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Abstract

This is a work-in-progress report that documents the design of a high-performance device
driver framework for seL4, including the structure and interfaces of compliant drivers, and
presents some preliminary evaluation.

The document is intentionally explicit about the assumptions it makes on hardware (the
device model) and the structure it prescribes on device drivers (the driver model). This is to
facilitate exploring formal specification and, eventually, verification of device drivers.

Consequently, besides specifying how drivers and their interfaces are structured, the
document also serves to define the context for the Pancake project that develops a
programming language for verifiable device drivers. As such, the report serves as an informal
interface document between the Pancake team and systems researchers (and thus explains
many things systems people take for granted).
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Chapter 1

Aims of the sDDF

The seL4 Device Driver Framework provides libraries, interface specifications and tools for
writing/porting device drivers to run as native, isolated components on seL4. Specifically, the
sDDF design aims to:

• support a wide class of devices, including network, USB, graphics, storage, serial ports
etc;

• achieve performance comparable to Linux in-kernel drivers, as measured by throughput,
latency and CPU load, at least for latency-sensitive high-throughput devices (network
interface cards and USB);

• be robust against defined threats;

• support sharing of devices between multiple clients, which might be seL4-native
components or virtual machines;

• provide strong separation of concerns;

• eventually enable the formal verification of its components.

The sDDF assumes a general device model that should enable formal reasoning. It defines a
device driver model that is appropriate for seL4 and aims to simplify driver implementation,
eliminate common causes of driver bugs and aid formal verification. It is based on an
asynchronous, zero-copy transport layer that minimises overheads while keeping driver
interfaces simple.

For the time being we focus on defining a driver model and its control and data interfaces to
the driver’s clients, leaving other required functionality, such as device discovery and device
initialisation for future work.
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Chapter 2

Threat Model

The ultimate aim is a system whose whole trusted computing base (TCB) is verified to be
trustworthy. This requires the TCB to be minimised. An implication is that some drivers will be
part of the TCB and thus trusted, while others (the majority) of drivers are not. It also means
that the driver framework itself is trusted.

We assume that an attacker is able to compromise and fully control any component that is not
part of the TCB. Specifically this means that the attacker may:

• execute arbitrary instructions in the address space of any untrusted driver;

• execute arbitrary instructions in the address space of any untrusted client;

• arbitrarily change the data on untrusted external media (network or physically insecure
storage).

However, the attacker cannot:

• compromise a trusted component (driver, virtualiser);

• compromise a trusted client;

• compromise the driver framework itself.

We assume that trusted clients or servers dealing with untrusted entities use encryption
protocols, such as TLS, to ensure confidentiality and integrity of data, even if using untrusted
components. If a client only employs trusted components, the system must guarantee
confidentiality, integrity and availability.

The threat model implies that it must be feasible to formally verify all trusted components
(eventually).
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Chapter 3

Device Model

RAM

DeviceCPU
Control

Notification

Metadata

Cache Data

Figure 3.1: Device model.

We view a device as a state machine (implemented in hardware) with four interfaces,
indicated in Figure 3.1:

the control interface specifies how the software running on the CPU, i.e. the device driver,
issues commands to the device, and how the device reports status information back to
the driver;

the notification interface lets the device alert the driver to a state change;

the data interface transports data between software and the device;

the metadata interface specifies data locations and is referenced by the control interface.

The notification interface is one-way (device to driver) while the control interface is two-way.
The data interface can be one-way: for a pure input device (microphones, cameras, read-only
storage media), data only travels from the device to the driver, while for a pure output device
(audio output, display), data only travels from the driver to the device; other devices (network,
storage) have two-way data interfaces. The metadata interface is two-way, as for both input
and output channels it is updated by both sides.

The model is presently somewhat simplified, in that it does not take into account
hot-plugging/unplugging (important e.g. for USB devices), nor the possibility of separate DMA
controllers.
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3.1 Device interfaces

The control interface is memory-mapped: The driver accesses the interface by reading from
or writing to specific physical addresses, device registers, which are mapped (by the memory
management unit, MMU) into the driver’s virtual address space.1

These device registers do not behave like regular memory! Specifically:

• a write to a device register followed by a read from the same register might not return
the value written (and may result in an error condition);

• the sequence of reads or writes matters: the outcome may change if register accesses
are reordered;

• the granularity of device register accesses matters: a byte-sized write to a register
address followed by three byte-sized writes to subsequent addresses might not have the
same effect as a 32-bit write to the same address.

• multiple reads or writes to the same address are all significant, and can have a
user-visible effect, even if the values read/written are identical.

Among others, these properties require that device registers are mapped uncached, and that
software declares them volatile. The correct granularity and sequence of device register
accesses are defined by the device interface protocol.

The notification interface is an interrupt (which the seL4 kernel converts into signalling a
notification object). It instructs the driver to use the control interface to determine what is
being notified. Interrupts can signal a number of conditions:

• transmit completed: the device has completed an output (data write) operation and
will no longer access the relevant output data;

• data available: the device has completed an input (data read) operation, will no longer
access the respective buffer and software can now safely access the data;

• other state changes: the device state has changed in some other way, which includes
such events as disk spin up completed, network cable inserted, firmware download
completed;

• error: some failure occurred (which includes a device losing power or being
disconnected).

The data and metadata interfaces use actual memory (called direct memory access, DMA).
This means that the device accesses the memory concurrently with software, similar to a
separate processor core. This has a number of implications:

• DMA generally bypasses the cache. While some processors (specifically the x86
architecture) hides this fact by ensuring the cache remains coherent with DMA memory,
others (specifically Arm) do not, requiring the use of memory barriers for consistency,
and the use of cache-management operations (cache flush or invalidate).

• Software must not read DMA memory while an input is in progress, and must not write
DMA memory while an output is in progress. In fact, because reads and writes affect

1On the x86 architecture some legacy devices, specifically serial ports, are not memory mapped and require
IO port instructions to control. These devices process small amounts of data (have no data interface) and are not
performance-critical. They will be handled in an ad-hoc manner.
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the cache, it is advisable not to perform any reads or writes to a DMA buffer during I/O
to that buffer.

• Speculative reads (aka. pre-fetching) on DMA memory may happen while the device is
writing input data, requiring extra cache management on input buffers.

• Addresses used for DMA are either not mapped (i.e., they are physical addresses), or
are mapped via a different MMU, the IOMMU, from the addresses used by the CPU.

• For the metadata region, explicit cache management is usually not worthwhile, meaning
that the CPU should map this memory uncached (unless the hardware maintains cache
coherency, as on x86).

Simple devices (serial port, timers) do not usually use DMA. We can treat them as the special
case of an empty data and metadata interface.

3.2 Device interface protocol

Software access to device registers (writes and potentially reads) trigger state transitions in
the device; a device state transition may result in a software-visible change in a device
register.

The device interface protocol specifies the addresses, sizes and semantics (i.e. state
transitions triggered by access) of device registers. It also specifies some ordering conditions
on accesses (reads or writes). It may specify timing conditions on accesses.

Examples of timing conditions are:

• access B must happen no earlier than x microseconds after access A;

• after access A, the driver must poll (read) register b until it is non-zero, before
performing access C.

For the case that the protocol specifies minimal delays between accesses, we can assume
that there are only a small number of such delay values, which are calibrated at device setup
time and are abstracted by delay functions defined outside the driver proper.

3.3 Device operation

A sequence of state transitions may move the device into a state where it performs output,
by reading DMA memory. Specifically it will follow references, supplied by the control
interface, to descriptors in DMA memory (the metadata interface), and from there to the
actual data (data interface). Addresses for DMA have to be translated to the device address
space before being given to the device. The device may use physical addresses or its own
virtual address space (mapped by the IOMMU).

The completion of the output operation results in a state transition that triggers the notification
interface (i.e. an interrupt); the driver then needs to use the control interface to determine the
reason for the interrupt (i.e. output completed).

A sequence of state transitions may move the device to a state where it can provide input to
DMA buffers provided by the driver via the metadata interface, which in turn was referenced
by the control interface. To software, the commencement of input is non-deterministic (it is
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determined by the environment). The completion of input results in a state transition that
triggers the notification interface, the driver then needs to use the control interface to
determine the reason for the interrupt (i.e. data available).

Once an interrupt has triggered, the hardware disables the interrupt (and lower-priority ones),
preventing it from re-occurring if it is a level-triggered interrupt. The kernel immediately masks
that specific interrupt (preventing it from triggering again) and then acknowledges it (which
re-enables all the lower priority ones). When the driver acknowledges the interrupt to the
kernel, the kernel unmasks the interrupt, after which the driver can wait for the next interrupt.

A single interrupt may signal multiple completions (this is called interrupt coalescing). The
driver needs to process all pending completions prior to acknowledging the interrupt.
Depending on the device, the driver may also have to clear interrupt conditions in the device
registers to prevent the interrupt re-triggering.

Completions can continue to occur while interrupts are masked, which implies that upon
acknowledging, the interrupt may immediately trigger again, resulting in the driver
immediately receiving a new notification as soon as it finished processing the present one. In
order to minimise the number of kernel entries, the driver should, before acknowledging the
IRQ, use the device’s control interface to check for pending interrupts. After processing all
pending events, the driver clears the device’s event register. (Note: this is a performance
optimisation, not a correctness issue.)

If interrupts are masked for too long, or software is too slow to process input data, the device
will run out of free DMA buffers for depositing input data; in this case data will be lost (the
device drops packets). This creates an automatic flow control of inputs, and can be used to
prevent overloading the system (called rate limiting the device).

Network packets can be lost for external reasons too, e.g. in a router between source and
destination, or by interference on a wireless link. Higher-level network protocols (e.g. TCP)
handle packet loss using acknowledgement and re-transmission.

We ignore error conditions for now, but note that dropping of packets is not considered an
error condition.

3.4 Comments

The device interface protocol is defined by the hardware, and is thus not under our control. To
enable formal reasoning about driver correctness, the device protocol will have to be
formalised.

Unfortunately, these protocols are usually specified in manufacturers’ data sheets that are
highly informal, typically vague, and frequently wrong. Errors in data sheets arise from device
implementation bugs as well a manufacturer-internal miscommunication between hardware
designers and documenters. Even worse, there are many cases where not even a data sheet
is available, and the interface is reverse-engineered from a Linux driver implementation.

Buggy device interface specs will inherently lead to buggy drivers. Unfortunately, this is not
something we can address for now, we are at the mercy of what is available. However, it is a
problem every driver developer faces, whether or not they employ formal reasoning.

But we do have the opportunity to at least eliminate all other driver bugs, which are the
majority [Ryzhyk et al., 2009]. And should we succeed in verifying realistic drivers, we can
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offer a good value proposition to hardware manufacturers, and may be able to tackle the
specification problem in partnership with device IP producers.
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Chapter 4

Drivers and Their Software Interface

Our driver model strongly reflects the aim of separation of concerns: the sole purpose of a
device driver is hardware abstraction. The driver translates a hardware-defined and -specific
device protocol into a hardware-independent (but OS-specific) device-class protocol. In other
words, there is a single software-side driver interface specification for each device class
(network, USB, storage, etc). This interface is designed to support a lightweight,
low-overhead translation, at least for performance-sensitive (high-throughput) devices.

DriverTxTx VirtualiserClient

RxRx

IRQ

Transport 

Device

Figure 4.1: High-level structure of I/O systems on seL4, using network terminology. Coloured
boxes are software components, grey indicates a shared memory region.

4.1 Overview

In our design we utilise the flexibility afforded by a clean-slate design, where we can control
the structure of the drivers as well as their interface to the rest of the system’s software.
Specifically we use this flexibility to define a structure that eliminates unnecessary complexity
in driver implementations and thus makes it easier to write performant yet correct drivers (with
the intent to verify them eventually).

Our design is based on our prior work [Leslie et al., 2005], which established that, using a
zero-copy transport layer with shared queues and asynchronous communication, usermode
network drivers can deliver performance competitive with in-kernel drivers. It also
incorporates what we have learned from the later Dingo work [Ryzhyk et al., 2009], which
proposed a driver model for Linux that would eliminate many common driver faults.

Figure 4.1 shows the high-level logical structure of device interfaces in the sDDF. Each
coloured box represents a user-level process that is encapsulated by seL4 and only able to
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communicate via defined interfaces. The high-level view has three components:

Device driver: Interfaces with the device hardware (NIC, flash, ...), receives interrupts (as
seL4 notifications), and transmits raw data between the device and the client;

Client: Is the producer/consumer of the I/O data handled by the device. In many cases the
“Client” is actually an OS server implementing a higher-level abstraction for applications,
but this is not relevant to the sDDF.

Virtualiser: Allows a single device to be shared between one or more Clients. Where there
are multiple clients, the Virtualiser presents the Client with an illusion of exclusively
owning the device. Each control path has its own virtualiser (see Section 4.2.1).

The components are connected by simple control and notification interfaces. The control
interfaces refer to a metadata and data interface that is provided by the transport layer. The
Driver- and Client-side interfaces of the Virtualiser look almost the same, except the
Driver-side uses IO-space addresses, whereas the Client-side uses offsets into the Data
region.

The Client-Driver interface traditionally uses somewhat different terminology for different
device classes (e.g. network vs storage). For now we use the terminology used for network
devices, referring to the output operation as transmit (Tx) and the input operation as receive
(Rx). We will discuss interfaces for different device classes in Chapter 5.

Each of the above processes (i) consists of (at least) one seL4 address space (VSpace) with
access rights defined by its CSpace, a thread, and scheduling parameters. The latter consist
of a priority, Pi, and a (possibly null) scheduling context, Si. A scheduling context has two
relevant parameters, a budget, Ci and a period, Ti, where Ci ≤ Ti.

For the rest of this document, unless explicitly stated otherwise, we will use the term Client to
refer to the whichever software is interfacing to the driver via the virtualiser, keeping in mind
that in a particular configuration this could be a component implementing an OS-abstraction,
a copier, or a directly-connected application.

In fact, this reflects a flexibility enabled by our design based on strict separation of concerns:
components such as copiers can be transparently added or removed depending on the
requirements of the specific system. Similarly, issues such as mapping of virtual (Client)
addresses to device IO addresses, or dynamic re-mapping of DMA regions, are of no concern
to the Driver.

4.2 Transport layer

The transport layer consists of a number of shared memory regions, data structures in those
regions, and access protocols. It is designed to minimise software overheads by minimising
(ideally eliminating) copying of data.

4.2.1 Memory regions

There are three types of memory regions, as shown in Figure 4.2:

1. a device control region (Dev Ctrl) shared between driver and device

9



DeviceDriver
Tx Virt

Rx Data

Tx D MD

Dev MDRx D MDRx Virt

Dev CtrlTx V MD

Rx V MD
Client

Tx Data

Figure 4.2: Memory regions (grey) shared between software components and the device. “MD”
represents metadata regions of the device (Dev), driver (D) and virtualisers (Virt).

2. multiple metadata regions (MD) shared between driver and device, and similar regions
shared between components

3. a data region shared between client, virtualisers and device.

Note that while the driver holds references into the data region, it only passes these between
the virtualiser and the device; the driver never needs to access the actual data transferred.
The data region is therefore not mapped into the driver’s address space, reducing the trust
required in the driver. The driver only needs access to the metadata region.

Also, for devices (e.g. networking) having separate Tx and Rx control paths, the data region
will generally be split into separate Tx and Rx regions, as indicated in Figure 4.2.

Driver-device interface

The device control region is a set of memory-mapped device registers used to change and
inquire the device state; they constitute the primary mechanism for software to interact with
hardware. The set of device registers, and thus the size of this region, is hardware-defined,
and typically fits on a single page. Multiple devices may share a single page of device
registers, in which case the drivers must take care not to interfere with each other.

On architectures that do not ensure cache consistency with DMA, we map the device control
region uncached in the driver’s address space. This avoids any need for cache management
by the driver (without significant performance penalty).

For simple devices, such as serial ports, the device control region constitutes the complete
hardware-software interface. Interaction happens by the driver reading or writing individual
registers (which can be byte- or word-size).

For devices processing bulk data, there is a metadata region (Dev MD), which is of flexible
size but usually small (few pages), located in RAM. It contains data structures referencing the
data buffers (which transfer the actual input or output data). Typically these are circular
queues (“ring buffers”). While the format of those data structures is hardware-defined (part of
the device protocol), their size is usually software-defined. The driver uses the device control
interface to inform the device of the size and location of the metadata structures.

References to the metadata region (whether passed through the device-control interface or
internal pointers in the metadata region) are I/O space addresses.
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The device accesses the metadata region by DMA. The region is therefore also mapped
uncached in the driver’s address space, and no cache management is required by the driver.

Virtualiser-driver interface

The driver and virtualiser interface via a separate, shared metadata region. To distinguish it
from other MD regions, we refer to this as the driver metadata (D MD) region. For device
classes featuring multiple (e.g. Tx and Rx) virtualisers, there is a separate metadata region
for each virtualiser (Tx D MD and Rx D MD).

As a general rule, the driver metadata regions are regular memory, i.e. mapped cached in the
driver (as well as the virtualisers). References into the data region from the metadata region
use I/O space addresses.

For drivers that do not do DMA (e.g. our current serial drivers), the metadata region contains
the data to be transferred; they do not have a separate data region.

Client-virtualiser interface

This interface, the virtualiser metadata region, again consists of one region per virtualiser.
Obviously, each client has its own virtualiser metadata region(s). The region is regular
memory (mapped cached) and looks identical to the driver metadata region, except that
references into the data region are offsets relative to the start of the data region. Generally,
each client will have its own data region(s). It is part of the virtualiser’s job to translate the
offsets into the per-client data regions into I/O space addresses for the driver, adding the
offset to the corresponding base I/O space address of each client’s data region. At least for
now we require client data regions to be contiguous area in the physical address space.

4.2.2 Data region

The layout of the data region(s) depend on the device class. In general it contains a set of I/O
buffers that are referenced by the various metadata regions. In many cases (e.g. networking)
the data region is simply an array of equal-sized I/O buffers.

For some device classes (e.g. networking) the data region can be split into separate regions
for input and output.

As mentioned above, references to the data region on the client side of the virtualiser are
represented as offsets relative to the start of the region, while the driver side uses I/O-space
addresses. Translating between those references is one of the duties of the virtualisers.

In general, each I/O buffer is in one of the following states:

1. source-owned and in use: the buffer is not referenced by a metadata region (but
referenced by source-internal data structures), it is waiting for, or is in the process of,
being filled with data;

2. destination-owned and idle: the buffer is referenced by a metadata region, ready to
be collected by the destination, it contains valid data;

3. destination-owned and in use: the buffer is not referenced by a metadata region (but
referenced by destination-internal data structures), it may be waiting for or in the
process of being used by the destination;
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4. source-owned and idle: the buffer is referenced by a metadata region, ready to be
collected by the source, it contains no useful data.

Here “source” stands for the component that produces data: For output that would be the
component to the left (client side) of the region as per Figure 4.1, while “destination” would be
the component to the right (device side) of the region. For input, source refers to the
device-side and destination to the client-side component.

Ownership is the exclusive right to access a buffer, as well as the descriptor that references it
in its respective metadata region. In other words, if a buffer is owned by a component, no
other component may access the buffer nor the queue entry that references the buffer.

For device classes that have separate input and output data regions, a particular DMA buffer
is only ever used for either output or input: An output buffer is filled by the client, consumed by
the device, and then handed back as free to the client. Similarly, an input buffer is filled by the
device, consumed by the client, and eventually returned as free to the device.

While the client may change a buffer’s direction (e.g. receiving a packet from the network,
changing some of its content and sending it back to the network), this happens outside the
framework (and may not be advisable as it will significantly complicate buffer management).

4.2.3 Metadata regions

Tx Metadata Region DriverVirt

Tx Data Region

TxA
head

tail TxF
tail

head

2 22 4 41 1 3 3

Figure 4.3: Tx virtualiser-driver transport layer, showing the metadata and data regions. The
numbers in the buffers in the data region indicate the buffer state as defined in Section 4.2.2.

Figure 4.3 shows the structure of the transport layer interfacing the virtualiser and the driver,
again using a Tx path as an example.

The metadata region uses lockless, bounded, single-producer, single-consumer queues.
These are implemented as what is commonly referred to as “ring buffers”. To avoid confusion,
we will not use this terminology, and only refer to them as “queues”. We reserve the term
“buffer” for the DMA-able data buffers.

The Tx metadata structure consists of two fixed-size queues, transmit active (TxA) of output
data to be handed to the device, and transmit free (TxF) of buffers ready to be re-used. The
TxA queue references all buffers that are destination-owned and idle, the TxF queue
references all buffers that are source-owned and idle.

The Rx path has an equivalent structure, with two queues: receive active (RxA) of valid input
data to be consumed, and receive free (RxF) of free buffers ready to be re-used).

For a device using a request interface, there are request active (RqA) and request free (RqF)
queues.
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While Figure 4.3 shows a driver metadata region, the virtualiser metadata region has the
same structure, the only difference being that data region references use offsets from the
start of the data area, instead of IO addresses.

1 #define QUEUE_SIZE (1<<QUEUE_LOG_SIZE)

2 struct buffer_descr {

3 uint64_t io_or_offset;

4 uint16_t length;

5 }

6 struct queue {

7 uint16_t head;

8 uint16_t tail;

9 uint32_t consumer_signalled;

10 struct buffer_descr buffers[QUEUE_SIZE];

11 }

Listing 4.1: Control region queue data structures.

Listing 4.1 shows the queue data structures. Each queue has a separate head and tail

index, queue entries between those indices are valid in that they contain an offset to a buffer
in the respective data area.

Each queue has exactly one producer and one consumer. Only the producer updates the tail,
and only the consumer updates the head.

Tracing the path of a Tx buffer from virtualiser to driver, the virtualiser (producer) hands
ownership of a DMA buffer to the driver (consumer) by inserting the buffer into the active
queue (changing its state from 1 to 2 ), from where the driver collects it (changing state from
2 to 3 ). When done with a buffer, the driver (who for this queue is the producer) hands it
back to the virtualiser (now the consumer) by inserting it into the free queue ( 3 to 4 ), from
where the virtualiser can collect it ( 4 to 1 ).

Specifically, as shown in Listing 4.2, the producer enqueues a data buffer at the tail by
checking there is at least one unused entry, inserting the new buffer there, and incrementing
the tail pointer. Just before updating the tail pointer, the producer issues a memory write
barrier to ensure that no writes are re-ordered by the compiler or the processor across this
point. Dequeuing data buffers from the head is analogous, as per Listing 4.2.

Inserting a reference to a buffer into one of the queues changes ownership (see the definition
of buffer states in Section 4.2.2). The inserting component loses the right to access the
buffer, as well as the descriptor referencing it. The precise point of ownership transfer is
Line 11 in Listing 4.2: Incrementing the queue’s tail pointer by the producer makes the entry
visible to the queue’s consumer, which has then acquired ownership.

We can observe that ownership of data buffers is defined by where they are referenced:
ownership of a queue entry implies ownership of the buffer it references. An interesting
consequence is that for an active Tx buffer, ownership passes from the client to the virtualiser,
from there to the driver and from there to the device. So, while the driver cannot access the
buffer (it is not mapped in the driver’s address space) it still owns it, for the sole purpose of
being able to pass it to the device. Hence, ownership is a necessary but not sufficient
condition for being able to access data.
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1 bool empty (struct queue *queue) {

2 return !((queue->tail - queue->head) % QUEUE_SIZE);

3 }

4 bool full (struct queue *queue) {

5 return !((queue->tail + 1 - queue->head) % QUEUE_SIZE);

6 }

7 int enqueue(struct queue *queue, struct buffer_descr buffer) {

8 if (full(queue)) return -1;

9 queue->buffers[queue->tail] = buffer;

10 memory_release();

11 queue->tail++;

12 return 0;

13 }

14 int dequeue(struct queue *queue, struct buffer_descr *buffer) {

15 if (empty(queue)) return -1;

16 *buffer = queue->buffers[queue->head];

17 memory_release();

18 queue->head++;

19 return 0;

20 }

Listing 4.2: Control-region queue management.

A consequence is that a buffer can at any time be referenced by at most one queue – this is a
core integrity condition of the scheme.

Lock-free updates to these data structures are possible by using the processor’s property that
reads and writes of small integers are atomic. The obvious data race between consumer and
producer is benign. The memory barrier is sufficient to ensure consistency.

4.2.4 Device metadata region

The device metadata region plays a similar role in the driver-device interface as the driver
metadata region does in the virtualiser-driver interface.

A core difference between the two regions is that while the driver metadata region is a
standard shared-memory region (shared between two processes running on the CPU), the
device metadata region is a DMA region (shared between the driver process on the CPU and
the device hardware).

The main practical difference is that DMA bypasses the cache. On architectures that do not
guarantee consistency between DMA and caches (anything but Intel), this requires explicit
steps to ensure consistency. We prescribe that on such architectures the device metadata
region is mapped uncached in the driver’s address space.

As it interfaces with the device hardware, the device metadata region’s data structures are
defined by the device interface protocol (see Section 3.2). Network devices (NICs) generally
use similar queue structures as what we specified for the driver metadata region in
Section 4.2.3 although there is usually one single queue each for transmitting and receiving;
we will call those HW_Tx and HW_Rx, respectively. Listing 4.3 shows a representative example,
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1 #define HW_QUEUE_SIZE (1<<HW_QUEUE_LOG_SIZE)

2 struct HW_buf_descr {

3 uintptr_t io_address;

4 size_t length;

5 status_t status;

6 }

7 struct HW_queue {

8 uint32_t head;

9 uint32_t tail;

10 struct HW_buf_descr buffers[HW_QUEUE_SIZE];

11 struct buffer_descr buffer_desc[HW_QUEUE_SIZE];

12 }

Listing 4.3: Typical network device queue data structures.

which we will assume for the following discussion, noting that details may differ between
devices.

Instead of separate active and free queues, hardware (HW) uses the status field of each
queue entry. On output the device processes only entries marked as ready, and, once
processed, sets the status to free or an error condition. On input, the device uses entries
marked as free and, once data is delivered, changes the status to ready (or error). Note
that the device only knows about the location of the memory area that contains the queue;
this is provided to the device via a control register. The head and tail pointers are pure
software constructs.

1 bool HW_full (struct HW_queue *queue) {

2 return (queue->head - queue->tail + 1) % HW_QUEUE_SIZE) == 0;

3 }

4 int HW_enqueue (struct HW_queue *queue, struct HW_buf_descr HW_buf_descr) {

5 if (HW_full(queue)) return -1;

6 queue->buffers[queue->tail] = HW_buf_descr;

7 memory_release();

8 queue->tail = (queue->tail + 1) % HW_QUEUE_SIZE;

9 return 0;

10 }

11 int HW_dequeue (struct HW_queue *queue, struct HW_buf_descr *HW_buf_descr) {

12 if (queue->buffers[queue->head].status == READY) return -1;

13 *HW_buf_descr = queue->buffers[queue->head];

14 memory_release();

15 queue->head = (queue->head + 1) % HW_QUEUE_SIZE;

16 return 0;

17 }

Listing 4.4: Device queue management (simplified).

Listing 4.4 shows how the driver manages those queues. For simplicity, this pseudocode
assumes that the hardware processes Tx buffers in queue order (which may not be the case
in reality).
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4.3 Component models

4.3.1 Driver

The driver is event-driven, in line with conclusions from our earlier work [Ryzhyk et al., 2009]:
It acts in response to

• transmit requests from the virtualiser (transmit active, Ta);

• data requests from the virtualiser (data requested, Rq);

• receive-ready notifications from the virtualiser (receive buffers free, Rf);

• data-available interrupts from the device (receive available, Ra);

• completion interrupts from the device (transmit completed, Tc).

Notwithstanding some differences in terminology, this model is a refinement of earlier work,
where we argued for active device drivers [Ryzhyk et al., 2010] (in the sense of having their
own thread of execution): The driver operates single-threaded in its own address space,
handling requests from either the OS (via the virtualiser) or device interface. This model has
the benefits highlighted by Ryzhyk et al. [2010]: The driver is free from most concurrency
issues and does not need to concern itself with client state that is not explicit in the request to
be processed.

The driver thread runs at higher priority than the virtualiser to ensure timely handling of
interrupts as well as immediate response to virtualiser requests. Flow control (described
below) prevents the driver from monopolising the processor in the case of high incoming
network load. In the storage case, all reads are triggered (and buffers provided) by the client
(via the virtualiser) so there is no need for flow control.

4.3.2 Virtualiser

The virtualiser (Virt) is responsible for presenting a physical device as a virtual device to one
or more clients. Each control path (Rx/Tx/Rq) has its own virtualiser.

Virtualisation includes translating between (Client) virtual addresses and I/O space
addresses seen by the device. I/O space addresses may be physical addresses, or may be
translated by an IOMMU. The translation also includes a change of representation: the
client-side interface of the virtualiser uses offsets relative to the start of a memory region as
memory references, while the driver side uses actual addresses.

If an IOMMU is used, I/O-space mappings may be static (defined at build time) or dynamic
(e.g. to dynamically make client-provided I/O buffers available to the device). If dynamic
IOMMU mappings are used, managing the IOMMU is the responsibility of the virtualisers.
Static mappings generally imply the need for Copier components to keep client address
spaces separated, and also imply trusting the Driver as well as the device hardware.

Virtualisers generally require access to the data region, so it is mapped in their address
spaces. There are two reasons:

1. an Rx Virt needs access to packet headers to determine the destination (i.e. the client
which should receive the data);
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2. On architectures that do not guarantee coherence between caches and DMA accesses,
the virtualisers need to do cache management on the data buffers, which (on most
architectures) requires the buffers to be mapped in its address space.

On architectures that require cache management, this must happen whenever a buffer is
handed to the device (via the driver). Specifically, the virtualiser must invalidate input (i.e.
free) buffers before handing them to the driver, and must flush output (i.e. active) buffers
before handing them to the driver. Speculative reads on input buffers may happen while the
I/O is in progress, requiring the virtualiser to invalidate input (i.e. active) buffers again when
receiving them from the device [Rutland, 2016, p. 33].

A virtualiser that has multiple clients presents each client with the illusion of exclusively
owning the device. This requires partitioning (for storage) or multiplexing (for network-like
devices). Details are device-specific and will generally be based on a policy.

For network devices, the Rx Virt generally does not require a specific run-time policy, other
than the use-case independent policy of dropping incoming packets if the RxA queue is full.
(But note that the size of the Rx queues in the virtualiser metadata region limits the number of
Rx buffers a client can have, and thus their size enforces a policy on the amount of Rx traffic
processed for the particular client.)

A network Tx Virt imposes some form of traffic-shaping policy, such as priority, round-robin or
bandwidth limits. Furthermore, in the Tx path, an I/O buffer is permanently associated with a
particular client: once the data is transmitted, the virtualiser will return the buffer to the client
that had originally supplied it.

• TxA not empty notifications (i.e. data available) from the client;

• TxF not empty notifications (i.e. returning free buffers) from the driver.

The Tx Virt needs to transmit requests as quickly as possible, both to provide the best service
to the client as well as to return free buffers. It therefore should run at a priority higher than
the clients. Flow control prevents the virtualiser (as well as the driver) from monopolising the
CPU.

Further optimisations of this signalling protocol should be possible and will be explored in the
future.

4.3.3 Observations

As mentioned earlier, IOMMU management and cache maintenance is no concern of the
driver, it is the responsibility of the virtualiser. Other than that, a virtualiser does little more
than moving buffer references between queues. A Tx or Rq Virt will generally implement
some traffic-shaping policy (while an Rx Virt is usually policy-free). In order to keep the
implementation simple, this policy should be tailored to the specific use case. If a different
policy is needed, the Virt should be replaced with one implementing the new policy, rather
than making it more complex.

Combining the discussion of priorities in Section 4.3.1 and Section 4.3.2, we have a priority
assignment of PC < PV < PD. This configuration is consistent with monolithic systems, where
the OS generally runs at higher (effective) priority than apps. Also mentioned earlier, what we
refer to as the “client” may in fact be a pipeline of components, possibly comprising copiers
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and a server providing an OS abstraction. The principle of priorities increasing along the
pipeline from client to driver should also hold if the client is in fact a pipeline of components.1

Priorities may not mean much in a multicore system, where each pair of communicating
components may be located on different cores. Hence, as in any parallel system,
components must not make assumptions on relative execution order! Nevertheless, to
maximise location transparency, the proposed priority assignment should be maintained even
in a multicore scenario. This will be essential if core assignments change dynamically, e.g. if
an energy-management policy consolidates components in order to off-line cores.

4.4 Synchronisation

There are two ways to implement this model: as active or as passive driver threads
(Figure 4.4). Each has some advantages and it is a-priori not clear which one is better. We
need a thorough evaluation to settle on the preferred implementation.

Device

Driver MD Device MD

DriverVirt Device

Driver MD Device MD

DriverVirt

Figure 4.4: Active (left) vs passive (right) driver-thread model.

4.4.1 Active driver-thread model

In this model, the driver thread is active in seL4 MCS terminology, meaning it has its own
scheduling context (SC). All its interfaces are semaphores represented by seL4 notifications
(besides the shared memory metadata regions).

More specifically, the driver and virtualiser each have a notification. The virtualiser holds a
badged send capability for the driver’s notification, the badge identifies the virtualiser to the
driver. The IRQ is represented by a different badge representing the device.

The virtualiser performs its Ta, Rq and Rf operations by enqueuing descriptors in the driver
metadata region and signalling the driver’s notification. The driver uses the badge to
distinguish signals from the virtualiser and the device.

Similarly, the virtualiser has a notification for which the driver has a badged capability (and
the virtualiser’s client holds a differently badged capability to the same notification). The
driver uses this notification, together with a status indicator in the HW queue, to perform the
Ra and Tc operations.

Remember that the driver runs at higher priority than the virtualiser. Therefore, if both
components run on the same core, the signals from the virtualiser to the driver are effectively

1This priority assignment is the opposite of the original device driver framework and addresses some of the
latter’s performance problems.
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synchronous, resulting in an immediate context switch to the driver (unless the driver is out of
budget).

Listing 4.5 shows simplified pseudocode for an Ethernet driver. A more optimised version will,
after processing notifications from the virtualiser, also check for pending IRQs from the device
(which may have arrived while the driver was running on behalf of the virtualisers) and
process these. Similarly, in a multicore system, virtualiser notifications may have arrived while
processing IRQs and should be checked prior to returning. The driver will also, upon
processing the Tx-completion IRQ, check whether there is work in the TxA queue.
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Figure 4.5: Mode switches for the active driver-thread model (left) compared to Linux (right)
for a packet round trip in a single-core setup. For horizontal lines, solid indicates execution,
dashed indicates suspension (blocked or preempted). For vertical lines, arrows indicate syn-
chronous mode switches (system calls and returns) while dashed lines indicate asynchronous
switches (interrupts or scheduling). “Other” refers to a lower-priority background activity.

Figure 4.5 shows the mode switches for this model compared to Linux. The diagram shows a
total of 15 kernel entries for a complete packet round trip. However, if the system is under
high load, it is less likely that all signals will be required by the driver, as it is more likely that
the virtualiser is already awake and processing these queues, which is indicated to the Driver
by a flag in the respective queues.

In contrast, the Linux system only has 4 kernel entries. The difference represents the inherent
overhead of the microkernel-based design: On Linux, each client operation is a single system
call (total 2), while in seL4 this corresponds to context switches to the virtualisers and the
driver and back, significantly increasing the number of system calls. Furthermore, the
usermode seL4 driver requires system calls to acknowledge IRQs. In addition, the cache
management done by the virtualiser also requires system calls, as these operations are
privileged on the Arm architecture (on RISC-V they can be delegated to usermode code,
reducing the required system calls). Linux’s synchronous I/O API also avoids one kernel entry
by forcing the client to block until the send is completed, while the sDDF API is asynchronous
(to enable execution concurrent to I/O without forcing a multi-threaded design).

Note that interrupt batching, which occurs automatically if further interrupts arrive while the
driver is processing packets with IRQs disabled, will on average reduce the number of kernel
entries per round-trip by two for the seL4 system and by one for Linux.
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1 handle_irq() {

2 while (event = clear_hw_events()) {

3 if (event & Tc) {

4 enqueued = false;

5 while (!full(TxF) && buf = HW_dequeue(HW_Tx)) {

6 enqueue(buf, TxF);

7 enqueued = true;

8 }

9 if (enqueued && require_signal(TxF)) signal |= TxF;

10 }

11 if (event & Ra) {

12 enqueued = false;

13 while (!full(RxA) && buf = HW_dequeue(HW_Rx)) {

14 enqueue(buf, RxA); /* process input */

15 enqueued = true;

16 }

17 if (enqueued && require_signal(RxA)) signal |= RxA;

18 while (!full(HW_Rx) && buf=dequeue(RxF)) {

19 HW_enqueue(buf, HW_Rx); /* return free Rx buffers */

20 }

21 }

22 if (event & error) {

23 fail;

24 }

25 }

26 }

27 main() {

28 initialise();

29 signal = init_done;

30 while (true) {

31 event = signal_and_wait(signal);

32 if (event & IRQ) {

33 hand_irq();

34 signal |= ack;

35 }

36 if (event & Ta) {

37 while (!full(HW_Tx) && buf=dequeue(TxA)) {

38 HW_enqueue(buf, HW_Tx);

39 }

40 }

41 if (event & Rf) {

42 while (!full(HW_Rx) && buf=dequeue(RxF)) {

43 HW_enqueue(buf, HW_Rx); /* return free Rx buffers */

44 }

45 }

46 }

47 }

Listing 4.5: Ethernet driver pseudocode.
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Flow control is achieved by three means:

1. limiting the size of the receive queue in the device metadata region (which rate-limits
interrupts by forcing the device to drop packets and thus limiting the input packet rate);

2. limiting the size of the send queue in the driver metadata region (which rate-limits the
virtualiser’s output requests) – this is unlikely to achieve much, given that the driver runs
at higher priority than the virtualiser;

3. limiting the driver thread’s budget (which limits the amount of work it can do in a period,
irrespective whether the work is on behalf of the client or to service IRQs).

For a NIC, the period of the driver’s SC should be the (desired) minimal inter-arrival rate of
packets. The budget is part of flow control. Its choice depends on a number of factors, in
particular the relative speeds of CPU and NIC: If the CPU is fast enough to process packets
at line speed, the budget should be large enough to process one incoming and one outgoing
packet. If the CPU is not fast enough, the budget may need to be reduced to allow the
back-end to keep up with I/O.

If the driver’s budget is depleted, the driver is suspended by the kernel until its budget is
replenished at the end of the period. This suspends processing IRQs as well as virtualiser
requests.

Note that on each invocation, whether on an IRQ or a client request, the driver needs to
check for further events that may have happened while it was processing the current event:
IRQs may arrive at any time and the driver must poll for pending interrupts before returning
(resulting in batching). Similarly, more client requests may arrive during driver execution, if
the driver’s budget was exhausted during the processing of an event or the virtualiser runs on
a different core than the driver.

More batching can be forced by using the NIC’s IRQ coalescing feature, i.e. deferring the Tc
interrupt for some amount of time or until a certain number of transmits have been completed.
This is unlikely to provide significant benefit, at least for the 1 Gb/s (or less) NICs typically
used in embedded systems. It might be useful for faster NICs.

4.4.2 Passive driver-thread model

In this model, the driver thread is passive in seL4 MCS terminology, meaning it does not have
its own SC and can only run on a borrowed SC. As it runs at higher priority than the
virtualiser, this makes the client→virtualiser invocation synchronous if both components
share a core. This naturally leads to the virtualiser-side interface being an endpoint, which is
invoked by the virtualiser as a protected procedure call, passing the virtualiser’s SC along for
the driver to execute. Thus, Ta, Rq and Rf are invocations of the driver’s endpoint (with the
opcode passed as an argument), while Ra and Tc are returns from the endpoint invocation.

As the driver does not have its own SC, its notification (which delivers the IRQ from the
device) must be active, i.e. have an SC that is lent to the driver’s thread.

The number of mode switches in this model is similar to the active driver model (possibly one
higher). There is a performance advantage, as a protected procedure call to a passive PD is
faster than signalling a notification to a higher-priority PD. A potential drawback is that this
forces the driver and virtualiser to be co-located on the same core (and the virtualiser with its
client, if it is also passive). The performance trade-offs are not obvious and need evaluation.
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Flow control is achieved by three means:

1. limiting the size of the receive queue in the metadata region;

2. limiting the size of the send queue in the control region (same caveat applies as for the
active driver thread);

3. limiting the budget of the driver’s notification (which implicitly limits the interrupt rate
without limiting the driver’s ability to respond to virtualiser requests, but see below for
more detailed discussion).

For a NIC, the period of the Notification’s SC should be the (desired) minimal inter-arrival rate
of packets. The budget primarily needs to allow for IRQ handling, as requests from the
virtualiser execute on the latter’s budget. But note that, even if serving a virtualiser request,
the driver needs to poll for IRQs before returning, so it may handle interrupts on the
virtualiser’s SC.

However, the virtualiser is blocked during that time, unless the driver has a timeout exception
that allows it to hand control back to the client if the budget runs out. This would, however,
complicate driver logic (including re-introducing a degree of concurrency). On the other hand,
blocking the virtualiser while the driver is waiting for a budget replenishment reduces the
virtualiser’s ability to operate concurrently.

For the Ra IRQ, the budget must be sufficient to enqueue the packet(s), notify the virtualiser,
and acknowledge the IRQ. Similar, the Tc IRQ needs to have sufficient budget to update
queues, notify the virtualiser and acknowledge the IRQ.

Note that IRQ coalescing leads to multiple packets processed for a single Ra interrupt, while
IRQ masking leads to multiple buffers freed for a single Tc interrupt. The budget must allow
for that.

4.4.3 Two-component driver

It is possible to split the driver into two separate components, one interfacing to the
virtualisers (i.e. handling Ta, Rq and Rf events) and one interfacing to the device (handling
IRQs). This allows serving both types of requests concurrently by running the two PDs on
different cores (and only makes sense for this case).

The idea of a two-component driver may look like heresy in light of the discussions of
Section 4.3.1, specifically the stated goal of avoiding error-prone concurrency control inside
the driver. However, it is actually a straightforward extension and does not require extra
concurrency control inside the driver. The two driver components do not access the same
software-provided data structures. Specifically, only the virtualiser-interfacing component
accesses the TxA queue of Figure 4.3, while only the device-interfacing component accesses
the TxF and RxA queues.

The only potentially competing access to a virtualiser-side queue would be for returning free
buffers from RxF to the hardware queue. In order to avoid explicit concurrency control and
maintain the single-producer, single-consumer property of the queues, we need to restrict
accessing this queue to the virtualiser-side component (Line 43 of Listing 4.5) – the identical
code in the IRQ handler (Line 19 of Listing 4.5) is a performance optimisation, not a functional
requirement.
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The performance benefit of this optimisation in the multi-component case is not obvious
without detailed evaluation. An evaluation performed by Parker [2023, Sect. 7.4.3] showed no
performance benefit (in fact, a slight performance degradation) and we therefore do not
investigate this model further for now.

4.4.4 Time-triggered architectures

The model readily adapts to synchronous (aka. time triggered) architectures [Kopetz, 2003],
where each component executes at a pre-determined time point, irrespective of interrupts. In
this case, none of the components signal notifications, synchronisation is exclusively via timer
signals. If a component receives a signal, it processes its queues and then waits for the next
signal.

4.4.5 Discussion

The design currently has two major open questions that need more analysis.

Research Question 1.: Active or passive driver threads? Considerations:

C1.1: The active notification for receiving IRQs arguably allows the budget to be adjusted to
the driver’s needs, but the need for checking for new work before returning reduces
the benefit.

C1.2: An endpoint results in the virtualiser being charged for the time the driver consumes
on its behalf. However, this benefit is limited, as the IRQ processing is still not
accounted to a specific client.

C1.3: Invoking a passive thread through an endpoint avoids switching the scheduling
context, while signalling a higher-priority thread forces a switch of SC, incurring higher
cost. However, the active-thread design comes a the cost of one extra system call.

C1.4: If the passive driver thread is blocked on budget replenishment, it blocks the
virtualiser, reducing the benefits of using the budget for flow control.

C1.5: On multicore, the notification forces the driver to run on a specific core, while the
endpoint forces it to run on the virtualiser’s core. Which model is better likely depends
on the application scenario.

C1.6: The virtualiser may want to use a watchdog to prevent indefinitely blocking on an
untrusted driver. As long as the virtualiser only synchronises with notifications, the
watchdog timeout can be signalled to the virtualiser’s notification, terminating the wait.
If the virtualiser invokes the driver by IPC, then the watchdog would have to explicitly
reset the virtualiser to abort the IPC, a somewhat more complicated operation.2

Similar questions arise for virtualiser threads, which may also be active or passive.

Research Question 2.: What are appropriate budgets for the driver (and virtualiser), and
how are they determined? Considerations:

2The simpler aborting logic could be extended to IPC via a kernel change recently discussed: allowing speci-
fied signals to abort an IPC. The full implications of this change are not yet fully understood, so this change may
or may not happen.
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C2.1: How important is the driver / IRQ notification budget for rate-limiting the driver? Is
limiting buffer size sufficient, in which case the driver could simply be given a full
budget, removing the issue of the suspended (passive) driver blocking the virtualiser?

C2.2: A virtualiser probably still only has small budgets, and a period matching that of the
driver.
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Chapter 5

Device Classes

Having described the general model of device drivers and their interfaces, we will now refine
those to specific device classes.

5.1 Network

5.1.1 Main properties

Network devices are characterised by output being client-initiated while input is spontaneous.
While in practice inputs may result from some client action (e.g. a request to a web or file
server), this is the result of higher level protocols that are invisible to the driver (and device).

As such, network drivers do not have a request interface, only a transmit and a receive
interface. A typical network structure is shown in Figure 5.1.

NIC

Driver

Copy

Rx
Virt

Tx
Virt

ARP

Client

VM
Val

IP 
Stack

Copy

Copy

Figure 5.1: Modularised design of a networking architecture, showing copier (Copy) and Val-
idator (Val) components for isolating untrusted clients, as well as an ARP component that
handles broadcast requests.

Network devices have been our running example throughout Chapter 3 and Chapter 4, so
much relevant information has already been covered. Here we summarise the main
characteristics:

• The Tx and Rx paths are separated, each with its own virtualiser, data region and a
metadata region between any two components, as shown in Figure 4.2.
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• Each of these interfaces consists of two queues. The active queue (TxA/RxA) points to
valid data buffers which the producer (Driver on input, Client on output) hands to the
consumer. The free queue (TxF/RxF) points to buffers that are returned by the consumer
to the producer for re-use, see Figure 4.3.

• Each IO buffer has at any time a defined owner, and is in one of the four states
introduced in Section 4.2.2:

1. source-owned and in use

2. destination-owned and idle

3. destination-owned and in use

4. source-owned and idle.

• The states are implicitly encoded in where the buffer is referenced, see Figure 4.3.
Consequently, buffers change state and owners by being moved on and off the queues
by either the producer or the consumer, see Section 4.2.3 for details.

• The driver’s Rx and Tx interfaces are entirely separate, in that the driver will only move
buffers between queues of the same interface, not across interfaces.

5.1.2 Ethernet

Ethernet represents an important sub-class of network devices. It represents a well
standardised category, with common properties such as frame size. Specifically, Ethernet
devices have a standard transfer granularity, called a frame, of 1.5 kB. Many Ethernet devices
also support larger frames, called jumbo frames, but we do not consider them here.

Server platforms frequently feature self-virtualising NICs, with multiple interfaces to the same
underlying device. These enable secure pass-through access of the same device to multiple
virtual machines. Using this feature generally involves extra work by the hypervisor to handle
broadcast traffic. For now we do not plan to support this feature.

5.1.3 Status

The specifications for Ethernet are tested and evaluated, they are stable.

5.2 Serial ports

The sDDF covers only asynchronous serial I/O at the moment, as synchronous serial is not
anywhere near as common.

Asynchronous serial I/O is very similar to networking, in that output is client-initiated, and
input is spontaneous. At the hardware level, communicating terminals need to agree on
bit-rate, number of bits per character, and whether a parity bit is included.

Serial tends to be much lower bandwidth (most serial ports have a maximum bit rate around
4Mb/s; the POSIX standard only mentions up to 32768b/s.

As such the serial framework merges the data being transferred into the same metadata
region as the queue head and tail.
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Note: More details to come.

5.3 Serial busses

SPI

Details to come.

I2C

Details to come.

USB

Details to come.

5.4 Storage

Driver Metadata Region DriverVirt

Data Region

Rq

head
tail Rs

tail

head

2 44 2 22 41 3 1 3

Figure 5.2: Storage device transport layer, showing the control and data regions. The numbers
in the buffers in the data region indicate the buffer state, as defined in Section 4.2.2, where
output buffers are red, input buffers blue. The black, empty node in the Rq queue indicates a
barrier request.

5.4.1 Main properties

Storage devices deliver input upon specific requests rather than sporadically. As such they
have request (Rq) and response (Rs) interfaces instead of the Tx and Rx interfaces that
network devices use. Unlike network devices there is no separation into two control and data
paths. Specifically:

• There is a single data region.

• There is a single virtualiser.

• There is a single driver metadata region that contains two queues: the Rq and Rs
queues, as shown in Figure 5.2.

• The virtualiser uses the Rq queue to pass request descriptors to the Driver. Each
descriptor holds either a read, a write or a barrier request, where read or write
requests reference I/O buffers.

• The Driver dequeues a request from the Rq queue and (logically) hands it to the device.
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• Buffer states are as defined in Section 4.2.2.

• Unlike for network devices, the queues reference a mixture of input and output buffers in
arbitrary order. Inserting into the queue changes a buffer’s state and owner. Removing
from the queue changes the buffer’s state but not the owner.

• Specifically, the Rq queue passes buffer ownership from the virtualiser to the device.
Until a buffer is returned in the Rs queue, the virtualiser (or its client) must not access it.
Buffers referenced by write requests will not be changed by the device. Buffers
referenced by read requests will be filled by the device. Buffer state for read request
becomes source-owned and idle (no useful data in the buffer); for a write request it
becomes destination-owned and idle (contains valid data).

• Likewise, the Rs queue passes buffer ownership from the device to the virtualiser (and
on to the client). Inserting a response into the Rs queue indicates that the device will
not access the buffer referenced in the response. The buffer state is destination-owned
and idle for both read and write requests.

• As the device may reorder requests, the Driver may return buffers to the virtualiser (via
the Rs queue) in an order different from the order they were inserted into in the Rq
queue.

• The barrier request can be used to limit re-ordering: All requests before the barrier
must be completed by the Driver/device before any of the requests after the barrier are
initiated. The barrier request only ever exists in the Rq queue and references no buffer.

5.4.2 Details

Storage devices transfer data at the granularity of a block. In traditional rotating disks, this is
the sector, typically 512 B (or a small multiple). These days, storage devices are large and a
small amount of internal fragmentation is of no relevance. Furthermore, the setup time for a
small I/O operation dominates the actual transfer time. As such, we see no benefit of
supporting such small transfer sizes, and instead specify the size of transfers (and thus
blocks) as a multiple of the platform’s base page size (usually 4 KiB).

Where a device has an optimal transfer size that is larger than the page size, we use that as
the block size.

Note we do not plan to support legacy devices such as CD-ROM.

Our model of a storage device is thus based on the following properties:

• The device has a block size that is a small integer, specifying the size in multiples of the
base page size (usually the page size is 4 KiB and the block size is one).

• Large sequential (in DMA space) transfers tend to have a performance advantage, so
the client (file server) should be able to issue requests larger than the block size.

• The device may support a scatterlist of DMA blocks for output and this may be faster
than a sequence of individual output requests. Hence the client should be able to issue
a batch of requests at once.

• The device can queue many read requests internally (typically a small power of two,
26 · · · 28).
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• Read requests can complete out-of-order (the device may re-order requests to increase
spatial locality).

• The device may cache write requests and perform them out-of-order (necessitating the
use of barriers to maintain write coherence).

• Many (but not all) storage devices are slow, so caching and asynchronous operation is
important.

• Solid-state storage devices wear out (they typically have limited write cycles). The
controller transparently re-maps bad blocks, maintaining the illusion of a contiguous I/O
space. It can be queried in order to estimate lifetime. Many storage devices use
SMART [Wikipedia] for this. We plan to support a SMART interface in the future.

This leads to the set of request and response structures in Listing 5.1.

These are similar to the queues for the Ethernet devices. The main difference is the addition
of a plugged boolean as an optimisation. When plugged, the driver is meant not to handle this
or any subsequent requests. This allows the client (filesystem) to queue many requests, up to
the size of the queue, before releasing the driver to queue them to the device. The device
then has a queue of requests it can reorder for optimum device throughput (making use of a
scatterlist if supported by the device). The client needs to notify the driver when it removes
the plug, in the same way it notifies the driver when adding a request to an initially empty
request queue.

The id field is to aid in matching requests and responses; it is set by the client, maintained by
the virtualiser, and copied into the response by the Driver. This field is not strictly needed, as
the request and response can be matched on address, but may simplify the client logic.

The success_count field in the response structure indicates the number of blocks successfully
transferred. The status indicates the status of the first failing transfer, or SUCCESS if all
requested blocks were transferred correctly. Thus a request that asked for 128 blocks to be
transferred, where there was a seek error on the 67th, would return success_count=66, and
status=SEEK_ERROR.

In addition to the queues and shared-memory areas, there is a shared information page that
contains the information a client might want about a storage device, and information for
monitoring the device. The exact layout and content is still to be determined, for now we use
the fields in Listing 5.2.

The only non-obvious field is ready: It is initially FALSE. The driver switches it to TRUE when the
data in struct storage_info is valid, and the driver is ready to accept requests. This allows
disk drives to spin up, and the driver to query information about the attached storage, before
file systems can access the device.

The virtualiser presents a very similar interface. We have two virtualisers designed, and one
implemented at present.

One virtualiser reads the block device’s partition table, and presents each partition on the
device to a separate client.

The other lives inside a virtualiser/driver VM, and presents a single file on the driver’s
filesystem as a virtual block device to a client.

29



1 #define QUEUE_SIZE (1<<QUEUE_LOG_SIZE)

2 enum request_code {

3 READ_BLOCKS,

4 WRITE_BLOCKS,

5 BARRIER,

6 FLUSH

7 };

8 struct blk_request {

9 enum request_code storage_command;

10 uint32_t block_number;

11 uint16_t count;

12 void *address;

13 int32_t id;

14 };

15 struct blk_response {

16 enum {

17 SUCCESS,

18 /* various error codes */

19 } result;

20 uint16_t count;

21 uint16_t success_count;

22 void *address;

23 int32_t id;

24 };

25 struct blk_req_queue {

26 uint32_t head;

27 uint32_t tail;

28 bool plugged;

29 struct request buffer[QUEUE_SIZE];

30 }

31 struct blk_response_queue {

32 uint32_t head;

33 uint32_t tail;

34 struct response buffer[QUEUE_SIZE];

35 }

Listing 5.1: Storage request and response queue data structures.

5.4.3 Status

The basic design is stable, but details of specifications are subject to change.

5.5 Sound

5.5.1 Main properties

Sound devices expose a series of streams each of which either play or record (capture)
audio. This audio is transmitted through buffers of PCM frames, where each frame contains a
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1 struct storage_info {

2 char serial_number[64];

3 bool read_only;

4 bool ready;

5 uint16_t blocksize;

6 uint16_t queue_depth;

7 uint16_t cylinders, heads, blocks; /* geometry to guide FS layout */

8 uint64_t size; /* number of blocksize units */

9 };

Listing 5.2: Storage information region data structure.

snapshot of the amplitude of each audio channel at a particular point in time.

The driver exposes information about each stream to clients through shared memory. For
each stream, the driver specifies supported formats, rates, the stream direction (playback or
capture), and how many channels the stream supports. The driver notifies the client when all
streams are ready. Until then, the client must assume no streams are available.

Similar to storage drivers, sound drivers communicate with clients through two pairs of
request / response queues: one for commands and one for PCM transfer. A stream has the
following life cycle:

1. Take – take ownership of the stream, specifying the number of channels, format and
rate.

2. Prepare – allocate resources for playback.

Client sends buffers to driver for pre-buffering.

3. Start – start playback or recording.

Driver begins responding to buffers.

4. Stop – stop playback or recording.

5. Release – free stream resources.

5.5.2 Message Protocol

The format of commands and PCM requests is shown in Listing 5.3. The type of a command
is specified by its code field, and stream_id denotes the stream the command refers to. The
field cookie is copied over to the corresponding response so the original message can be
identified. Commands are sent in the cmd_req queue, and responses are received in the
cmd_res queue. The field set_params contains stream parameters for a take request, and
status is set for responses to signal the result of a request.

To both play and record PCM data, the client sends PCM request through the pcm_req queue.
The fields addr and len refer to a shared PCM data buffer. On playback, this buffer will
contain PCM frames to play and on recording this buffer will be filled by the device. Once the
driver has finished with the buffer, it will respond on the pcm_res queue updating the status

and latency_bytes. This process differs slightly for playback and recording.
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1 typedef struct sddf_snd_pcm_set_params {

2 uint8_t channels;

3 uint8_t format; // SDDF_SND_PCM_FMT_*
4 uint8_t rate; // SDDF_SND_PCM_RATE_*
5 } sddf_snd_pcm_set_params_t;

6

7 // Command & response message type

8 typedef struct sddf_snd_cmd {

9 sddf_snd_command_code_t code; // SDDF_SND_CMD_*
10 uint32_t cookie;

11 uint32_t stream_id;

12 union {

13 sddf_snd_pcm_set_params_t set_params; // Set on TAKE request

14 sddf_snd_status_code_t status; // Set on all responses

15 };

16 } sddf_snd_cmd_t;

17

18 // PCM request & response message type

19 typedef struct sddf_snd_pcm_data {

20 uint32_t cookie;

21 uint32_t stream_id;

22 uintptr_t addr;

23 unsigned int len;

24 // Only used in responses.

25 sddf_snd_status_code_t status;

26 uint32_t latency_bytes; // play/record latency in bytes.

27 } sddf_snd_pcm_data_t;

Listing 5.3: Sound definitions

5.5.3 Playback

A minimal sound system consists of a client, virtualiser, and driver component, where the
driver communicates to the device via DMA. To play audio, the client must first send take and
prepare commands specifying the direction as SDDF_SND_D_OUTPUT and setting stream
parameters. Then, n > 0 PCM buffers must be pre-filled to pcm_req to fill the device’s internal
buffer, followed by a start command. Buffers are only responded to after they have been
played. This means the ith pre-filled buffer will only be responded to after i buffers have been
consumed. After the stream has been started, the client must replay (send again) these n
pre-filled buffers. The ith replayed buffer will not be responded to until n+ i buffers have been
played.

An example is shown in Figure 5.3 with n = 5 pre-filled buffers. The first three pre-fill buffers
fill up the device’s internal buffer, so buffers 4 & 5 are silently ignored. After start is sent, the
driver will initiate playback and will respond to the ith pre-filled buffer after i buffers have been
played. While this is happening, the client replays buffers 1-5; buffers 1-3 are silently ignored
and buffers 4-5 are sent to the device. There are several reasons for this pre-buffering
behaviour.

• Pre-buffering reduces the latency of playback by starting the stream immediately as
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start is sent.

• The driver can choose to not support pre-buffering by simply ignoring all buffers sent
before start, transparent to the client.

• This behaviour is required for compatibility with Linux’s virtIO sound implementation.

1

Time Elapsed
(buffers)

10

Buffers Sent
in pcm_req 2 3 4 5 START 1 2 3 4 5 6

2 3 4 5

Responses
pcm_res 1 2 3 4 5

7 8 9 10

1 2 3 4 5 6

6 7 8 9 10

11

11

(prefill)

Figure 5.3: TX prebuffering

After all PCM buffers have been sent, the client sends a stop command followed by a release
command to release stream resources.

5.5.4 Recording

Recording is almost identical to playback, however there is no “replay" behaviour. The client
first takes and prepares the stream specifying SDDF_SND_D_INPUT. The client then pre-sends
empty buffers in pcm_req before starting the stream. On stream start, the driver will begin to
respond to these with recorded PCM data. The client must continue to send empty buffers for
the driver to fill. The client then sends a stop command and the driver fulfils the remaining
requests.

5.5.5 Sound Virtualisers

The protocol is policy agnostic, however it has been designed to facilitate various virtualiser
implementations. A simple virtualiser could use the take and release commands to allow
clients to have temporary exclusive ownership over a stream. If another client tries to take a
stream while it is in use, the request will fail. Alternatively, a virtualiser could allow multiple
clients to access a stream at the same time by mixing (combining) the audio signals.

5.5.6 Status

This device-class specification is subject to change.

5.6 Display

Details to come.
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5.7 Camera

Details to come.
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Chapter 6

Device Discovery

There is preliminary work on extracting device parameters from the Linux device tree
specification as part of configuration tool for the seL4 Microkit [Trustworthy Systems Group,
2023]. This is not yet in a halfway stable state. We will describe this in a later version.

Currently, it is expected that the system designer knows all the devices that will be available
and used, and can choose components and assign memory manually to use all the devices
that are needed for the system being built.
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Chapter 7

Leveraging Linux

Note: This chapter is preliminary.

7.1 Component development

The Linux userspace I/O (UIO) mechanism [Koch, 2016], designed to support usermode
drivers, allows mapping physical memory regions uncached into Linux user space.

We can use this to develop sDDF virtualisers and device drivers in Linux user space, on a
Linux system running inside a virtual machine (VM) on top of seL4. This allows us to use the
normal Linux development tools for component development. While not suitable for
performance analysis and tuning, this can simplify and accelerate development.

1 chosen {

2 bootargs = "... uio_pdrv_genirq.of_id=sddf_framebuffer ...";

3 };

Listing 7.1: Example UIO stub driver command-line configurations.

UIO works with a stub driver in the Linux kernel. There are two generic drivers provided in the
mainline Linux source tree, uio_pdrv_genirq and uio_dmem_genirq. uio_pdrv_genirq is used
when the device is not a bus-mastering DMA controller; uio_dmem_genirq when the device
can do DMA. These drivers do not specify which devices they are compatible with; they can
be bound to a particular device in various ways. We usually bind at boot-time using a Linux
kernel command line argument as shown in Listing 7.1.

1 uio@0x30000000 {

2 compatible = "sddf_framebuffer","uio";

3 reg = <0x00 0x30000000 0x00 0x2000000>;

4 interrupts = <GIC_SPI 18 IRQ_TYPE_EDGE_RISING>;

5 };

Listing 7.2: Example UIO node in device tree.

To use UIO, a node describing the interface is added to the device tree handed to the virtual
machine. For details, see the device-tree specifications in the Linux source tree, Listing 7.2
shows an example.
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You can choose the compatible string to be whatever does not clash with a real device. The
reg parameter needs to give the addresses of the regions. When running sDDF (and the
development VM) on top of the seL4 Microkit [Trustworthy Systems Group, 2023], this will
need to match the address of the memory region specified in the Microkit’s system
description file (SDF), to ensure that Linux and the sDDF component under development see
these regions at the same address.

The above example specifies a single 32 MiB region at (virtual-machine) physical address
0x30000000. Likewise, the IRQ parameter gives the IRQ controller, IRQ number (relative to
the first interrupt on that controller) and the type. Again this must be different from any other
interrupt in the device tree.

The virtual-machine monitor (VMM) maps each interrupt onto a separate Microkit channel. If
such a channel is connected to the VM, a notification on that channel (resulting from an
interrupt or a notification from another component) will result in injecting the corresponding
virtual interrupt into the VM. When the VM re-enables that (virtual) interrupt, this triggers a
notification to the Microkit protection domain at the other end of the channel, or an interrupt
acknowledgement operation (if the notification was from a real interrupt).

A usermode program running in the VM can then use mmap() calls on
/sys/class/uioN/maps/mapn/addr to access metadata and data regions, read() or poll()
system calls on /dev/uioN to wait for notifications, and write() on the UIO device file to
generate notifications. Here, N identifies the UIO device (of which there can be several),
while n refers to the UIO-mapped region of the device (of which there can be multiple as well).

Most of this is abstracted into a (still under development) libuio library, making it possible to
write components that are relatively easy to port between Linux user space and native
Microkit.

In addition, one can prevent the Linux in-kernel driver from binding to a particular device, by
changing its compatible string in the device tree. One can then bind it to a UIO stub driver
and write a user-mode sDDF-style driver that runs in Linux userspace on the guest.

Driver VM

LinuxDriver

Driver helper

libuio
UIO mappings

0 1 2 …

VMM

mmap

notific. 
handler

ACK handler
Microkit notify

Microkit notified

sDDF shared 
regions

Linux world Native world

Figure 7.1: Linux driver re-use through UIO.
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7.2 Legacy driver reuse

Instead of developing drivers in Linux, we can use the same setup for re-using existing Linux
drivers in the sDDF. A virtualiser connects to a “driver PD” that is in reality a Linux VM
containing the driver and a userspace program, the driver helper, that interacts with the sDDF
using the above UIO mechanisms, as indicated in Figure 7.1.

1 notified(int channel) {

2 needs_notify = false;

3 while (dequeue_request(request_queue, &request)) {

4 switch (request.storage_command) {

5 case READ_BLOCKS:

6 llseek(fd, BLOCKSIZE*request.block_number, SEEK_SET)

7 count = read(fd, adjust_address(request.address),

8 BLOCKSIZE*request.block_count);

9 response.count = request.block_count;

10 response.success = count/BLOCK_SIZE;

11 response.result = count == BLOCKSIZE * request.block_count

12 ? SUCCESS : map_error(errno);

13 enqueue_response(response_queue, &response)

14 needs_notify = true;

15 break;

16 ...

17 }

18 }

19 if (needs_notify)

20 notify(channel);

21 }

Listing 7.3: Example of a Linux usermode driver helper for a block device accessed via a
regular Linux file (simplified).

The driver helper forwards sDDF requests to the Linux in-kernel driver using standard Linux
I/O mechanisms. This can be as simple as reading block-sized chunks from a Linux block
device, or even a regular file, using normal Linux read or write calls, as shown in Listing 7.3.
The notified() function is invoked by libuio when the notification channel is signalled. The
notify() function writes to the appropriate /dev/uio special file to cause a notification by the
VMM on the corresponding channel.

The virtualiser code is unaware of whether the driver is native or a driver VM, the only
difference is that the driver metadata region must be configured as uncached in the Microkit
SDF.

Obviously this approach will not result in high-performance drivers, nor can Linux drivers be
trusted, but most drivers are not particularly performance-sensitive, and trust can be
minimised by encrypting data that is sent to the device (reducing the potential attacks to
denial of service). These limitations are frequently acceptable, particularly if this allows
obtaining complex drivers for free.

In such a case, the Linux instance should be reduced to the bare minimum to support the
driver in question, as demonstrated many years ago by LeVasseur et al. [2004].
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Chapter 8

Security Analysis

Note: This chapter is preliminary.

An implication of the threat model of Chapter 2 is that any trusted component of the system
must be verifiable. Another implication is that components that interface with untrusted
components must sanitise their inputs.

The design of our queues means that pointers into those queues are automatically sanitised
(the index is taken modulo the queue size). Similarly, pointers into the data and metadata
regions on the client-side of the virtualiser are all offsets into the respective region and only
need a check that they do not exceed the region size. These requirements should be easy to
verify.

8.1 Trusted components

For now we assume all the components of the sDDF to be trusted, specifically:

• drivers are trusted

• virtualisers are trusted

• copiers are trusted.

In addition, the device hardware is (currently) trusted.

Untrusted device drivers or devices should be achievable, provided that:

• all data handled by the device is encrypted and signed (using higher-level protocols);

• denial of service by the device or driver is not considered a threat;

• the device is not DMA-capable, or its access is restricted by suitable IOMMU mappings
(managed by the virtualiser);

• the virtualiser sanitises all references received from the client.

8.2 Verifying components

The driver model is designed to simplify drivers dramatically (compared with e.g. Linux
drivers). Drivers are simple state machines free from internal concurrency (but do
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access/modify data structures that are concurrently accessed/modified by hardware). In fact,
experience with Ethernet drivers shows that they are so simple that little debugging effort is
required to achieve correct functionality [Parker, 2023].

The simplicity should make it finally feasible to formally verify drivers for non-trivial real-world
devices, such as NICs, although verification requires not only formalising the driver
framework but also the device interfaces.

Similar arguments apply to virtualisers: they are also kept simple (even simpler than drivers)
and should be verifiable.

The use of virtualisers allows simplifying the IP stack as well, as it only handles packets for a
single client and does not have to deal with broadcast requests. Such a simple IP stack may
be verifiable as well, and there is work attempting exactly this [Rollins, 2023]. A verified IP
stack may eliminate the need for copiers.

When blocking on a response (Notification or IPC reply) from an untrusted component, a
trusted component may have to employ a watchdog timer to prevent indefinite blocking,
depending on its purpose.

8.3 Verifying component interactions

Simplifying drivers and virtualisers by removing any internal concurrency potentially shifts
some of the complexity into the driver framework itself, including concurrency. In fact, our
experience shows that the dominating debugging task is not of the driver/virtualiser
functionality, but the inter-component signalling protocol. Achieving deadlock freedom is not
difficult in itself, but achieving it without having components perform unnecessary signals
resulting in other components being awoken without having useful work to perform is the
challenge. Optimisations to the simplest policy of "signal each time work has been done" can
easily lead to unforeseen deadlocks or delays in processing further down the line, and without
the use of an automated tool it can be difficult to calculate by hand whether potential
optimisations could lead to a stagnation in the system.

Thus, this is an ideal use case for model checking, and we have developed simplified abstract
models of our networking components in order to verify that each optimisation to our
signalling protocol cannot lead our system into deadlock. As the signalling protocol is updated
during development, we are able to update our abstract models accordingly and rerun them
through the verification tool to ensure that we have not inadvertently introduced any issues.

An advantage of the sDDF model is that this complexity is encapsulated in a relatively small
code base, and the verification needs to be done only once per device class (and not for each
individual driver).

The sanitation requirements on drivers and virtualisers apply to the framework
implementation as well, and should be verified.
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Chapter 9

Implementation Status

The sDDF is implemented as described above on top of the seL4 Microkit [Trustworthy
Systems Group, 2023]. The Microkit simplifies the implementation (among others) by moving
the handler loop (see Listing 4.5) into the framework, so the driver and virtualiser
implementations mostly consist of the notification handler functions.

The Microkit implementation presently provides high-performance networking (see
Chapter 10). There are a implementations for a number of other device classes (serial, I2C,
storage, graphics, audio) which are still in a preliminary state. The framework is presently
based on active virtualiser and driver components.

The code accessible on GitHub under a BSD license: https://github.com/au-ts/sDDF.
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Chapter 10

Performance

10.1 Performance evaluation setup
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Figure 10.1: Evaluation setup for sDDF (top) and Linux (bottom).

We evaluate sDDF networking performance against the older CAmkES-based driver
framework, as well as against Linux.

The evaluation platform is an Arm Cortex-A53 processor based on the i.MX8M Mini
microarchitecture running at 1.8GHz, equipped with a Gigabit Ethernet NIC using a
10/100/1000 Atheros AR8031 PHY. We run ipbench [Wienand and Macpherson, 2004] for
distributed load generation from four client machines, each sending UDP packets to the
seL4-based target machine, which sends them through an IP stack (lwip [Dunkels, 2001]) to a
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co-located client, which returns the packets, slightly modified according to the ipbench
protocol. The load generators count the successful replies to determine the achieved
throughput and latency, while a low-priority thread on the target machine measures idle time
to determine the CPU load imposed by the test.

Figure 10.1 shows the setup. The sDDF system is based on the seL4 Microkit [Trustworthy
Systems Group, 2023]. Linux benchmarks use a Linux 6.1.1 kernel system on the same
hardware.

10.2 Performance results

10.2.1 Simplified system, CAmkES, Linux

We initially evaluate a simplified two-component system, where the client, IP stack and cache
management are merged into a single component (no device sharing supported), and only
the driver is separate. This setup, while not very realistic, is directly comparable to the older
driver framework based on CAmkES [Kuz et al., 2007]. We also convert the CAmkES
framework to our transport layer and run it in the same, two-component configuration.
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Figure 10.2: sDDF networking performance, compared to original CAmkES, CAmkES with the
new transport layer, and Linux. All benchmarks use a single core.

Figure 10.2 shows the results. We can see that the original CAmkES system already reaches
66% CPU utilisation at 200 Mb/s applied load, and can be expected to saturate the CPU at
around 350 Mb/s.1

CAmkES adapted to the new transport layer (“new CAmkES”) uses somewhat less CPU
(52% vs. 66% at 200Mb/s, a 20% improvement) but maxes out the CPU above a load of
400 Mb/s. Achieved throughput scales with applied load to 600 Mb/s, and then collapses
when applied load exceeds 700 Mb/s. Performance collapse under overload is not untypical
in network systems, and generally results from latency blowout.

1The measurements on “original CAmkES” (in fact after a fair amount of performance tuning) were done in
2021 and we only have records for the low-load cases.
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Figure 10.3: Performance of a two-, four-, pseudo-five- and a standard five-PD sDDF system
compared to Linux, all on a single core.

Linux behaves somewhat better, also scaling just over 600 Mb/s, when it saturates the CPU.
While nowhere near as extreme as the performance collapse of CAmkES, Linux throughput
still degrades somewhat under overload.

In contrast, the sDDF system scales linearly to the wire speed.2 It does not max out the CPU,
but handles the full applied load with only 60% CPU utilisation, leaving plenty of performance
head space. At all load levels it uses far less CPU than Linux. At low load (100 Mb/s), the
sDDF CPU usage is 12%, beating all the other systems by a factor of 1.9 or more. The ratio
becomes smaller at higher load due to batching.

10.2.2 Cost of modularity and security

Now we compare the simplified two-PD system to the more realistic one of Figure 10.1,
where five PDs (out of a total of 8) are involved in handling each packet, and incoming data is
copied to separate client address spaces. For more analysis, we present also two
intermediate systems: a four-PD system, which has the Copier component removed, and a
pseudo-five-PD system (labelled “p5-PD”) where instead of a copier we have a dummy
component that just forwards packets without doing any meaningful processing.

Figure 10.3 shows the results. We can see that the three extra context switches plus one data
copy increase CPU usage noticeably, from 12% to 19% at 100 Mb/s, and from 60% to 77% at
high load, a relative increase of 64% at low load and 27% at high load (again, the effects of
overheads are lessened by batching). Yet, this highly modular setup still clearly outperforms
Linux by more than a factor 1.5 (low load).

The intermediate systems show that the extra data copy plays a similar role as the extra
context switches, and they all add low to moderate overheads. This becomes clearer in
Figure 10.4, which compares per-packet processing costs. It clearly shows that the difference

2Note that a Gigabit Ethernet NIC can handle about 950 Mb/s of payload with standard 1.5 KiB Ethernet
frames, the rest of the bandwidth is lost to Ethernet headers and inter-packet gaps.
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Figure 10.4: Comparing per-packet processing costs of the four sDDF systems.
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Figure 10.5: Single-core sDDF performance using single core seL4 kernel with and without
memory barriers enabled vs multicore seL4 kernels.

between the 4-, pseudo-5- and 5-PD systems is fairly small: the extra PD (without copying)
increases per-packet processing cost by 1.5k cycles at 100 Mb/s and 350 cycles at wire
speed, a relative increase of 8% and 4% respectively. In comparison, copying adds 700
cycles at low and 1,000 cycles at high load, a relative increase of 3% and 11% respectively.3
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Figure 10.6: Performance of sDDF running single-core (sDDF SC) vs. distributed over two
cores (sDDF MC) compared to Linux running on two (Linux 2C) or four (Linux 4C) cores.

10.2.3 Multicore

All the above benchmarks were run on a single core, using an system that is optimised for
that case: the seL4 kernel compiled with multicore support disabled, and no memory barriers
in the sDDF queue libraries.

Enabling multicore increases the baseline system-call cost of seL4 by about 50%, basically
the cost of acquiring and releasing the kernel lock. Additionally, supporting a multicore system
requires memory barriers when enqueuing or dequeuing entries in the shared queues, to
ensure they work correctly of the other PD accessing the queue runs on a separate core.

The CPU load figures in Figure 10.5 show that both requirements add similar overheads.
Here we compare the strict single-core configuration used so far (“SC kernel”) with a version
that adds the memory barriers but still uses the single-core kernel (“MB-SC kernel”), and
additionally the same sDDF version running on seL4 with multicore enabled (“MC kernel”).
Adding memory barriers adds about 15% overheads at low load and 8% at high load, while
the total cost of enabling multicore is almost 50% at low load and almost 20% at high load.

From now on we use the kernel and sDDF version that fully supports multicore. We compare
multicore-enabled sDDF running on a single core with sDDF with its components distributed
over two cores: the driver and Tx virtualiser run on one core, and the other components,
Client, Copier and Rx virtualiser, on the other. We compare to two Linux configurations, one
restricted to two cores and the other giving it free choice of all four cores.c

The results are in Figure 10.6. Having 2 cores at its disposal, Linux just manages to handle
the applied load (as indicated by latencies, which increase significantly at the highest applied
load). Its CPU usage is well above that of the sDDF system. On four cores, Linux shows
significantly higher overall CPU load, while still barely coping with the network load (indicated
by the CPU usage blowing out at 950 Mb/s, and also reflected in a latency blowout).

3One would expect the absolute per-packet copying cost to be independent of load. We did not investigate
this further, but suspect caching effects.
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In contrast, the sDDF system still has significantly lower CPU utilisation than Linux, total CPU
load staying (just) below 100% of one core even at the highest network load. The total CPU
load of the two-core configuration is 65% higher (31% vs 19%) than the single-core version at
low load and 30% higher (98% vs 77%) at high load. This is due to cross-core notifications
being more expensive than intra-core notifications.

The overall CPU load of an sDDF system will obviously be sensitive to the allocation of PDs to
cores, which, in turn, depends on other considerations, such as maximising cache locality or
freeing up cores for other activities. The optimal configuration will therefore be dependent on
the use case. The multicore-enabled configuration provides full location transparency to PDs.

10.3 Discussion

The framework, running on the Microkit, clearly over-achieves our goal of “performance
comparable to Linux”, outperforming Linux by a significant margin under all configurations
evaluated. Performance is vastly better than that of the CAmkES system adapted to our
transport layer (which is already a significant improvement over the performance of the
previous CAmkES-based driver framework).

The performance comparison to Linux is especially encouraging, given that the Linux IP stack
is supposedly well optimised (especially for multicore use), while we are using the simple
lwip [Dunkels, 2001]. We find that even on multicore (the scenario most favourable to Linux)
our per-packet costs are significantly lower.

Parker [Parker, 2023] conducted a more comprehensive performance analysis, including
highly asymmetric (send-mostly or receive-mostly) traffic, multiple active clients with traffic
shaping, more multicore configurations, and forcing the system to be overloaded. The
evaluation confirmed that the sDDF/Microkit system shows no performance collapse under
any overload conditions evaluated, unlike what we observed in Section 10.2.1 for the
CAmkES system.

The evaluation, specifically the results shown in Section 10.2.2, provide strong justification for
our highly modular design: The cost of a PD switch is small compared to the base processing
cost.

This confirms the original hypothesis driving the sDDF design: Context-switching costs (of the
order of 400–500 cycles for the single-core kernel on our Armv8 platform, about 50% higher
for the multicore kernel, and still higher for cross-core notifications) are not a major factor. In
fact, we measure handling costs of less than 50,000 cycles per packet on sDDF under any
conditions, and no more than about 12,000 cycles under high network load. Hence, the pure
kernel overhead of adding an extra component (two system calls) to the packet-processing
pipeline adds no more than about 15% (usually much less) to the handling cost.

As such, our main take-away is that the fine-grained modularisation, resulting from the strict
separation of concerns, works and adds far less overhead than the complexity of the Linux
system. The reason is two-fold:

1. as stated, context-switching costs in seL4 and the Microkit are small enough to not
significantly impact performance, and

2. the sDDF model encourages implementation simplicity that can reduce overheads
(which is the reason sDDF outperforms Linux).
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The latter has further, highly encouraging implications: We can keep individual component
implementations very simple, without sacrificing performance. This simplicity not only greatly
reduces debugging efforts, it should also make automatic verification techniques applicable.
The experience with verifying the Microkit [Paturel et al., 2023] gives us confidence that this
should be achievable.

The evaluation of the multicore configurations are also highly encouraging: It shows that the
sDDF naturally distributes across cores. While all PDs are strictly sequential (resulting in
decreased code complexity), the design makes them location-transparent, meaning they can
be arbitrarily allocated to cores in order to balance load. The evaluation confirms the
feasibility of this design choice of keeping components sequential and instead allowing
arbitrary concurrency between components.

Further performance improvements seem possible with improvements to the kernel itself.
Candidates are fast-pathing notifications to higher-priority threads, and taking notifications out
of the kernel lock.
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Chapter 11

Conclusions

We have developed a low-overhead device driver framework for seL4, sDDF, implemented it
on the seL4 Microkit, and comprehensively evaluated it on network devices. It is based on a
highly efficient, asynchronous zero-copy transport layer using lock-free single-producer,
single-consumer, bounded queues.

Measured performance shows a vast improvement over the CAmkES-based framework, as
well as significantly better performance than Linux, despite the higher number of system calls
and context-switches required. In particular we find that a highly componentised sDDF
system easily distributes across cores, while each individual component being strictly
sequential, reducing its complexity.

So far we have only examined the performance of the network system. We have started
applying the same ideas to other device classes, especially storage. Other device classes are
generally much less sensitive to system performance than networking, so we do net expect
any surprises there.

We are also working on integrating sDDF with the Microkit’s virtualisation infrastructure,
which will support VMs as clients as well as drivers and virtualisers. On the one hand, this
provides a convenient way of developing sDDF components as Linux programs that can later
be converted into native sDDF PDs. On the other hand, this allows re-use of existing Linux
drivers in the form of a driver-VM.

Obviously, such legacy drivers are in no way trustworthy. Furthermore, virtualisation
overheads are expected to dominate sDDF overheads, so these configurations are important
for functionality (especially the ability to re-use unmodified Linux drivers) but will not be
suitable for performance-sensitive devices.

49



Bibliography

Adam Dunkels. Minimal TCP/IP implementation with proxy support. Technical Report
T2001-20, SICS, February 2001. http://www.sics.se/~adam/thesis.pdf. 42, 47

Hans-Jürgen Koch. The userspace I/O HOWTO, 2016. URL
https://www.kernel.org/doc/html/latest/driver-api/uio-howto.html. Retrieved 2024-2-27. 36

Hermann Kopetz. The time-triggered architecture. Proceedings of the IEEE, 91:112–126,
2003. 23

Ihor Kuz, Yan Liu, Ian Gorton, and Gernot Heiser. CAmkES: A component model for secure
microkernel-based embedded systems. Journal of Systems and Software Special Edition
on Component-Based Software Engineering of Trustworthy Embedded Systems, 80(5):
687–699, May 2007. URL http://dx.doi.org/10.1016/j.jss.2006.08.039. 43

Ben Leslie, Peter Chubb, Nicholas FitzRoy-Dale, Stefan Götz, Charles Gray, Luke
Macpherson, Daniel Potts, Yueting (Rita) Shen, Kevin Elphinstone, and Gernot Heiser.
User-level device drivers: Achieved performance. Journal of Computer Science and
Technology, 20(5):654–664, September 2005. URL
https://trustworthy.systems/publications/papers/Leslie_CFGGMPSEH_05.pdf. 8

Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz. Unmodified device driver
reuse and improved system dependability via virtual machines. In Proceedings of the 6th
USENIX Symposium on Operating Systems Design and Implementation, pages 17–30,
San Francisco, CA, US, December 2004. 38

Lucy Parker. High-performance networking on seL4. BSc(Hons) thesis, School of Computer
Science and Engineering, Sydney, Australia, November 2023. 23, 40, 47

Mathieu Paturel, Isitha Subasinghe, and Gernot Heiser. First steps in verifying the seL4 Core
Platform. In Asia-Pacific Workshop on Systems (APSys), Seoul, KR, August 2023. ACM.
URL https://trustworthy.systems/publications/papers/Paturel_SH_23.pdf. 48

Wyeth Greenlaw Rollins. Toward a verified, minimal IPv6 network stack implementation,
September 2023. URL
https://sel4.systems/Foundation/Summit/2023/abstracts2023#a-toward-verified. Talk at the seL4
Summit. 40

Mark Rutland. Stale data, or how we (mis-)manage modern caches, 2016. URL
http://events17.linuxfoundation.org/sites/events/files/slides/slides_17.pdf. 17

Leonid Ryzhyk, Peter Chubb, Ihor Kuz, and Gernot Heiser. Dingo: Taming device drivers. In
EuroSys Conference, pages 275–288, Nuremberg, DE, April 2009. URL
https://trustworthy.systems/publications/nicta_full_text/1527.pdf. 6, 8, 16

50

http://www.sics.se/~adam/thesis.pdf
https://www.kernel.org/doc/html/latest/driver-api/uio-howto.html
http://dx.doi.org/10.1016/j.jss.2006.08.039
https://trustworthy.systems/publications/papers/Leslie_CFGGMPSEH_05.pdf
https://trustworthy.systems/publications/papers/Paturel_SH_23.pdf
https://sel4.systems/Foundation/Summit/2023/abstracts2023#a-toward-verified
http://events17.linuxfoundation.org/sites/events/files/slides/slides_17.pdf
https://trustworthy.systems/publications/nicta_full_text/1527.pdf


Leonid Ryzhyk, Yanjin Zhu, and Gernot Heiser. The case for active device drivers. In
Asia-Pacific Workshop on Systems (APSys), pages 25–30, New Delhi, India, August 2010.
URL https://trustworthy.systems/publications/nicta_full_text/3681.pdf. 16

Trustworthy Systems Group. The seL4 Microkit, 10 2023. URL
https://trustworthy.systems/projects/microkit/. 35, 37, 41, 43

Ian Wienand and Luke Macpherson. ipbench: A framework for distributed network
benchmarking. In Conference for Unix, Linux and Open Source Professionals (AUUG),
pages 163–170, Melbourne, Australia, September 2004. URL
https://trustworthy.systems/publications/papers/Wienand_Macpherson_04.pdf. 42

Wikipedia. Self-monitoring, analysis and reporting technology, 2004. URL
https://en.wikipedia.org/wiki/Self-Monitoring,_Analysis_and_Reporting_Technology. 29

51

https://trustworthy.systems/publications/nicta_full_text/3681.pdf
https://trustworthy.systems/projects/microkit/
https://trustworthy.systems/publications/papers/Wienand_Macpherson_04.pdf
https://en.wikipedia.org/wiki/Self-Monitoring,_Analysis_and_Reporting_Technology


Appendix A

Overview of Changes

A.1 Changes Since Release 0.2 of 2022-10-03

The document has undergone major revision and restructure, with changes in many places.
We summarise the main changes.

A.1.1 More device classes

While networking is still the running example of the bulk of the document, we tried to point out
where other device classes may differ.

We moved device-specifics into a separate chapter, provide details of some device classes,
and added place-holders for others.

A.1.2 Mandatory virtualisers, cache maintenance

We generalised the concept of multiplexers to virtualisers, as they are also responsible for
translating between client virtual and I/O addresses. Consequently, virtualisers are now
mandatory components (required even if a device only has a single client).

We include a discussion of cache maintenance, and specify that this is the responsibility of
the virtualisers.

A.1.3 Completely separated Tx and Rx paths

We require that for device classes providing spontaneous input (e.g. networks) the Tx and Rx
paths are completely separated. This means separate Tx/Rx virtualisers, and separate Tx/Rx
data and metadata regions.

A.1.4 Clarified terminology

We removed the term “ring buffers” as this caused confusion with data buffers. Instead we
consistently use the term “queue” for the metadata structures and reserve “buffer” for the
actual I/O-data locations.
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We now require the transmit, receive, request metadata regions as well as the virtualisers
(formerly: multiplexers) to be disjoint (before this was considered an option).

We removed the concept of a “Server” in the driver model, there are only drivers, virtualisers
and “clients” (the latter possibly consisting of a pipeline of components).

We use the term metadata region for all software-defined regions shared between
components (other than the data regions). We explicitly distinguish the device’s control region
(i.e. the memory-mapped device registers) from its metadata region.

We clarified (and fixed!) the concept of ownership of I/O data and metadata, to aid
verification.

A.1.5 Linux-based component development and legacy re-use

We added Chapter 7 which describes how to leverage UIO to do driver development under
Linux, and integrate legacy Linux drivers.

A.1.6 Performance evaluation

We extended and updated the performance evaluation, including extending to multicore
scenarios.

We furthermore found that the Linux distribution we used to benchmark against had serious
performance deficiencies which do not exist in the mainline kernel, so we re-ran Linux
evaluations with a version built from source.

We extended the performance discussion as a result.

In general, performance is significantly improved compared to the original release, and keeps
out-performing Linux.

A.1.7 Changes resulting from evaluation

We changed/refined details of the Ethernet driver interface as the result of evaluating
implementation practicalities and performance.

We also reported on other implementation/evaluation experience, including debugging and
the use of model checking of the signalling protocols.
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