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1 Introduction

The seL4 Core Platform (seL4CP) is a new operating system for embedded systems, based
on the high-assurance seL4 operating system kernel. Unlike previous frameworks, such as
CAmkES, which require a deep understanding of seL4 systems development, seL4CP has
ease-of-deployment as its core aim, and is intended to be accessible to all
embedded-systems developers.

The seL4 Core Platform was co-developed with a device called Laot that protects critical
infrastructure (such as remotely-managed power stations) from cyber attacks. The Laot
device was build using seL4CP by an engineer without prior seL4 systems development
experience, which indicates that the usability aim had been successfully achieved.

CapDL is a language for describing access rights in seL4-based systems. CapDL
specifications can be used to track which objects and entities have access to which seL4
capabilities, and provide complete descriptions of the capability distribution in a system
running on the seL4 kernel. Moreover, CapDL specifications can be used as input to security
analysis tools, including tools that help automate system bootstrapping processes. This
makes CapDL an extremely powerful and versatile tool for managing seL4-based systems.

The Trustworthy Systems group, during the course of the DARPA Cyber Assured Systems
Engineering (CASE) research project, has developed a formally verified system initialiser
(case-init) that can place an seL4 system into any CapDL-specified state.

Since the CAmkES framework has a verified mapping from its architecture description
language to CapDL, CAmkES projects can take advantage of the assured system
initialisation provided by case-init. However, the System Description Format used by the
Core Platform currently lacks an analogous CapDL mapping, so these benefits are not yet
available to projects targeting seL4CP.

The goal of this project is to develop a verified mapping from the SDF format used by seL4CP
to CapDL, so that seL4CP-based systems can take advantage of the assured system
initialisation provided by system initialiser developed as part of the CASE project. This will
requires developing new tooling to generate the necessary CapDL specifications from Core
Platform system descriptions.

1



2 Rigorous Specification

2.1 Preamble

The seL4 Core Platform introduces a limited set of straightforward abstractions that closely
mirror the objects of the seL4 microkernel, resulting in a streamlined implementation. A
system implemented on seL4CP is composed of only three types of first-class platform
objects, and the explicitly enumerated relationships between them. These first-class objects
are protection domains (PDs), IRQs and memory regions (MRs). PDs can interact with each
other through various properties: one such property is the presence of a channel, which
serve as a means of authorizing communications in the system specification. Interactions
through channels can occur in two forms: sending notifications, which provide asynchronous
signaling, and making protected procedure calls (PPCs), which allow for synchronous
function calls between different PDs.

2.2 Abstract Systems

In what follows, we fix a positive integer k > 0 called the page size, finite set I ⊆ N called the
set of IRQs, a set A ⊆ kN called the memory addresses, and a finite set V ⊆ {0, . . . , 62} of
valid protection domain identifiers.

Definition: A permission is a subset of {W, X, C} where W, C and X are all distinct symbols.
The set of permissions is denoted W .

Definition: A priority is an integer between 0 and 254. The set of priorities is denoted P . A
budget-period is a pair of integers (x, y) such that 0 < x ≤ y < 264. The set of budget-periods
is denoted B.

Definition: A channel identifier is an integer between 0 and 62. Let C denote the set of
channel identifiers. An end (or pdch) is an element of the set V ×C. A comm is an unordered
pair {(v1, c1), (v2, c2)} consisting of two ends such that v1 ̸= v2.1

Definition: A mapped memory region consists of the following data:

• a base PD b ∈ V ,

• a physical address ap ∈ A,

• a virtual address av ∈ A,

• a permission w ∈ W ,

• a size n ∈ kN

so that for all m < n, ap +m ∈ A and av +m ∈ A both hold.

1Forbidding self-channels here greatly simplifies concurrency handling in Activity 3.1.2.
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Definition An abstract system consists of the following data:

• a set Vp ⊆ V of protected procedure call domains,

• a set C of comms, called the set of channels,

• a set I ⊆ I × V × C called the set of IRQ mappings,

• a finite set M of mapped memory ranges,

• a priority map vp : V → P , and

• a budget-period map vb : V → B.

subject to the conditions below:

1. All channels are disjoint, i.e. if x, y ∈ C, then either x = y or x ∩ y = ∅.

2. IRQ ends and channel ends are disjoint, i.e. if (i, e) ∈ I and x ∈ C, then e ̸∈ x.

3. Virtual addresses are disjoint, i.e. if two mapped memory regions x, y ∈ M have the
same base PD b(x) = b(y), then either av(x) < av(x) + n(x) ≤ av(y) < av(y) + n(y) or
else av(y) < av(y) + n(y) ≤ av(x) < av(x) + n(x).

2.3 Implementation Relation

Take an abstract system as defined above. Consider a finite set V of ELF binaries, and an
assignment i : V → V. We say that (the capability distribution of) an seL4 machine state
implements a given abstract system if the following conditions hold:

1. For each x inV, the binary i(x) is linked against the libsel4cp library and has that library’s
main() function as its entry point.

2. There is an allocated thread control block object in physical memory, which we’ll refer to as
the Monitor TCB, along with a synchronous IPC endpoint that we’ll refer to as the Monitor
Endpoint, and a reply object that we’ll refer to as the Monitor Reply. The Monitor TCB is not
suspended, and has priority 254 and max priority 254. The Monitor TCB has a single CNode

as its CSpace, which contains caps to Monitor Reply in slot 4 and Monitor Endpoint in slot 74.
The VSpace of the Monitor TCB consists only of the frames required to contain the seL4 Core
Platform monitor executable.

3. For each IRQ i ∈ I there is an IRQ handler capability that allows a thread possessing it to
set an endpoint which will be notified of the incoming interrupt i, and to acknowledge received
interrupts of the same number i.

4. For each x ∈ V , there is a unique thread control block object in physical memory, which
we’ll refer to as the x TCB, along with a synchronous IPC endpoint that we’ll refer to as the x
Endpoint and a unique IPC buffer. The x TCB is not suspended, and has priority vp(x) and
max prioirty vp(x). There is a unique scheduling context which we’ll refer to as the x SC. The
x SC has budget and period vb(x). The Fault EP of the x TCB is the Monitor Endpoint. There
is a unique notification object which we’ll refer to as the x notification object. If x ∈ Vp then
there is a unique endpoint object which we’ll refer to as the x endpoint. The CSpace of the x
TCB consists of one CNode, which contains the following capabilities:

• An unbadged RW capability to the x notification object in slot 1. We’ll refer to this as the
x input cap.
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• An unbadged capability to the VSpace of the x TCB in slot 3.

• An unbadged capability to the x reply object in slot 4. We’ll refer to this as the y input
cap.

• For each y ∈ V and c, d ∈ C such that {(x, c), (y, d)} ∈ C, a RW capability to the y
notification object in slot 10 + c, badged with 2d.

• For each y ∈ Vp such that vp(y) > vp(x), and c, d ∈ C such that {(x, c), (y, d)} ∈ C, an RW
capability to the y notification object in slot 74 + c, badged with 263 + d.

• For each i ∈ I and c ∈ C such that (x, i, c) ∈ I, an unbadged minted copy of the IRQ
handler capability for i, in slot 138 + c.

The x VSpace contains mappings for the frames required to contain the ELF binary i(x). For
each mapped memory region m ∈ M with b(m) = x, a frame is mapped with corresponding
physical, virtual addresses, write permission if W ∈ w(m), executable permission if X ∈ w(m),
and cached if C ∈ w(m).

2.4 Formal Specification

We provide a partial formalization of the rigorous definition as part of the executable
specification of libsel4cp. The executable specification is a Haskell that defines data
structures for storing platform state and invariants. The Platform Invariants correspond
exactly to the abstract systems defined above. Moreover, the relation relation_cap_map of
Main.hs faithfully implements clauses 1,3,4 above.

The verification of the CapDL mapping will require this formalization to be augmented with
clause 2, and translated into Isabelle/HOL. Taking on the task of translating the Haskell
specification of the mapping into Isabelle/HOL may be a bit of a hassle, but it will not hinder
the progress or timeline of the project. After the translation is complete, we will have to decide
which version of the specification to stick with moving forward. Given the advantages that
come with using Isabelle/HOL for specifying and proving properties, it’s likely that we will
choose to maintain the Isabelle/HOL version of the specification over the Haskell one,
streamlining future development efforts.

Ultimately, the functionality for automatically generating CapDL output based on the
user-provided system specifications should target all platforms supported by the seL4 Core
Platform. However, seL4CP code is by nature platform-aware (as opposed to
platform-agnostic), and the system currently supports only a few development boards. The
specification may have to be generalized to be more platform-agnostic as support for new
development boards arrives.

2.5 Engineeering and Verification Challenges

2.5.1 Obligations from the libsel4cp verification

The libsel4cp verifiers assume that the Platform Invariants are preserved by any kernel call
in a system that satisfies the platform invariants. This creates a proof obligation, which is best
discharged as part of the Isabelle/HOL proofs surrounding verified system initialization.

Moreover, while the seL4 microkernel itself is single-threaded, seL4CP systems run in user
mode, which is fully concurrent. This poses a challenge when trying to reason about the
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libsel4cp library using a Hoare logic precondition/postcondition framework, as the extension
of Hoare logic to concurrent programs is a difficult problem to solve. Even if there were
established methods for generating verification conditions in such frameworks, the complexity
of analyzing preemption and order of execution would exceed the capabilities of our SMT
solvers.

To get around this issue, we introduce the concept of thread-local state. We can reason about
the parts of the implementation that only involve thread-local state using sequential
techniques. However, this creates the need to show that kernel calls made by any thread
cannot cause the thread-local state in our projection to cease being thread-local, as part of
the proof that the platform invariants are preserved. We are currently investigating whether
this can be done in the current or future phases of the project.

2.5.2 Changes required to the initial task

The CapDL initializer acts as the initial task (first user-level thread with access to all
resources) for an seL4 system, which initializes the user level in concordance with a
user-supplied CapDL specification at startup, then starts all the threads it created and
suspends itself.

In contrast with the CapDL initializer (and with the verified CASE initializer), the current
version of the sel4cp-monitor has a dual purpose: after initializing the seL4 user-level
environment to match the user-supplied SDF system specification at startup, it does not
suspend itself, but remains active as a fault handler (monitor) for all protection domains.

Consequently, to properly initalize an seL4CP-based system, the CapDL generated by our
PoC translator has to launch a “reduced-functionality” sel4cp-monitor as a that does not
perform the initialization tasks, but can act as the fault handler for the protection domains.

This is a superior design from the security and reliability perspective: the initial process’s
CNode contains a whole lot of capabilities that need to remain inaccessible, and it’s possible,
however unlikely, that an active monitor could be compromised. Moreover, the fact that these
caps remain active and accessible makes the proof obligations regarding the preservation of
platform invariants much harder to prove. We will implement this change in the future.

2.5.3 Other engineering issues

The build processes for both CapDL loaders integrate tightly with the arcane build system of
CAmkES. The CapDL loaders have to be linked against the C output of the CapDL tool, as
well as archive containing the ELF binaries that will be loaded: all of this is currently
accomplished using cmake. Since being agnostic to build systems is an attractive feature of
the current seL4CP implementation, disentangling these build processes will be necessary
for integration of CapDL loaders into the systems. Preliminary work has been done on this
but is not yet completed.
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