
School of Computer Science & Engineering
Trustworthy Systems Group

Verifying the
seL4 Core Platform

Verification of the seL4CP implementation
Step 2: Initial Verifier

Zoltan A. Kocsis
December 2022

1 Summary

The seL4 Core Platform (seL4CP) is a new operating system for embedded systems, based
on the high-assurance seL4 operating system kernel. Unlike previous frameworks, such as
CAmkES, which require a deep understanding of seL4 systems development, seL4CP has
ease-of-deployment as its core aim, and is intended to be accessible to all
embedded-systems developers.

The seL4 Core Platform was co-developed with a device called Laot that protects critical
infrastructure (such as remotely-managed power stations) from cyber attacks. The Laot
device was build using seL4CP by an engineer without prior seL4 systems development
experience, which indicates that the usability aim had been successfully achieved.

The seL4CP implementation consists of a small (≈ 280 SLOC) library, libsel4cp, which
provides abstractions that are easier to use than bare seL4 system calls.

The verification of the seL4 kernel requires the use of interactive theorem provers. Parts of
the proof development process have to be repeated every time the kernel code changes, and
keeping the kernel verified incurs an ongoing cost.

For seL4CP we therefore aim for verification with a high degree of proof automation and low
proof burden. While SMT solvers produce “push-button” proofs once set up correctly (with the
benefit of automatic re-verification when the implementation changes), getting to that point is
still a challenge for non-trivial systems, and frequently relies on strong assumptions on the
environment of the code to be verified. In contrast we aim to assume no more than the seL4
proofs guarantee.

2 Implementation Progress

2.1 Roadmap

The development of the verifier follows the previously indicated approach:
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1. First, we create the infrastructure required to export the libsel4cp and monitor source
code into SydTV-GL graph language.

2. We fork the translation validation tool graph-refine and implement checks, graph
transformations and heuristics required for the BRL algorithm.

3. We use the BRL algorithm to prove the absence of undefined behavior in libsel4cp.
This does not require the formalized specification of the library, and will allow us to
confirm the soundness and performance of our verification method before the
formalized SDF semantics is finished.

4. We progress towards automated proofs of functional correctness of libsel4cp and
monitor.

2.2 Infrastructure tools

2.2.1 C parser

We decided to use the same tool, the c-parser, that is used to create the Isabelle/HOL
semantic model of the seL4 microkernel. This tool translates the C source code into
Schirmer’s SIMPL [Schirmer, 2008] programming language, which has a well-defined
operational semantics in Isabelle/HOL. This allows us to use the same semantics as the
kernel verification. Additionally, SIMPL can be translated into the SydTV-GL graph language
using the SimplExport tools, in a way that preserves the semantics.

The c-parser handles a reasonable subset of the C99 standard, and accounts for
architecture-defined behaviors such as endianness, or the number of bits in an int. The most
important limitations of the subset of C implemented by the tool are the following:

1. No goto statements.

2. No fall-through cases in switch statements.

3. No union types.

4. No taking the address of local variables.

Most of these operations are already absent from the current seL4CP implementation, and
we do not expect adherence to these restrictions to become a constraint or difficulty in the
future development of the seL4 Core Platform.

However, the source code of the handler_loop in libsel4cp did contain one instance of the
fourth limitation, where the address of the local variable badge had to be taken as a result of
an odd design decision in libseL4. Fortunately, a simple workaround was available by
introducing an auxiliary global to store this badge (required changes: 4 LOC).

Due to the fact that the seL4 Core Platform library and monitor are implemented in terms of
other libraries such libseL4, which were not written with the c-parser in mind, we had to write
preprocessing scripts before we could read the libsel4cp and monitor using the parser and
successfully dump it into graph language using SimplExport. Options to automate this
process in a way that’s resilient to seL4 Core Platform implementation changes will be
explored at a later stage.

Statistics: with all includes, exporting libsel4cp yields a graph consisting of 5627 nodes,
divided into 320 functions. However 302 of these come from libseL4 and other includes, and
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only 6 of these are relevant to the verification, leaving a total of 18 functions (about 110
nodes) to be verified. The main handler loop consists of 42 nodes.

The corresponding numbers are slightly larger for the monitor, which has 24 functions to be
verified, with a total of 648 relevant nodes. Note that this latter number includes the initializer,
and will decrease substantially once the initializer and monitor functionalities are decoupled.

Exports of the monitor and libsel4cp can be found in the nov/exports directory of the Github
repository.

2.2.2 Graph language

The SydTV-GL graph language is already used in the seL4 kernel’s translation validation and
worst-case execution time analysis tools [Sewell et al., 2013]. We started verifier
development by forking the translation validation toolchain. By using the toolchain, we were
able to ensure that our implementation would be consistent with the existing developments
and allowed us to reuse a large chunk of SydTV-GL functionality for our purposes. We
improved the type-safety of the toolchain by adding new interfaces with additional checks and
constraints, which helps to prevent programming errors and improves their overall
trustworthiness. The translation validations tools are undergoing maintenance and
development as part of the Binary Correctness project. Once the current phase of these
projects concludes, we will look into merging these improvements back upstream so that they
can be incorporated into the main version of the toolchain.

2.3 Verifier Implementation

2.3.1 Graph language processing

The graph language processing is an improved version of the one inherited from translation
validation: after our changes, it is complete, and able to read and process the exported
libsel4cp and monitor.c files.

2.3.2 BRL algorithm implementation

We are using a minor variant of the "weakest precondition for unstructured programs"
algorithm of Barrett and Leino [Barnett and Leino, 2005] to figure out the weakest conditions
that need to be met in our control flow graphs to prove correctness.

We first apply a loop elimination transformation to the SydTV-GL graph, resulting in a
control-flow graph that is free from cycles, and that is correct only if the original program was
correct. The next step involves transforming the program into a control-flow graph in dynamic
single-assignment form. This change makes it easier for SMT solvers to do their job. We have
implemented loop elimination and the dynamic single-assignment transform, along with a
comprehensive test suite.

Finally, the weakest precondition computation is applied to the acyclic single-assignment
control flow graph to generate the verification condition which is handed to the solvers. The
verification condition can then be handed to the SMT solver. The verification condition
generator is still under development, so the verifier is not yet able to verify the functional
correctness of libsel4cp.
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Figure 1: The handler loop of libsel4cp can now be exported to the SydTV-GL graph lan-
guage, yielding the control-flow graph above. The false branches of assert statements lead to
the Err node (omitted).
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We will first use BRL algorithm to prove the absence of undefined behavior in the library. This
does not yet require the formalized specification of the library to be imported, and will allow us
to confirm the soundness and performance of our verification method before the full SMT
translation of the specification is finished. We expect to reach this milestone before the end of
the year. From there, we expect rapid progress towards proofs of functional correctness.

2.3.3 Monitor-initializer decoupling

The seL4CP monitor is a C program that is used to initialize the user-level environment of the
kernel to match the user’s specifications. This includes starting threads, distributing
capabilities and loading ELF programs from the user’s image file. Once the system is
initialized, the monitor remains active and monitors all protection domains for faults.

Due to the development of verified system initialization (Activity 3.1.1.), the system initializer
functionality of the monitor will be taken over by the CapDL initializer and eventually the
verified CASE initializer. Unlike the monitor, the CASE initializer shuts down (suspends its
own thread) after initialization. This is a much better design from the security and reliability
perspective: the initial process’s CNode contains many capabilities that need to remain
inaccessible, and it is possible, however unlikely, that an active monitor could be
compromised.

The system initializer functionality of the monitor will become redundant with a verified
initializer, but the fault handler functionality will still be performed by the seL4 Core Platform’s
monitor. This requires us to produce a version of the monitor that’s decoupled from the
initializer. The requirements and specifications for the new version are to be determined and
then implemented. This decoupling is a prerequisite for both the functional correctness
verification of the monitor (as we won’t verify the redundant initializer parts) and the
verification tasks that form part of the SDF-CapDL mapping.

Engineering challenges

We have produced an initial implementation, which is now able to read and process the
SydTV-GL export of the seL4 Core Platform, but we have not yet reached the stage where it
can generate the the verification conditions required to show functional correctness of
libsel4cp. We anticipate reaching this by the end of the year.
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