosely coupled and
have been designed to generate independently useful
outputs. Furthermore, as presented in our schedule in
Section 4, the work packages have been designed to run
concurrently. Thus while we believe the expertise of our
high quality investigatory team make the project likely
to succeed in its aims, even a partial success will yield
techniques that are highly relevant to industry.

WP 1. Guided Sequential Synthesis.

Lead partners: NICTA and University of Toronto.

This work package is devoted to guided synthesis, which
is at the core of our novel approach. The work package
is supported by WPs 2 and 3 which cater for concurrency
and high assurance, respectively.

The guided sequential synthesis tool will automate the
tedious and error-prone task of implementing the driver
logic. The key insight behind our approach is that this
task can be naturally formalized as a game that the driver
plays against the device. Goals in this game are set by
the OS via I/O requests to the driver. In order to com-
plete the request, the driver must control the device to
perform the requested I/O action. The driver forces state
transitions inside the device by reading or writing de-
vice registers. However, not all device transitions are di-
rectly controllable by the driver. Device-internal events,
such as receiving of a network packet or occurrence of

an error condition are outside the driver’s control. The
synthesis tool must find a winning strategy in the game
on behalf of the driver, that guarantees that the driver
is able to satisfy all possible sequences of OS requests
under any sequence of uncontrollable device transitions
permitted by the device specification.

By reformulating driver synthesis as a game, we open
the way to leveraging the rich theoretical and algorith-
mic apparatus of reactive game theory. Turning this vi-
sion into a practical tool requires addressing several fur-
ther challenges.

Scalability challenges Real I/0O devices exhibit rich in-
ternal state and complex behavior. Synthesizing a driver
for such a device can, in the worst case, involve a pro-
hibitively expensive exhaustive exploration of the state
space of the device model. To date, game-based synthe-
sis algorithms have not been applied to problems com-
parable in size and complexity to those arising in driver
synthesis [30]. As a result, existing theory does not offer
a satisfactory solution to the state explosion problem.

In this work package we will develop a new tech-
nique for combating the state explosion problem based
on abstraction. Abstraction-based techniques have rev-
olutionized software verification [3], making it applica-
ble to complex real-world systems. We believe that this
approach will also prove fruitful in driver synthesis. Ab-
straction allows eliminating irrelevant details from input
specifications, focusing on the information relevant for
the task at hand.

Ideally, we would like to find the coarsest possible ab-
straction that still contains enough information to com-
pute a winning strategy for the driver or to prove that
such a strategy does not exist. We will obtain such an
abstraction incrementally using a new abstraction re-
finement algorithm. Starting from a very coarse initial
abstraction, the algorithm computes progressively more
precise abstractions of the game automaton. At every
iteration, it attempts to find a winning strategy in the ab-
stract game. This can lead to three possible outcomes:
(1) synthesis fails due to imprecise abstraction, (2) non-
existence of a winning strategy is established, or (3) a
winning strategy is found. In the first case, the algo-
rithm identifies a set of transitions of the abstract game
automaton that must be refined for synthesis to make
progress. It then computes a more precise abstraction of
these transitions and retries the synthesis step, thus start-
ing a new iteration of the abstraction-refinement loop. In
the second and third cases, the abstraction refinement al-
gorithm terminates and returns either a failure (case 2)

or a computed winning strategy (case 3).

Usability challenges The second set of challenges is re-
lated to the creation of a practical software development
process around driver synthesis. To have serious impact
on developer productivity our techniques must be highly
automatic, yet they must allow the user to communicate
their expert knowledge of device performance charac-
teristics to generate highly optimized code. Similarly,
the user should be able to guide synthesis towards the
production of structured code that can be easily main-
tained. When synthesis fails because of a mismatch be-
tween input specifications, meaningful feedback must be
provided, helping the software developer to identify and
rectify the issue.

Our answer to this challenge is guided synthesis. In-
stead of synthesizing a concrete winning strategy, our
synthesis algorithm will produce the most general strat-
egy, that contains all possible winning driver moves in
each state. As the code generator backend unwinds this
strategy into a program control flow, the user can op-
tionally control this process. Actions available to the
user at this point include choosing one of available win-
ning moves in the current program location, rearranging
program statements, and outlining statements into func-
tions. Importantly, the synthesis tool makes sure that any
choices made by the user remain within the most general
winning strategy; hence user error cannot lead to bugs
in the synthesized driver.

Our strategy for debugging synthesis failures due to
input specification mismatches is based on the use of
counterexample strategies. Whenever the synthesis al-
gorithm cannot find a winning strategy for the driver,
it generates an explanation of the failure in the form of
a counterexample strategy. This strategy describes an
environment behavior under which the driver is unable
to win the game. The user explores the counterexam-
ple strategy using an interactive debugging tool. Dur-
ing the debugging session the user plays the expected
winning driver strategy and the debugger responds with
counterexample transitions on behalf of the environ-
ment. Through this interaction the user encounters an
unexpected state of the game, from which the driver is
unable to complete an OS request, providing insight into
the root cause of the mismatch.

Figure 2 shows the proposed architecture of the driver
synthesis tool that we will design to address the above
challenges. Each component of the tool corresponds to
a task in this work package:

T1.1 Compiling HDLs to synthesis specifications. We
will design a compiler to translate device TLMs ex-
pressed in a hardware description language (HDL)
to the internal specification language of the syn-
thesis tool.

T1.2 Translation into game automata. We will define
a translation of a device model (after conversion
to our internal specification language) and an OS
specification into a game automaton, which com-
pactly represents all game components.

T1.3 Abstraction and synthesis. These are the cen-
tral components of the synthesis toolkit responsi-
ble for computing a winning strategy for the driver
or a counterexample strategy for the environment.
They implement the abstraction refinement scheme
described above.

T1.4 Debugging GUI To help the user troubleshoot
synthesis failures we will design a graphical format
for tracing failures back to defects in input specifi-
cations. The interface will allow interactive explo-
ration of the counterexample strategy produced by
the synthesizer.

T1.5 Code generation. The final stage of synthesis is to
convert the winning strategy computed by the syn-
thesizer into C source code under optional interac-
tive user guidance. Starting from the initial state of
the system, it unwinds the strategy into a program
control flow, translating winning driver actions into
C statements. In doing so, it aims to minimize the
resulting control flow automaton by merging simi-
lar states in order to avoid code bloat.

In T1.1 we will develop a compiler for a single HDL,
chosen based on the availability of device specifica-
tions in this language. One candidate is the WindRiver
DML [40] modeling language, which ships along with
a set of DML models for many Intel devices as part of
the Simics simulation platform [39]. Support for addi-
tional HDLs (SystemC, C++, SystemVerilog, etc.) can
be implemented later via additional frontend compilers.

Extensions Subject to time and resource availability,
we will explore two further extensions of the basic syn-
thesis tool described above. First, we will investigate
synthesis of hardened device drivers [22,26]. A hard-
ened driver is able to detect unexpected environment be-
haviors, such as device malfunctions or OS errors, and
take appropriate recovery measures, e.g., aborting or
retrying the current I/O operation, resetting the device,
or logging the faulty input. Second, we will explore the

@

device TLM
HDL

—_— device TLM

(internal)

compiler
language =

game

counterexample sl
- strategy
/\
abstractor synthesizer — A —-
generator
driver.c
\/ optional
winning user input

automaton

/ compiler

OS specification

strategy

Figure 2: Architecture of the sequential driver synthesis tool.

use of quantitative synthesis techniques [8,10,11] in de-
vice driver synthesis. Quantitative synthesis allows syn-
thesizing code that is not only functionally correct, but is
also optimal in terms of execution time, power consump-
tion, memory footprint, or other criteria important to the
developer. While we expect strategies synthesized us-
ing methods described so far to perform well in practice,
further performance tuning can be achieved by assigning
costs to various driver and device operations and using
quantitative synthesis algorithms to generate optimal or
close-to-optimal implementations.

Related work Automatic game-based device driver syn-
thesis was pioneered by two of the investigators (Ryzhyk
and Heiser) in their work on the Termite driver synthe-
sis tool [35]. This research laid out the key principles
behind the approach and demonstrated its feasibility.
However, this proof-of-concept implementation lacked a
scalable synthesis algorithm applicable to complex real-
world devices and did not support synthesis from exist-
ing device specifications. In this work package we will
address these limitations, turning automatic driver syn-
thesis into a practical and highly desirable alternative to
the conventional manual driver development process.

WP 2. Synthesis for Concurrency.

Lead partner: University of Colorado Boulder.

The Synthesis for Concurrency work package will de-
velop techniques and tools to automatically synthesize
drivers that can be safely called concurrently from multi-
ple OS kernel threads. The drivers produced in WP 1 as-
sume a single-threaded environment, where each call to
a driver is executed in isolation. However, contemporary
OS kernels are multi-threaded, and thus several threads
can invoke the driver concurrently. In order to prevent
program errors stemming from concurrency, synchro-
nization between driver methods is necessary. There-
fore, the next step in full functional synthesis of drivers
is to transform the driver code produced in WP 1 to make

@ generic

specification

atom. sect.

driver with
2.2
2 @
co!e

=

T
seq. driver T
from WP1 oncurrency
211z generator
optional /
@ T user input @

performance

madel driver.c

Figure 3: Synthesis for concurrency tool.

it work correctly in a multi-threaded environment. The
transformation can be done for instance by adding locks
or other synchronization primitives.

Synchronization code is an ideal target for synthesis.
This claim is based on two observations. First, syn-
chronization code is notoriously hard to implement and
debug, as witnessed by a large number of concurrency-
related bugs in existing device drivers [13,29,34]. Sec-
ond, correctness is easy to specify declaratively. The
reason is that one can often use generic (i.e., application
independent) specifications, such as deadlock-freedom
or linearizability. A tool that synthesizes synchroniza-
tion code will thus have a big effect on programmer pro-
ductivity.

Related work. Synthesis for synchronization code is
an area that has attracted considerable attention re-
cently [12,18,37,38]. These pioneering works on syn-
thesis cannot be directly applied to device drivers. The
reasons are two-fold. First, code synthesis for device
drivers has to take into account specific constraints im-
posed by the OS on the device driver architecture. For
instance, one cannot use common primitives for mutual
exclusions, such as semaphores, in interrupt handlers (a
core part of device drivers). Second, the previous work
does not consider performance objectives in synthesis,

or considers only limited syntactic criteria that might
(but are not guaranteed to) influence performance pos-
itively. We propose to go beyond the previous work and
develop new synthesis methods that do not suffer from
these limitations.

The goal of the WP 2 is to produce a tool that takes
the sequential driver produced in WP 1 as input, and in-
serts synchronization primitives to ensure that the driver
behaves correctly in the concurrent (multi-core) setting.
The research proposed in this work package will focus
on the following four tasks.

T2.1 Specifications for concurrency in drivers. We will
introduce specifications that are generic and that
take into account device driver architecture.

T2.2 Synthesis by code transformations. We will devise
a synthesis algorithm that minimizes the number of
synchronization primitives used.

T2.3 Performance-aware synthesis. Building on our
previous work, we will develop quantitative syn-
thesis methods for device drivers.

T2.4 Synchronization code generation. We will develop
code generation techniques for device drivers that
respect constraints by the OS on drivers.

The workflow of the proposed tool is in Figure 3. We
now describe each part in more detail.

Specifications for Concurrency in Drivers. Program
synthesis is most useful when it is much easier to say
what needs to be done than to say how it should be done.
That is, program synthesis is most useful when declar-
ative specifications are easier to write than imperative
programs. This is the case for concurrency in drivers. In-
tuitively, the concurrency specification requires simply
that the invocations of the driver return the same results
as they would if all the calls to the driver were serialized.
In 72.1, we will develop generic specifications that cap-
ture this intuition for broad classes of drivers, are sim-
ple to write and use, but take into account all sources of
concurrency in drivers, e.g., interrupts, top- and bottom-
halves, and workqueues. This requires extending stan-
dard correctness notions such as linearizability.

Synthesis. We will develop synthesis algorithms for
placement of synchronization code, focussing on cor-
rectness (12.2) and performance (T2.3). There are two
principal inputs to the tool we plan to develop: (i) the
driver code produced in WP 1, which assumes a sequen-
tial setting, and (ii) the generic specification produced in
T2.1. The output of 72.2 and 72.3 is a driver that works
correctly in concurrent setting, but uses atomic sections,

a synchronization primitive that marks parts of code that
is to be executed atomically. Atomic sections are desir-
able as they are easy to reason about algorithmically, but
they are not provided by mainstream OS kernels — the
purpose of Task 72.4 is to implement them using com-
mon kernel synchronization primitives.

In 72.2, the novel technical contribution is the de-
velopment of semantics-preserving transformations of
sequential code that aid in synthesis of synchroniza-
tion. Synchronization code (such as locks) can often be
thought of as having no effect on sequential execution
(i.e., it is semantics-preserving), but makes concurrent
execution safe. Generalizing this view, we propose to
consider a number of other semantics-preserving code
transformations. Such transformations will decrease the
need for the use of synchronization primitives, thus en-
suring better performance. For instance, the tool might
obtain a correct driver with fewer locks, if it first rear-
ranges the order of instructions in the driver code (if the
rearrangement does not change the sequential behavior
of the driver). We will use a counterexample-based ap-
proach to synthesis. In a loop, we will first use an off-
the-shelf tool to check if there is a concurrent execution
leading to a bug (such as assertion violation). If there is
no bug, we output the current code. If there is a bug, we
will transform the code in order to disallow the coun-
terexample. The transformation can for instance be a
rearrangement of the order of instructions (in a way that
preserves sequential correctness), or it can be insertion
of atomic sections.

In 72.3, we will work on synthesizing highly perfor-
mant code. In prior work we developed the first ap-
proach for synthesizing concurrent programs with re-
spect to both performance and correctness criteria [10]
for finite-state programs. We propose to extend this ap-
proach using our recent work on abstract interpretation
for quantitative objectives [11]. To quickly guide the
synthesis engine to well-performing solutions, we will
investigate common synchronization patterns used by
driver developers. Such patterns are often chosen with
performance in mind, so using them in synthesis will
improve the quality of the synthesized code.

Synchronization code generation. The output from
T2.2 and 72.3 will be a correct driver code with atomic
sections. The purpose of 72.4 is to implement atomic
sections using synchronization code supported by the
kernel, such as spinlocks, mutexes, RCU locks, etc. This
goal is not straightforward. For instance, in interrupt
handlers, the use of semaphores, or other primitives that

my cause a process to block, is not allowed. Therefore,
existing techniques for code synthesis cannot be used.
We will develop algorithms for code generation that re-
spect constraints given by device driver software archi-
tectures, and are informed by the best practices from
current driver development. To help achieve the latter,
we will allow user feedback, where a user could flag
synchronization code as not suitable, and can suggest
other synchronization primitives to use. This is an in-
stance of our guided synthesis approach, the paradigm
used throughout the project.

Our techniques for synthesising synchronization code
will rely on a technique for finding bugs in, or verify-
ing, concurrent software. Early experiments with off-
the-shelf techniques for this purpose [32] show promise,
but suffer from scalability limitations. In WP 3 we will
investigate technique for efficient analysis of concurrent
drivers, which will accelerate the techniques here for
synthesising synchronization code.

WP 3. Formal verification.

Lead partner: Imperial College London.

This work package is devoted to achieving strong for-
mal guarantees that device drivers behave correctly. The
focus is on analysis of both drivers generated by the syn-
thesis techniques of WPs 1 and 2, which may be incor-
rect due to bugs in the synthesis algorithm implementa-
tion, and complex hand-written drivers that are beyond
the scope of our synthesis techniques. Furthermore, the
efficient verification and bug-finding techniques for con-
current device drivers developed in this WP will serve to
accelerate the techniques for synthesising concurrency-
safe device drivers in WP 2.

13.1 Device driver cross-verification. Apply model
checking- and theorem proving-based formal veri-
fication techniques to drivers generated by our syn-
thesis tool

T13.2 Automatic proof generation. Extend the synthesis

techniques of WPs 1 and 2 to facilitate the genera-

tion of device driver correctness proofs that can be
automatically checked

T13.3 Verification and language support for complex,

concurrent device drivers. Devise scalable tech-

niques for verifying concurrent drivers, to acceler-
ate synthesis for concurrency, and complex drivers
that are beyond the reach of our synthesis algo-

rithms

To avoid erroneous drivers resulting from bugs in our
synthesis implementation, 73./ will investigate model

checking- and theorem proving-based techniques for
driver validation. We will build on prior work on de-
vice driver verification by the Investigators [1, 2] and
others [4,5,41].

The techniques developed in 73.7 will be specifically
geared towards our synthesis setting, exploiting the guar-
antee that synthesised drivers will use a restricted, clean
subset of C programming language, free from some of
the complexity of low-level systems code which often
causes formal verification techniques to fail.

Another strategy for validating our synthesis algo-
rithms, discussed in Section 2.2, is a proof generation
approach. This is the focus of 73.2. The idea is that our
synthesis tool will generate both a driver implementa-
tion and an associated proof of correctness. This proof
is produced by capturing decisions made by the synthe-
sis algorithm using formal logic. For example, whenever
the algorithm chooses a certain winning action in a given
state of the game, it records the fact that all possible
device states reachable by taking this action are within
the previously computed winning region, and hence the
choice of the action is correct.

We will extend the synthesis technique of WPs 1 and 2
so that the proof of a winning strategy (certifying driver
correctness) is generated as a proof script for a theorem
prover such as Isabelle or Coq. This will allow gener-
ated proofs to be automatically checked by Isabelle/Coq,
yielding a very high degree of assurance that the synthe-
sized driver is correct.

73.3 will concentrate on verification techniques for
highly complex and concurrent drivers. This has two
aims: to produce stand-alone analysis techniques that
can be directly applied to complex driver source code,
and to serve as an efficient engine for the concurrency-
aware synthesis techniques of WP 2. While we are con-
fident that the synthesis techniques proposed in WPs 1
and 2 will be capable of generating drivers for a wide
range of devices, drivers for especially complex and con-
current devices, such as graphics adapters, will be out of
scope. Furthermore, concurrency-aware synthesis, es-
pecially generation of synchronization code (72.4) de-
pends on an efficient engine for finding bugs in, or prov-
ing correctness of, concurrent driver code.

Our strategy for delivering scalable analysis tech-
niques for complex and concurrent driver code has three
strands. First, for verification we will exploit recent ad-
vances by Donaldson and collaborators in techniques for
source-level verification of highly parallel software [7,
16, 17]. Second, for bug-finding we will employ tech-

niques for mitigating state-space explosion due to con-
currency in a manner that preserves large classes of bugs,
including context-bounded search [27] and concurrent-
to-sequential program transformations [23]. Third, we
acknowledge that full device driver verification is virtu-
ally impossible to achieve for existing drivers written in
C, hence we will investigate language support for writ-
ing verifiable drivers. This will involve identifying a re-
stricted subset of C that allows full driver functionality to
be expressed, but which features a conservative type sys-
tem, limited pointer arithmetic (which together guaran-
tee type safety), and specially managed dynamic mem-
ory allocation. These restrictions will allow the verifier
to make stronger assumptions when reasoning about ac-
cess to shared data, simplifying the process of reasoning
about correct concurrency.

The combination of verification techniques and pro-
gramming language support developed during this work
package will complement the synthesis approach of
WPs 1 and 2, yielding high assurance device driver im-
plementations.

Related work. In addition to the state-of-the-art model
checking research cited throughout this section, previ-
ous work on proof generating compilers [31, 33] is rel-
evant to this work package. Such compilers produce, in
addition to the compiled code, a proof that this code is
correct with respect to the source program. This proof
is checked independently of the compiler by a theorem
prover, thus ensuring that compiled code is correct. In
task 73.2 of this work package, we will develop a similar
technique applicable to game-based software synthesis.

Programming language support for systems software
development has been investigated before, most notably
in the context of Microsoft’s Singularity OS project [24].
We propose language support for writing verifiable
drivers in task 73.3. We argue that our approach is
more pragmatic than that of Singularity, allowing devel-
opers to write drivers using standard C, simply restrict-
ing the use of well-known dangerous and difficult to rea-
son about language constructs in order to allow scalable
verification.

4 Schedule, milestones, deliverables and
evaluation criteria

Figure 4 presents a proposed schedule for the work pack-
ages and tasks described in Section 3 over a three year
period. Key relationships between tasks are indicated by
dashed arrows in the figure. PhD students at NICTA,
Boulder and Imperial will work full time on the project,

as will Dr Ryzhyk. The tasks for which they will be
principally responsible are indicated in the figure. The
other investigators will each devote around 10% of their
time to the project, devoted to working with the team
members on key algorithms and analyses.

Although aspects of WPs 2 and 3 depend on some
outputs from WP1, we have designed the tasks so that
it is possible for all work packages to commence simul-
taneously. This reduces the risk associated with strong
inter-work package dependencies, and means that each
institution will be able to start work on the project as
soon as high quality PhD students are hired.

Milestones and deliverables

Milestone 1 (month 6): State-of-the-art survey. To en-
able technology transfer and collaboration between sites
with differing expertise, and to quickly get PhD students
working on the project up to speed, we will jointly pro-
duce a report describing the state-of-the-art in each area
of the project. This survey of relevant literature and open
source and commercial tools will also give Intel a wider
perspective on the landscape of the project.

Associated deliverable: Unified survey document, con-
tributed to by all work packages.

Milestone 2 (month 12): Initial results for driver and
hardware case studies. During year 1 we will gather
a set of challenge benchmarks: practical case studies to
drive and evaluate our novel research. By the end of
year 1 our synthesis tool will be capable of synthesizing
sequential and concurrent device drivers, and will be rel-
atively feature-rich. The focus so far will be on correct
synthesis; synthesis of highly efficient drivers will be the
focus during years 2 and 3. We will seek feedback from
Intel on these case studies to ensure relevance to their
device driver roadmap.

Associated deliverables: Three deliverables, one per
work package, each comprised of a report describing rel-
evant case studies and initial techniques, and an alpha
distribution of tools. We will also deliver a report de-
scribing one or more global case studies, used to drive
and evaluate our end-to-end solution: open source de-
vice descriptions for which synthesis of high assurance
drivers will have high impact.

Milestone 3 (month 24): Prototype synthesis and veri-
fication tools. By the end of year 2, we will deliver open
source prototype software tools for full driver synthesis
and verifying drivers written in a high-assurance subset
of C, with documentation. These tools will be capable
of handling a large subset of the case studies associated

Months

Task 0 6 12 18

24 30 36 Key:

T1.1: Compiling hardware descriptions t

NICTA-led task —

T1.2: Translation into game automata t

Toronto-led task

T1.3: Abstraction and synthesis (F — ' ® | Boulder-ted task —
T1.4: Debugging GUI n2 — Imperial-led task

T1.5: Code generation n2 : \ "All hands" task —
T2.1: Specifications for concurrency b1 r—t Relationship between tasks ~ =====--" >
T2.2: Synthesis by code transformations b2 : 3 = ¢

T2.3: Performance-aware synthesis b1 '\ B n1: NICTA PhD student

T2.4: Synchronization code generation

n2: NICTA PhD student

T3.1: Device driver cross-verification i1

i \ t: Leonid Ryzhyk at University of Toronoto

NEERp
La
L 3

T3.2: Automatic proof generation / i1

P H— b1: University of Colorado Boulder PhD student

2

T3.3: Verifying complex, concurrent drivers

o : : b2: University of Colorado Boulder PhD student

i1: Imperial College London PhD student

L 4

Gathering case studies all

Applying technology to project-wide case studies all

Tool integration

L 4

all

Figure 4: Schedule for the work pac

with Milestone 2. This will allow Intel to evaluate the
project outputs and provide feedback and guidance for
the final year.

Associated deliverables: Two separate tools: the
guided synthesis engine, which is the combined results
of WPs 1 and 2, and the driver verification engine devel-
oped during WP 3.

Milestone 4 (month 36): Verification and synthesis
tools for high-end drivers. At the end of the project,
we will deliver updated versions of the open source tools
that are capable of handling a wide range of drivers and
devices. Our synthesis technique will be capable of syn-
thesizing a wide range of complex drivers, and our ver-
ification methods will scale to large hardware designs,
demonstrating that the techniques can be broadly ap-
plied. Due to the level of risk and scientific adventure as-
sociated with our approach, aspects of some case studies
may be beyond the scope of our final tool set. In these
cases we will document a set of open problems which
will form the basis of further research.

Associated deliverables: Final versions of the synthe-
sis and verification tools. The synthesis tool will be
equipped with proof-generation facilities as described in
WP 3. We will also deliver a report detailing our evalu-
ation and documenting remaining open problems.

kage tasks described in Section 3.

Collaboration and meetings

Collaboration between teams is essential for the success
of the project. We will hold fortnightly teleconferences
involving two or more partners, in response to the project
requirements. Monthly, the PIs will hold a joint tele-
conference, where we will invite Intel collaborators, to
discuss the overall direction and success of the project.
Annually we will hold an informal internal project work-
shop involving all project members, to which Intel will
be invited. The purpose of the workshops will be to eval-
uate the milestones reached and ensure tight integration
of techniques. To reduce travel costs, workshops will be
co-located with top conferences in relevant areas. Ad-
ditionally we will organize extended student visits be-
tween partner sites to enable close collaboration.

Evaluation criteria

We now comment on how our proposed research meets
the evaluation criteria described in the RFP.

Potential contribution and relevance to Intel. Intel de-
vote significant effort to the design and implementation
of device drivers. Our approach to automatic driver syn-
thesis thus has the potential for major impact on Intel’s
device driver process, significantly reducing the bottle-
neck of driver development and consequently reducing
product time-to-market. The techniques we design for
TLM/RTL validation will also have high relevance for
Intel: TLMs are used by hardware designers indepen-

10

dently of device driver development, and correctness of
these models with respect to RTL is essential.

Innovation and non-incremental potential. Automatic
synthesis has been described as a “holy grail” for device
driver development. Our guided synthesis approach will
provide largely automatic synthesis for complex device
drivers with high assurance guarantees. If we are suc-
cessful in achieving these aims this will constitute a
breakthrough in the field. Our methodology is highly
non-incremental: it differs radically from the current
state-of-the-art in device driver design and verification.

Objectives, milestones and success criteria. The goals
of our project are ambitious but the objective is simple:
A highly automatic technique for synthesizing correct,
efficient drivers from hardware and OS specifications.

The main success criterion is whether our approach
will ultimately be capable of synthesizing drivers for a
wide range of case-studies. In quantitative terms, we
require that our tools are able to synthesize and ver-
ify drivers for high-end devices, such as Intel Gigabit
Ethernet, SCSI, and Wi-Fi controllers, within 20 min-
utes, with the performance and code size of synthesized
drivers being within 10% of manually developed and
tuned drivers. We further expect the overall driver devel-
opment time to decrease from 6-to-12 months, common
in current industrial practice, to less than one month,
when using our tools.

The plan of Section 3 breaks the project down into
logically connected but loosely coupled tasks, scheduled
as in Figure 4. The intermediate milestones described at
the start of this section have been designed to ensure that
prototype tools are built throughout the project; these
tools can be directly evaluated by Intel.

Qualification of participating researchers. The In-
vestigatory Team is described in detail in Section 5.
Our multi-partner consortium combines world-leading
expertise in systems, verificaiton, synthesis and concur-
rency, providing an excellent environment in which to
make breakthrough progress in this important area.

Cost effectiveness and cost realism. Our budget is pro-
vided as an attachment to this proposal. Given the po-
tential impact of our research for Intel, we believe that
a total cost of $1,320,779 (or $1,124,986 without over-
heads) is a valuable investment.

Potential for co-funding. This proposal is an excellent
fit for the Intel RFP. In addition, we will seek funding
from national research councils to pursue research in re-
lated areas which will be complementary and supportive

11

to the project. In particular, program synthesis research
has recently been strongly supported by the US NSF,
and research into system-level verification techniques is
a stated growth area for funding by the UK Engineering
and Physical Sciences Research Council.

5 Investigator team

Our team has a unique combination of skills and expe-
rience covering the full spectrum of theoretical and ap-
plied topics required for this project.

Gernot Heiser, Leonid Ryzhyk, and Michael Stumm
will lead the effort on WP1 with personnel consisting
of Leonid Ryzhyk at the University of Toronto, and two
graduate students at NICTA. Pavol Cerny will lead the
work on WP2, with two graduate students working with
him at the University of Colorado Boulder. Alastair
Donaldson will lead the research on WP3, working with
two graduate students at Imperial College London.

Our team has a track record of successful relevant
collaboration between team members and with Intel.
Ryzhyk led a joint project between NICTA and the
OS Research Group at Intel Labs, developing a new
technique for improving device driver quality based on
hardware/software co-verification [36]. Donaldson has
worked with Heiser and Ryzhyk on static driver verifica-
tion [1,2]. Cerny hosted a visit from Ryzhyk and Heiser
at IST Austria in 2011 to collaborate on theoretical as-
pects of driver synthesis, and has since collaborated with
them on synthesis for concurrency in OS code.

Prof Gernot Heiser (NICTA) leads the Software Sys-
tems Research Group at NICTA and holds UNSWs John
Lions Chair for Operating Systems. Since 2011 he is
a Scientia Professor (UNSWs term for laureate profes-
sors). Heiser has a 20-year track record of research in
operating systems. His research group at UNSW and
NICTA has built a number of research OSs and kernels,
including the L4-embedded microkernel and the seL4
microkernel, which is the first protected OS kernel with
a complete formal proof of functional correctness. His
team’s kernels achieved several still unbroken records on
inter-process-communication performance.

In 2006, Gernot Heiser founded OK Labs, a Chicago-
based startup with a Sydney-based engineering team.
OK Labs commercialized L4-embedded, leading to its
deployment in over 1.5 billion mobile devices to date.

Heiser’s research group has completed several influ-
ential research projects on device driver reliability, in-
cluding research on user-level device drivers [25], the
Dingo reliable device driver framework for Linux [34],

hardware/software co-verification (in collaboration with
Intel) [36], and the pioneering work on automatic device
driver synthesis [35]. This work has been published in
top research venues and made significant impact in the
community. Heiser has been awarded the titles of Inno-
vation Hero, the New South Wales Scientist of the Year
award (2009) for the category Mathematics, Engineering
and Computer Science, and is listed as one of Australia’s
100 most influential engineers.

Dr Leonid Ryzhyk (University of Toronto) is currently
a researcher at NICTA and a conjoint lecturer at UNSW
in Sydney, Australia. In 2013 he will join the Depart-
ment of Electrical and Computer Engineering at the Uni-
versity of Toronto as a postdoctoral researcher. He holds
a PhD from UNSW.

Ryzhyk’s PhD and postdoctoral research has focused
on device driver reliability and in particular on the de-
velopment of formal techniques for driver verification
and synthesis. Results of this work are published in top
systems research conferences, including SOSP, Eurosys,
and ASPLOS. During his PhD Ryzhyk developed the
Dingo reliable device driver framework for Linux [34],
which is centered around a formal language for speci-
fying communication protocols between device drivers
and the OS. During the latter part of his PhD Ryzhyk
developed Termite, the world’s first tool for automatic
device driver synthesis [35]. This research identified the
key principles behind driver synthesis and demonstrated
the feasibility of this approach.

Prof Michael Stumm (University of Toronto) is a Full
Professor in the Department of Electrical and Computer
Engineering and the Department of Computer Science
at the University of Toronto, Canada, where he has been
a faculty member since 1987. Stumm was Director of
Computer Engineering from 1996-1998, and has grad-
vated 18 PhD and 20 Masters students. Before joining
the University of Toronto, Stumm pursued post-doctoral
studies at Stanford University.

Stumm’s primary research interests lie in the area of
systems software, primarily for parallel systems, focus-
ing on performance issues. He and his students devel-
oped the Tornado operating system which was licensed
to IBM and then jointly with IBM developed the K42 op-
erating system. More recently, he developed a new oper-
ating system call mechanism that, for example, increases
the throughput of software servers, such as Apache and
MySQL by 100% and 40%, respectively. He has pub-
lished over 80 papers in leading journals and top-tier
computer systems conferences (H-Index: 30). He holds

7 patents, with two additional patents pending.

Stumm has co-founded two startups: he was CTO of
SOMA Networks, which at its peak had over 250 em-
ployees, and until May 2012 was CEO of OANDA, the
first company to bring currency trading to the retail mar-
ket which now has a daily cash flow of about $10 billion.

Prof Pavol Cerny (University of Colorado Boulder)
is an Assistant Professor at the University of Colorado
at Boulder. Before joining CU Boulder he was a post-
doctoral researcher at IST Austria. He obtained his PhD
in 2009 from the University of Pennsylvania. Cerny’s
research interests currently center on program synthesis.
His recent contributions include the techniques for quan-
titative synthesis for concurrent programs. The tech-
niques and the resulting tool was the first to take into
account performance objectives, in addition to correct-
ness criteria, for synthesis of concurrent programs. The
research was published in top conferences in verification
(CAV 2011) and programming languages (POPL 2013).

His other main research contributions include work
on synthesis of component interfaces (POPL 2005), on
new foundational automata-theoretic model for program
verification (POPL 2011), and on verification of concur-
rent programs (CAV 2010). His paper (TACAS 2007)
won a Microsoft Research Cambridge award for best
student paper. His paper on synthesis was a finalist (one
of three) for a best paper award at EMSOFT 2012. He
was a member of a multi-university team that performed
security evaluation of voting machines for the state of
Ohio prior to 2008 US presidential elections. He led the
efforts in static analysis of the back-end system.

Dr Alastair F. Donaldson (Imperial College London)
is a Lecturer (Assistant Professor) in the Department
of Computing at Imperial where he leads the Multi-
core Programming Group. He is Scientific Coordina-
tor and PI of CARP: Correct and Efficient Acceler-
ator Programming, an eight-partner European Union-
funded research project (total value: $ 3.6M, value for
Imperial: $780,000), and PI of the UK-funded project
Scalable Automatic Verification of GPU Kernels (value:
$170,000). Before joining Imperial Donaldson was
a Research Fellow at the University of Oxford work-
ing with Prof Daniel Kroening. During fall 2011 he
was a Visiting Researcher at Microsoft Research, Red-
mond, USA, and subsequently hired as a Consulting Re-
searcher by Microsoft during 2012.

Donaldson’s research interests span two main areas:
verification of system-level software and programming
models for multicore architectures, and has published

12

more than 40 peer-reviewed research papers in these ar-
eas. His main contributions to verification (with col-
laborators at Oxford, Imperial and Microsoft) include
a technique for automatic analysis of DMA races in
multicore software [17], the first scalable predicate ab-
straction technique for concurrent programs [16], and a
method for automatically checking that GPU kernels are
free from data races [7].

Collaboration with Microsoft Research

Prof Byron Cook is a Principal Researcher at Microsoft
Research, Cambridge, UK and joint manager of the Pro-
gramming Principles and Tools group. Cook was a key
contributor to Microsoft’s SLAM project on driver veri-
fication. SLAM has been incorporated into Microsoft’s
Static Driver Verifier tool which ships with the Windows
Driver Development Kit, and is widely used by driver
developers. Cook will provide advice related to driver
reliability, and plans to collaborate on the formal verifi-
cation part of the project. Cook has provided a letter of
support for this proposal which is attached to this appli-
cation.

References

[1] Sidney Amani, Peter Chubb, Alastair Donaldson,
Alexander Legg, Leonid Ryzhyk, and Yanjin Zhu.
Automatic verification of message-based device
drivers. In SSV. EPTCS, 2012.

Sidney Amani, Leonid Ryzhyk, Alastair F. Don-
aldson, Gernot Heiser, Alexander Legg, and Yanjin
Zhu. Static analysis of device drivers: we can do
better! In APSys, page 8. ACM, 2011.

Thomas Ball, Ella Bounimova, Byron Cook,
Vladimir Levin, Jakob Lichtenberg, Con McGar-
vey, Bohus Ondrusek, Sriram K. Rajamani, and
Abdullah Ustuner. Thorough static analysis of de-
vice drivers. In Eurosys, pages 73-85, Leuven,
Belgium, April 2006.

Thomas Ball, Ella Bounimova, Byron Cook,
Vladimir Levin, Jakob Lichtenberg, Con McGar-
vey, Bohus Ondrusek, Sriram K. Rajamani, and
Abdullah Ustuner. Thorough static analysis of de-
vice drivers. In EuroSys, pages 73-85. ACM, 2006.
Thomas Ball, Vladimir Levin, and Sriram K. Raja-
mani. A decade of software model checking with
slam. Commun. ACM, 54(7):68-76, 2011.

Y. Bertot, P. Castéran, G. Huet, and C. Paulin-
Mohring. Interactive Theorem Proving and Pro-
gram Development: Coq’Art: The Calculus of In-

(2]

[5]

ductive Constructions. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, 2004.
Adam Betts, Nathan Chong, Alastair F. Donaldson,
Shaz Qadeer, and Paul Thomson. GPU Verify: a
verifier for GPU kernels. In OOPSLA 2012, 2012.
Roderick Bloem, Krishnendu Chatterjee,
Thomas A. Henzinger, and Barbara Jobstmann.
Better quality in synthesis through quantitative
objectives. CAV, pages 140-156, 2009.
Lukai Cai and Daniel Gajski. Transaction level
modeling: an overview. In CODES+ISSS, pages
19-24, Newport Beach, CA, USA, 2003.
Pavol Cerny, Krishnendu Chatterjee, Thomas Hen-
zinger, Arjun Radhakrishna, and Rohit Singh.
Quantitative synthesis for concurrent programs. In
CAV, pages 243-259, 2011.
Pavol Cerny, Thomas Henzinger, and Arjun Rad-
hakrishna. Quantitative abstraction refinement. In
POPL, 2013 (to appear).
S. Cherem, T. Chilimbi, and S. Gulwani. Inferring
locks for atomic sections. In PLDI, pages 304-315,
2008.
Andy Chou, Jun-Feng Yang, Benjamin Chelf, Seth
Hallem, and Dawson Engler. An empirical study
of operating systems errors. In SOSP, pages 73—
88, Lake Louise, Alta, Canada, October 2001.
Edmund M. Clarke, Daniel Kroening, Natasha
Sharygina, and Karen Yorav. Predicate abstraction
of ANSI-C programs using SAT. Formal Methods
in System Design, 25(2-3):105-127, 2004.
Byron Cook, Andreas Podelski, and Andrey Ry-
balchenko. Termination proofs for systems code.
In PLDI, pages 415426, Ottawa, Ontario, Canada,
2006.
Alastair Donaldson, Alexander Kaiser, Daniel
Kroening, Michael Tautschnig, and Thomas Wahl.
Counterexample-guided abstraction refinement for
symmetric concurrent programs. Formal Methods
in System Design, 2012. DOI: 10.1007/s10703-
012-0155-3.
Alastair F. Donaldson, Daniel Kroening, and
Philipp Riimmer. Automatic analysis of dma races
using model checking and k-induction. Formal
Methods in System Design, 39(1):83-113, 2011.
M. Emmi, J. Fischer, R. Jhala, and R. Majumdar.
Lock allocation. In POPL, pages 291-296, 2007.
[19] Dawson R. Engler, Benjamin Chelf, Andy Chou,
and Seth Hallem. Checking system rules using

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

13

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

system-specific, programmer-written compiler ex-
tensions. In OSDI, pages 1-16, San Diego, CA,
October 2000.

Archana Ganapathi, Viji Ganapathi, and David
Patterson. Windows XP kernel crash analysis.
In LISA, pages 101-111, Washington, DC, USA,
2006.

Thomas A. Henzinger, Ranjit Jhala, Rupak Ma-
jumdar, George C. Necula, Grégoire Sutre, and
Westley Weimer. Temporal-safety proofs for sys-
tems code. In CAV, pages 526-538, Copenhagen,
Denmark, 2002.

Intel Corporation. Device driver hardening and
manageability, April 2011.

Akash Lal and Thomas W. Reps. Reducing con-
current analysis under a context bound to sequen-
tial analysis. Formal Methods in System Design,
35(1):73-97, 2009.

James R. Larus and Galen C. Hunt. The singularity
system. Commun. ACM, 53(8):72-79, 2010.

Ben Leslie, Peter Chubb, Nicholas FitzRoy-Dale,
Stefan Gotz, Charles Gray, Luke Macpherson,
Daniel Potts, Yueting (Rita) Shen, Kevin El-
phinstone, and Gernot Heiser. User-level de-
vice drivers: Achieved performance. Journal
of Computer Science and Technology, 20(5):654—
664, September 2005.

Microsoft Corporation. Fault resilient drivers for
Longhorn server, 2004.

Madanlal Musuvathi and Shaz Qadeer. Itera-
tive context bounding for systematic testing of
multithreaded programs. In Jeanne Ferrante and
Kathryn S. McKinley, editors, PLDI, pages 446—
455. ACM, 2007.

Tobias Nipkow, Lawrence C. Paulson, and Markus
Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS.
Springer, 2002.

Nicolas Palix, Gaé€l Thomas, Suman Saha,
Christophe Calves, Julia Lawall, and Gilles Muller.
Faults in Linux: ten years later. In ASPLOS, pages
305-318, Newport Beach, CA, USA, 2011.

Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Syn-
thesis of Reactive(1) designs. In VMCAI, pages
364-380, January 2006.

Arnd Poetzsch-Heffter and Marek Gawkowski.
Towards proof generating compilers. ENTCS,
132(1):37-51, May 2005.

14

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

Shaz Qadeer. Poirot - a concurrency sleuth. In
Shengchao Qin and Zongyan Qiu, editors, ICFEM,
volume 6991 of Lecture Notes in Computer Sci-
ence, page 15. Springer, 2011.

Martin Rinard. Credible compilers. Technical re-
port, Cambridge, MA, USA, 1999.

Leonid Ryzhyk, Peter Chubb, Ihor Kuz, and Ger-
not Heiser. Dingo: Taming device drivers. In Eu-
rosys, Nuremberg, Germany, April 2009.

Leonid Ryzhyk, Peter Chubb, Thor Kuz, Etienne
Le Sueur, and Gernot Heiser. Automatic device
driver synthesis with Termite. In SOSP, Big Sky,
MT, USA, October 2009.

Leonid Ryzhyk, John Keys, Balachandra Mirla,
Arun Raghunath, Mona Vij, and Gernot Heiser.
Improved device driver reliability through hard-
ware verification reuse. In ASPLOS, Newport
Beach, CA, USA, March 2011.

A. Solar-Lezama, C. Jones, and R. Bodik. Sketch-
ing concurrent data structures. In PLDI, pages
136-148, 2008.

M. Vecheyv, E. Yahav, and G. Yorsh. Abstraction-
guided synthesis of synchronization. In POPL,
pages 327-338, 2010.

Wind River. Wind River Simics.
http://www.windriver.com/products/simics/.

Wind River. Wind River Simics Model Builder ref-
erence manual. version 4.4, September 2010.
Thomas Witkowski, Nicolas Blanc, Daniel Kroen-
ing, and Georg Weissenbacher. Model checking
concurrent linux device drivers. In ASE, pages
501-504, 2007.

Raj Yavatkar. Era of SoCs, presentation at the Intel
Workshop on Device Driver Reliability, Modeling
and Synthesis, March 2012.

