
Getting Started with AutoCorres

Japheth Lim Rohan Jacob-Rao David Greenaway

November 2, 2020

Contents

1 Introduction 2

2 A First Proof with AutoCorres 2
2.1 Two simple functions: min and max 2
2.2 Invoking the C-parser . 3
2.3 Invoking AutoCorres . 4
2.4 Verifying min . 5
2.5 Verifying max . 5

3 More Complex Functions with AutoCorres 6
3.1 A simple loop: mult by add 6
3.2 swap . 9

1

1 Introduction

AutoCorres is a tool that attempts to simplify the formal verification of
C programs in the Isabelle/HOL theorem prover. It allows C code to be
automatically abstracted to produce a higher-level functional specification.
AutoCorres relies on the C-Parser [6] developed by Michael Norrish at NICTA.
This tool takes raw C code as input and produces a translation in SIMPL [7],
an imperative language written by Norbert Schirmer on top of Isabelle.
AutoCorres takes this SIMPL code to produce a ”monadic” specification,
which is intended to be simpler to reason about in Isabelle. The composition
of these two tools (AutoCorres applied after the C-Parser) can then be used
to reason about C programs.
This guide is written for users of Isabelle/HOL, with some knowledge of
C, to get started proving properties of C programs. Using AutoCorres in
conjunction with the verification condition generator (VCG) wp, one should
be able to do this without an understanding of SIMPL nor of the monadic
representation produced by AutoCorres. We will see how this is possible in
the next chapter.

2 A First Proof with AutoCorres

We will now show how to use these tools to prove correctness of some very
simple C functions.

2.1 Two simple functions: min and max

Consider the following two functions, defined in a file minmax.c, which (we
expect) return the minimum and maximum respectively of two unsigned
integers.

} else {
return b;

}
}

unsigned max(unsigned a, unsigned b)
{

return UINT MAX − (
min(UINT MAX − a, UINT MAX − b));

}

2

It is easy to see that min is correct, but perhaps less obvious why max is
correct. AutoCorres will hopefully allow us to prove these claims without
too much effort.

2.2 Invoking the C-parser

As mentioned earlier, AutoCorres does not handle C code directly. The first
step is to apply the C-Parser1 to obtain a SIMPL translation. We do this
using the install-C-file command in Isabelle, as shown.

install-C-file minmax .c

For every function in the C source file, the C-Parser generates a corresponding
Isabelle definition. These definitions are placed in an Isabelle ”locale”, whose
name matches the input filename. For our file minmax.c, the C-Parser will
place definitions in the locale minmax.2

For our purposes, we just have to remember to enter the appropriate locale
before writing our proofs. This is done using the context keyword in Isabelle.
Let’s look at the C-Parser’s outputs for min and max, which are contained in
the theorems min body def and max body def. These are simply definitions
of the generated names min body and max body. We can also see here how
our work is wrapped within the minmax context.

context minmax begin

thm min-body-def

min-body ≡ TRY
IF ´a ≤ ´b THEN

creturn global-exn-var- ′-update ret--unsigned- ′-update a- ′

ELSE
creturn global-exn-var- ′-update ret--unsigned- ′-update b- ′

FI ;;
Guard DontReach {} SKIP

CATCH SKIP
END

thm max-body-def

max-body ≡
TRY

´ret--unsigned :== CALL min- ′proc(− 1 − ´a,− 1 − ´b);;
creturn global-exn-var- ′-update ret--unsigned- ′-update

1https://ts.data61.csiro.au/software/TS/c-parser
2The C-parser uses locales to avoid having to make certain assumptions about the

behaviour of the linker, such as the concrete addresses of symbols in your program.

3

https://ts.data61.csiro.au/software/TS/c-parser

(λs. − 1 − ret--unsigned- ′ s);;
Guard DontReach {} SKIP

CATCH SKIP
END

end

The definitions above show us the SIMPL generated for each of the functions;
we can see that C-parser has translated min and max very literally and no
detail of the C language has been omitted. For example:

• C return statements have been translated into exceptions which are
caught at the outside of the function’s body;

• Guard statements are used to ensure that behaviour deemed ‘undefined’
by the C standard does not occur. In the above functions, we see that
a guard statement is emitted that ensures that program execution does
not hit the end of the function, ensuring that we always return a value
(as is required by all non-void functions).

• Function parameters are modelled as local variables, which are setup
prior to a function being called. Return variables are also modelled as
local variables, which are then read by the caller.

While a literal translation of C helps to improve confidence that the transla-
tion is sound, it does tend to make formal reasoning an arduous task.

2.3 Invoking AutoCorres

Now let’s use AutoCorres to simplify our functions. This is done using the
autocorres command, in a similar manner to the install C file command:

autocorres minmax .c

AutoCorres produces a definition in the minmax locale for each function
body produced by the C parser. For example, our min function is defined as
follows:

context minmax begin

thm min ′-def

min ′ a b ≡ if a ≤ b then a else b

Each function’s definition is named identically to its name in C, but with a
prime mark (’) appended. For example, our functions min above was named
min ′, while the function foo Bar would be named foo-Bar ′.

4

AutoCorres does not require you to trust its translation is sound, but also
emits a correspondence or refinement proof, as follows:

Informally, this theorem states that, assuming the abstract function min ′

can be proven to not fail for a partciular input, then for the associated input,
the concrete C SIMPL program also will not fault, will always terminate,
and will have a corresponding end state to the generated abstract program.
For more technical details, see [2] and [3].

2.4 Verifying min

In the abstracted version of min ′, we can see that AutoCorres has simplified
away the local variable reads and writes in the C-parser translation of min,
simplified away the exception throwing and handling code, and also simplified
away the unreachable guard statement at the end of the function. In fact,
min ′ has been simplified to the point that it exactly matches Isabelle’s built-in
function min:

thm min-def

min a b = (if a ≤ b then a else b)

So, verifying min ′ (and by extension, the C function min) should be easy:

lemma min ′-is-min: min ′ a b = min a b

unfolding min-def min ′-def

by (rule refl)

2.5 Verifying max

Now we also wish to verify that max ′ implements the built-in function max.
min ′ was nearly too simple to bother verifying, but max ′ is a bit more
complicated. Let’s look at AutoCorres’ output for max:

thm max ′-def

max ′ a b ≡ − 1 − min ′ (− 1 − a) (− 1 − b)

At this point, you might still doubt that max ′ is indeed correct, so perhaps
a proof is in order. The basic idea is that subtracting from UINT MAX flips
the ordering of unsigned ints. We can then use min ′ on the flipped numbers
to compute the maximum.
The next lemma proves that subtracting from UINT MAX flips the ordering.
To prove it, we convert all words to int ’s, which does not change the meaning
of the statement.

5

lemma n1-minus-flips-ord :

((a :: word32) ≤ b) = ((−1 − a) ≥ (−1 − b))

apply (subst word-le-def)+

apply (subst word-n1-ge [simplified uint-minus-simple-alt])+

Now that our statement uses int, we can apply Isabelle’s built-in arith method.

apply arith

done

And now for the main proof:

lemma max ′-is-max : max ′ a b = max a b

unfolding max ′-def min ′-def max-def

using n1-minus-flips-ord

by force

end

In the next section, we will see how to use AutoCorres to simplify larger,
more realistic C programs.

3 More Complex Functions with AutoCorres

In the previous section we saw how to use the C-Parser and AutoCorres to
prove properties about some very simple C programs.
Real life C programs tend to be far more complex however; they read and
write to local variables, have loops and use pointers to access the heap. In
this section we will look at some simple programs which use loops and access
the heap to show how AutoCorres can allow such constructs to be reasoned
about.

3.1 A simple loop: mult by add

Our C function mult by add implements a multiply operation by successive
additions:

result += b;
a−−;

}
return result;

}

We start by translating the program using the C parser and AutoCorres, and
entering the generated locale mult by add.

6

install-C-file mult-by-add .c

autocorres [ts-rules = nondet] mult-by-add .c

The C parser produces the SIMPL output as follows:

thm mult-by-add-body-def

mult-by-add-body ≡
TRY

´result :== SCAST (32 signed → 32) 0 ;;
WHILE SCAST (32 signed → 32) 0 < ´a DO

´result :== ´result + ´b;;
´a :== ´a − SCAST (32 signed → 32) 1

OD ;;
creturn global-exn-var- ′-update ret--unsigned- ′-update result- ′;;
Guard DontReach {} SKIP

CATCH SKIP
END

Which is abstracted by AutoCorres to the following:

thm mult-by-add ′-def

mult-by-add ′ a b ≡
do (a, result) <− whileLoop (λ(a, result) b. 0 < a)

(λ(a, result). return (a − 1 , result + b))
(a, 0);

return result
od

In this case AutoCorres has abstracted mult by add into a monadic form.
Monads are a pattern frequently used in functional programming to represent
imperative-style control-flow; an in-depth introduction to monads can be
found elsewhere.
The monads used by AutoCorres in this example is a non-deterministic
state monad ; program state is implicitly passed between each statement,
and results of computations may produce more than one (or possibly zero)
results3.

The bulk of mult-by-add ′ is wrapped inside the whileLoop monad combinator,
which is really just a fancy way of describing the method used by AutoCorres
to encode (potentially non-terminating) loops using monads.
If we want to describe the behaviour of this program, we can use Hoare logic
as follows:

3Non-determinism becomes useful when modelling hardware, for example, where the
exact results of the hardware cannot be determined ahead of time.

7

{|P |} mult-by-add ′ a b {|Q |}

This predicate states that, assuming P holds on the initial program state,
if we execute mult-by-add ′ a b, then Q will hold on the final state of the
program.
There are a few details: while P has type ′s ⇒ bool (i.e., takes a state and
returns true if it satisifies the precondition), Q has an additional parameter ′r
⇒ ′s ⇒ bool. The additional parameter ′r is the return value of the function;
so, in our mult by add’ example, it will be the result of the multiplication.
For example one useful property to prove on our program would be:

{|λs. True|} mult-by-add ′ a b {|λr s. r = a ∗ b|}

That is, for all possible input states, our mult by add’ function returns the
product of a and b.
Unfortunately, this is not sufficient. As mentioned in the previous section,
AutoCorres produces a theorem for each function it abstracts stating that,
assuming the function does not fail, then the generated function is a valid
abstraction of the concrete function. Thus, if we wish to reason about our
concrete C function, we must also show non-failure on the abstract program.
This can be done using the predicate no-fail as follows:∧

a b. no-fail (λs. True) (mult-by-add ′ a b)

Here λs. True is the precondition on the input state.
Instead of proving our Hoare triple and no-fail separately, we can prove them
together using the “valid no fail” framework as follows:

{|P |} f {|Q |}! ≡ {|P |} f {|Q |} ∧ no-fail P f

Our proof of mult-by-add ′ could then proceed as follows:

lemma mult-by-add-correct :

{| λs. True |} mult-by-add ′ a b {| λr s. r = a ∗ b |}!

Unfold abstracted definition

apply (unfold mult-by-add ′-def)

Annotate the loop with an invariant and a measure.

apply (subst whileLoop-add-inv

[where I =λ(a ′, result) s. result = (a − a ′) ∗ b

and M =λ((a ′, result), s). a ′])

Run the “weakest precondition” tool wp.

apply wp

8

Solve the program correctness goals.

apply (simp add : field-simps)

apply unat-arith

apply (auto simp: field-simps not-less)

done

The proof is straight-forward, but uses a few different techniques: The first
is that we annotate the loop with a loop invariant and a measure, using the
rule whileLoop B C = (λx . whileLoop-inv B C x I (measure ′ M)). We
then run the wp tool which applys a large set of weakest precondition rules
on the program4. We finially discharge the remaining subgoals left from the
wp tool using auto, and our proof is complete.
In the next section, we will look at how we can use AutoCorres to verify a C
program that reads and writes to the heap.

3.2 swap

Here, we use AutoCorres to verify a C program that reads and writes to the
heap. Our C function, swap, swaps two words in memory:

∗b = t;
}

Again, we translate the program using the C parser and AutoCorres.

install-C-file swap.c

autocorres [heap-abs-syntax , ts-rules = nondet] swap.c

Most heap operations in C programs consist of accessing a pointer. Au-
toCorres abstracts the global C heap by creating one heap for each type.
(In our simple swap example, it creates only a word32 heap.) This makes
verification easier as long as the program does not access the same memory
as two different types.
There are other operations that are relevant to program verification, such as
changing the type that occupies a given region of memory. AutoCorres will
not abstract any functions that use these operations, so verifying them will
be more complicated (but still possible).

The C parser expresses swap like this:

thm swap-body-def

4This set of rules includes a rule which can handle annotated whileLoop terms, but will
not attempt to process whileLoop terms without annotations.

9

swap-body ≡
TRY

Guard C-Guard {|c-guard ´a|} (´t :== h-val (hrs-mem ´t-hrs) ´a);;
Guard C-Guard {|c-guard ´a|}
(Guard C-Guard {|c-guard ´b|}

(´globals :==
t-hrs- ′-update
(hrs-mem-update (heap-update ´a (h-val (hrs-mem ´t-hrs) ´b)))));;

Guard C-Guard {|c-guard ´b|}
(´globals :== t-hrs- ′-update (hrs-mem-update (heap-update ´b ´t)))

CATCH SKIP
END

AutoCorres abstracts the function to this:

thm swap ′-def

swap ′ a b ≡ do guard (λs. is-valid-w32 s a);
t <− gets (λs. s[a]);
guard (λs. is-valid-w32 s b);
modify (λs. s[a := s[b]]);
modify (λs. s[b := t])

od

There are some things to note:
The function contains guards (assertions) that the pointers a and b are
valid. We need to prove that these guards never fail when verifying swap.
Conversely, when verifying any function that calls swap, we need to show
that the arguments are valid pointers.
We saw a monadic program in the previous section, but here the monad is
actually being used to carry the program heap.

Now we prove that swap is correct. We use x and y to “remember” the
initial values so that we can talk about them in the postcondition.

lemma {| λs. is-valid-w32 s a ∧ s[a] = x ∧ is-valid-w32 s b ∧ s[b] = y |}
swap ′ a b

{| λ- s. s[a] = y ∧ s[b] = x |}!
apply (unfold swap ′-def)

apply wp

apply clarsimp

The C parser and AutoCorres both model the C heap using functions, which takes a
pointer to some object in memory. Heap updates are modelled using the functional
update fun-upd :

10

f (a := b) = (λx . if x = a then b else f x)

To reason about functional updates, we use the rule fun upd apply.

apply (simp add : fun-upd-apply)

done

Note that we have “only” proved that the function swaps its arguments.
We have not proved that it does not change any other state. This is a
typical frame problem with pointer reasoning. We can prove a more complete
specification of swap:

lemma (
∧

x y s. P (s[a := x][b := y]) = P s) =⇒
{| λs. is-valid-w32 s a ∧ s[a] = x ∧ is-valid-w32 s b ∧ s[b] = y ∧ P s |}

swap ′ a b

{| λ- s. s[a] = y ∧ s[b] = x ∧ P s |}!
apply (unfold swap ′-def)

apply wp

apply (clarsimp simp: fun-upd-apply)

done

In other words, if predicate P does not depend on the inputs to swap, it will
continue to hold.
Separation logic provides a more structured approach to this problem.

References

[1] David Greenaway. AutoCorres tool, 2016. Accessed May 2016.
URL: https://ts.data61.csiro.au/projects/TS/autocorres/, doi:10.5281/
zenodo.11248.

[2] David Greenaway, June Andronick, and Gerwin Klein. Bridging the gap:
Automatic verified abstraction of C. 7406:99–115, August 2012. URL:
https://ts.data61.csiro.au/publications/nicta full text/5662.pdf.

[3] David Greenaway, Japheth Lim, June Andronick, and Gerwin Klein.
Don’t sweat the small stuff: Formal verification of C code without
the pain. pages 429–439, June 2014. URL: https://ts.data61.csiro.au/
publications/nicta full text/7629.pdf, doi:10.1145/2594291.2594296.

[4] ISO. ISO/IEC 9899:2011 Information technology — Programming lan-
guages — C. International Organization for Standardization, 2011. “The
C11 Standard”.

[5] Gerwin Klein, Rafal Kolanski, and Andrew Boyton. Separation algebra.
Archive of Formal Proofs, May 2012. Formal proof development. URL:
https://www.isa-afp.org/entries/Separation Algebra.shtml.

11

https://ts.data61.csiro.au/projects/TS/autocorres/
http://dx.doi.org/10.5281/zenodo.11248
http://dx.doi.org/10.5281/zenodo.11248
https://ts.data61.csiro.au/publications/nicta_full_text/5662.pdf
https://ts.data61.csiro.au/publications/nicta_full_text/7629.pdf
https://ts.data61.csiro.au/publications/nicta_full_text/7629.pdf
http://dx.doi.org/10.1145/2594291.2594296
https://www.isa-afp.org/entries/Separation_Algebra.shtml

[6] Michael Norrish. C-to-Isabelle parser, version 1.13.0, May 2013. Accessed
May 2016. URL: https://ts.data61.csiro.au/software/TS/c-parser/.

[7] Norbert Schirmer. A sequential imperative programming language syntax,
semantics, hoare logics and verification environment. Archive of Formal
Proofs, February 2008. Formal proof development. URL: https://www.
isa-afp.org/entries/Simpl.shtml.

12

https://ts.data61.csiro.au/software/TS/c-parser/
https://www.isa-afp.org/entries/Simpl.shtml
https://www.isa-afp.org/entries/Simpl.shtml

	Introduction
	A First Proof with AutoCorres
	Two simple functions: min and max
	Invoking the C-parser
	Invoking AutoCorres
	Verifying min
	Verifying max

	More Complex Functions with AutoCorres
	A simple loop: mult_by_add
	swap

