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Abstract
Blockchain technology has increasing attention in research
and across many industries. The Ethereum blockchain offers
smart contracts, which are small programs defined, executed,
and recorded as transactions in the blockchain transaction
history. These smart contracts run on the Ethereum Virtual
Machine (EVM) and can be used to encode agreements, trans-
fer assets, and enforce integrity conditions in relationships
between parties. Smart contracts can carry financial value,
and are increasingly used for safety-, security-, or mission-
critical purposes. Errors in smart contracts have led and will
lead to loss or harm. Formal verification can provide the
highest level of confidence about the correct behaviour of
smart contracts. In this paper we extend an existing EVM
formalisation in Isabelle/HOL by a sound program logic at
the level of bytecode. We structure bytecode sequences into
blocks of straight-line code and create a program logic to
reason about these. This abstraction is a step towards con-
trol of the cost and complexity of formal verification of EVM
smart contracts.

CCS Concepts • Theory of computation → Program
verification; Pre- and post-conditions; • Software and its
engineering → Formal software verification; • Com-
puter systems organization → Distributed architectures;
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1 Introduction
Blockchain technology emerged to support financial transac-
tions in the Bitcoin system, but has become increasingly im-
portant in many industries, with potential use in legal, med-
ical, and supply chain industries. The Ethereum blockchain
provides a general-purpose computational mechanism called
smart contracts, which are basically programs that run on
the Ethereum Virtual Machine (EVM) [21]. They and their
effects are recorded in the blockchain history, and they can
be used to encode or execute agreements between parties.
For example, a party invoking a smart contract could cause
cryptocurrency to be transferred to another party, or could
record a state change which makes the other party eligible
to invoke other transactions. Smart contracts provide new
ways to implement blockchain-based multi-party relation-
ships. In addition to the direct financial value, blockchains
are increasingly being used for safety-critical applications
such as in pharmaceutical supply chains, or for mission-
critical applications such as in electrical power grids. For
such reasons, it is highly desirable to know that smart con-
tract implementations do not violate critical requirements,
and formal modelling and verification can be applied in this
context. To address these questions we seek:

(i) a trustworthy logical framework capable of expressing
complex safety and security requirements;

(ii) a valid formal model of the EVMwithin the framework;
(iii) a sound program logic defined within the framework

and able to reason about properties of smart contracts.
In our setting, we use the logical framework Isabelle/HOL,
and an existing EVM formal model [8]. Thus, our remaining
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goal is a sound program logic. In this paper we propose such
a logic for EVM bytecode. We target unstructured bytecode
rather than a high-level programming language for the fol-
lowing reasons. First, our approach is independent of any
high-level language (e.g. Solidity [5]) compiler, making our
work more general and significantly less reliant on the cor-
rectness of higher-level tools. Second, bytecode is the actual
programming language of Ethereum as all smart contracts
appear only in this form on the blockchain. Altogether, this
gives us the motivation to focus on reasoning about EVM
bytecode, despite the absence of convenient programming
constructs like conditionals, which we take for granted in
structured languages.

The main contributions of the paper are:
(i) an extension to the EVM formalisation [8] in the Is-

abelle/HOL theorem prover, covering smart contract
correctness properties, and which gives a separate uni-
versal treatment of termination based on Ethereum’s
concept of execution ‘gas’;

(ii) a sound program logic to verify smart contracts at the
bytecode level; and

(iii) Isabelle tactics to support automated generation of
verification conditions using the rules of the logic.

Our development is entirely formalised in Isabelle and has
been accepted in the official EVM formalisation repository1
maintained by the Ethereum foundation.

The paper is structured as follows. Section 2 describes the
background for the presented work. Section 3 describes how
we can capture correctness properties in a pre/postcondition
style for EVM bytecode programs. Section 4 is devoted to
our program logic, and Section 5 shows the soundness of
the logic w.r.t. the correctness property. Section 6 presents a
case study, which outlines the specification and verification
of properties of bytecode generated by the Solidity compiler
from a high-level smart contract, as well as howwe automate
generation of verification conditions using Isabelle tactics.
Finally, Section 7 outlines some related work and Section 8
summarises the results and gives an outlook.

2 Background
The EVM is described in the Ethereum ‘Yellow Paper’ [21],
which provides a foundation not only for its implementa-
tion, but also for formalisations in logic. One such formal-
isation has been done [8] using the ‘meta-tool’ Lem [14],
which supports a variety of theorem provers including Is-
abelle/HOL. Isabelle [16] is a logical framework in the form of
a generic interactive theorem prover, whereas Isabelle/HOL
encodes higher-order logic and is the most important and
most developed part of the framework. Based on a small
(meta)-logical inference kernel, Isabelle’s LCF-style architec-
ture ensures very high confidence about its soundness as a
theorem prover.
1https://github.com/pirapira/eth-isabelle/

However, the EVM model [8] needs to be validated to
provide confidence that it meets the specification [21]. To
this end, a validation test suite accompanies the model in
Lem. Using this, the actual EVM, regarded as the reference
implementation of the ‘Yellow Paper’, and the OCaml code
generated by Lem are both applied to a large collection of
contracts, cross-checking their outputs.
As we entirely focus on the Lem output in Isabelle, we

wanted to have an additional validation of this particular
EVM formalisation. To this end, we also invoked Isabelle’s
code generator and ran the test suite on the OCaml code
generated by Isabelle.

EVM formalisation

in Lem

Isabelle / HOL Coq OCaml

OCaml actual EVM 

validation output

output

validation

tests

tests

Isabelle code

generator

Figure 1. Validation of EVM models.

Our ‘double-validation’ process is outlined in Figure 1.
The use of the test suite from Isabelle has required some ef-
fort, mainly because of different representations of machine
words: OCaml code from Lem uses efficient native modules,
whereas the Isabelle side invokes a formally verified theory
of machine words. Because of this, our suite needs much
more time to pass the tests. Nonetheless, we gain a comple-
mentary indication that all three models of EVM follow the
specification and behave equally.

3 Total Correctness of EVM Bytecode
Programs

In his PhD thesis [15], Myreen introduced a general method
of formal verification of machine code with a particular ap-
plication to ARM. In this section we show how this general
method can be adapted to EVM, with additional considera-
tion given to EVM specific properties rooted in gas consump-
tion.
In the general model, a state carries all the information

needed to execute a program, including instructions (with re-
spective reference numbers) constituting the program itself,
a program counter that refers to the current instruction, a
stack and so on. All these elements are treated uniformly as
sets of so-called state elements and separated in a state using

https://github.com/pirapira/eth-isabelle/


Towards Verifying Ethereum Smart Contract Bytecode in ... CPP’18, January 8–9, 2018, Los Angeles, CA, USA

separation logic conjunctions ∧∗ (denoted by ∗ in [19]). A
single machine step is captured by a function next that takes
the current instruction via the program counter from the
state and transforms the state in accordance with the instruc-
tion’s specified behaviour. Of course, next might not always
be able to pick an instruction as an execution can have termi-
nated properly or with an exception. This is indicated within
a state by the not-continuing flag, which is just an abbrevia-
tion for the state element ContinuingElm False, as opposed
to the continuing flag abbreviating ContinuingElm True. If
not-continuing is present in a state, next leaves the state un-
changed.
A Hoare-style property of a program c is captured by

a triple |= {P} c {Q}, where P and Q are separation logic
predicates on the state. The triple is true iff for any state s
and predicate F such that

(P ∧∗ code(c) ∧∗ F ) s

holds, there exists a natural number k such that

(Q ∧∗ code(c) ∧∗ F ) nextk (s)

holds. The predicate F is usually called in this context a
frame, and keeping it allows us to reason about parts of
states locally. code(c) is another element specifying that the
program code is present in the state, and nextk denotes k-
times iteration of next. Such triples are highly generic and
we cannot conclude much from many of these, except that
under given preconditions the program c will pass a state
satisfying Q . This changes immediately in cases where Q
is of the form not-continuing ∧∗ Q ′, now stating that c has
reached a terminating state satisfyingQ ′. Hence, showing |=
{P}c {not-continuing∧∗Q ′} amounts to showing termination
of the program c in a Q ′-state.
This generic technique applies seamlessly to EVM pro-

grams as shown by Hirai [8]. However, we realised that
showing termination of a contract individually is an unnec-
essary burden because Ethereum was designed in such a
way that all smart contracts are guaranteed to terminate (ei-
ther successfully or due to an ‘out-of-gas’ exception). More
specifically, to ensure that miners get compensated for their
costs incurred by operating the Ethereum blockchain, each
EVM instruction has a gas fee. When invoking a contract,
the initiator provides a gas budget proportional to how com-
putationally expensive the execution is expected to be and
every step of execution is deducted from the budget. If the
gas consumption exceeds the budget, an ‘out-of-gas’ excep-
tion is raised, the miner keeps all of the gas and the state of
the contract prior to the invocation is restored.
These blockchain specifics give us a termination order.

Thus, we augment the EVM formalisation [8] by the function
nextµ which iterates next on each state as long as possible, i.e.
the continuing flag is present. Hence, the essential property
we show about nextµ is that for any state s there exists k ≥ 0
such that

(i) nextµ (s) = nextk (s) holds;
(ii) for any l , such that 0 ≤ l < k , the state nextl (s) con-

tains continuing;
(iii) for any l , such that l ≥ k , the state nextl (s) contains

not-continuing.
In other words, nextµ (s) = nextk (s)where k is the least num-
ber such that nextk (s) reaches a state with the not-continuing
element.
Now, regarding the contract correctness, we strengthen

|= {P} c {Q} to a total input/output property |= [P] c [Q]
which is true iff for any state s and frame F

(P ∧∗ code(c) ∧∗ F ) s
implies

(Q ∧∗ code(c) ∧∗ F ) nextµ (s)
To sum up, what we achieved so far is to factor out the
termination part which we have shown once and for all,
thus removing this obligation from the verification process
completely.

In the next section we will present our program logic pro-
cessing EVM bytecode, which (based on soundness presented
in Section 5) will give us a sound device to derive verification
conditions for contract properties of the form |= [P] c [Q].
Although the program logic does not support general loops
yet, it is worth noting that factoring out the termination part
means that we would not need to provide any loop variants
to establish properties since gas consumption is a variant
for any EVM-loop. On the other hand, we might then need
to augment our triples by an exception condition to handle
cases when an ‘out-of-gas’ exception is raised during a loop
iteration, thus not reaching the loop exit condition. Alterna-
tively, we also might augment any such condition by a check
of remaining gas amount, such that any loop would just exit
if not enough gas is available to perform the next iteration.
This approach would however require good approximations
of gas consumed per iteration.

4 Program Logic
A Hoare-style program logic comprises a collection of rules
that allow us to derive semantic properties of compound
programs from properties of its parts. In the case of struc-
tured languages we usually have, for instance, a rule telling
us that a program if C then p1 else p2 exhibits a certain
input/output behaviour if p1 and p2 do so, however, with
the additional precondition C available for p1 and ¬C for
p2. The situation is not that simple when we have to reason
about EVM bytecode. At this level, a conditional compound
construct appears merely as a jump instruction that trans-
fers the flow of execution to another part of the program.
In this sense, a program logic that treats the entire byte-
code program simply as a list of instructions would be in
principle feasible, but intricate. To this end more sophisti-
cated techniques are available, such as decompilation via
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extraction of Control Flow Graphs (CFG), in particular ap-
plied to the Java Virtual Machine (JVM) code [22]. The aim
of CFG extraction is to split a program into basic blocks, i.e.
sequences of instructions without jumps, and connect them
using edges corresponding to jumps. The essential property
of basic blocks is that they comprise straight-line code, i.e. the
control flow always enters it at its first instruction and leaves
only after the last one has been executed. Thus, reasoning
about bytecode at the CFG-level resembles reasoning about
structured programs in many aspects. In particular, a CFG
provides enough structure to add annotations, such as loop
invariants, enabling complete automation of the verification
condition generation process.
However, full CFG extraction poses more advanced chal-

lenges in the EVM context than for JVM, especially from
the formal modelling perspective. This is because JVM jump
instructions take their target address as an immediate value
argument which can be determined statically, whereas in
EVM jump destinations must be obtained from the stack, i.e.
dynamically. For that reason, our bytecode preprocessing
currently addresses basic block extraction only, presented
in the next section. Then, Sections 4.2, 4.3 and 4.4 present
how our logic handles programs, blocks and instructions,
respectively.

4.1 Extraction of Basic Blocks
We divide EVM instructions into three groups:

(i) JUMPDEST indicates a jump destination and hence be-
ginning of a basic block;

(ii) JUMP, JUMPI, UNKNOWN and all of Misc-instructions2
indicate the end of a basic block (UNKNOWN and Misc-
instructions interrupt program execution);

(iii) all remaining instructions.
Furthermore, we classify basic blocks with the following four
types:

(i) Terminal— if the last instruction of the block interrupts
execution;

(ii) Jump — if the last instruction is JUMP;
(iii) Jumpi — if the last instruction is JUMPI;
(iv) Next — otherwise, i.e. when control passes from the

last instruction of the block to the instruction with the
successor address.

Figure 2 illustrates how we split EVM bytecode into basic
blocks of different types, thereby indexing the blocks with ad-
dresses of their first instruction and removing all the jumps
from the block contents. The entire extraction process is
captured in the Isabelle development by means of the func-
tion build-blocks which maps a list of instructions to a list
of tuples (n, xs, t), where n is the block index, xs is the list of
instructions of the block, and t is the type of the block.

2RETURN, STOP, SUICIDE, CREATE, CALL, CALLCODE, DELEGATECALL

block index address instruction block type
0 0 OR Next

1 ADD
2 SWAP1

3 3 JUMPDEST Jump
4 MLOAD
5 POP
6 JUMP

7 7 DUP3 Jumpi
8 PUSH1 0
10 ISZERO
11 JUMPI

12 12 POP Terminal
13 RETURN

Figure 2. A program split into four basic blocks, where grey
instructions appear in the original code but are removed
from the list of instructions of their block.

By splitting bytecode into basic blocks no information gets
lost since we can connect the produced blocks in the right
order and insert jumps back in accordance with block types.
More precisely, we also have the function connect-blocks
such that for any bytecode program c the identity

connect-blocks(build-blocks c) = c

holds.
Based on these preparations, the following predicates for

reasoning at different levels will be defined inductively in
the following three sections:

blocks ⊢prog [P] (n, xs, t) [Q] – at the program level

⊢block [P] xs [Q] – at the block level

⊢instr [P] x [Q] – at the instruction level

where P ,Q are state predicates, x is an instruction, xs is a list
of instructions, blocks is a list of basic blocks, and (n, xs, t) —
a basic block.

4.2 Program Rules
We start at the program level, where we have the following
rules for each block type.

(i)
⊢block [P] xs [Q]

blocks ⊢prog [P] (n, xs, Terminal) [Q]

That is, a Terminal-block is simply passed to the level of
blocks as we do not need to look at any other block after this
has been processed.
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The rule for a Next-block is different in this respect:

(ii)

⊢block [P] xs [pc m ∧∗ R]
(m, ys, t) ∈ blocks
blocks ⊢prog [pc m ∧∗ R] (m, ys, t) [Q]

blocks ⊢prog [P] (n, xs,Next) [Q]

The state element pc m determines the program counter after
xs has been processed. Then we need to retrieve the next
block associated to the index m from the structure blocks,
which is expressed by (m, ys, t) ∈ blocks, and proceed with
(m, ys, t).
Further, in case of a Jump-block we additionally need to

retrieve the address of the jump destination from the stack
after the block has been processed. This yields the following,
slightly more involved, rule:

(iii)

⊢block [P] xs [R1]
(j, ys, t) ∈ blocks
head ys = (j, JUMPDEST)
blocks ⊢prog [R2] (j, ys, t) [Q]

blocks ⊢prog [P] (n, xs, Jump) [Q]

where R1 and R2 abbreviate the conditions

⟨h ≤ 1023 ∧ д ≥ 8⟩ ∧∗ continuing ∧∗ gas-pred д ∧∗

pc i ∧∗ stack-height (h + 1) ∧∗ stack h j ∧∗ R

and

continuing ∧∗ gas-pred (д − 8) ∧∗

pc j ∧∗ stack-height h ∧∗ R

respectively. Regarding the stack, stack-height (h + 1) and
stackh j specify a state where index h refers to the top of the
stack containing j — the jump destination we are looking for.
Regarding gas, gas-pred д binds the available amount of gas
to д, whereas the part ⟨h ≤ 1023∧д ≥ 8⟩ is a pure condition,
i.e. not dependent on state, and sets an upper bound for the
height of the stack and a lower bound for the amount of
gas, namely 8 units: as much as EVM requires to perform a
jump, which is deducted by gas-pred (д − 8). Note that here
and in the rules below we need to carry the continuing state
element because the EVM model [8] imposes having either
continuing or not-continuing in a state to process instruc-
tions.

The case of a conditional jump. i.e. a Jumpi-block, is simi-
lar, except that we also need to retrieve from the stack the
value c to be compared to 0 and jump only if c , 0:

(iv)

⊢block [P] xs [R1]
(j, ys, t) ∈ blocks
(i, zs, t ′) ∈ blocks
head ys = (j, JUMPDEST)
blocks ⊢prog [R2] (j, ys, t) [Q] • if c , 0
blocks ⊢prog [R3] (i, zs, t ′) [Q] • if c = 0

blocks ⊢prog [P] (n, xs, Jumpi) [Q]

where R1,R2,R3 abbreviate the conditions

⟨h ≤ 1022 ∧ д ≥ 10⟩ ∧∗ continuing ∧∗ gas-pred д ∧∗

pc (i − 1) ∧∗ stack-height (h + 2) ∧∗ stack (h + 1) j ∧∗

stack h c ∧∗ R

and

continuing ∧∗ gas-pred (д − 10) ∧∗

pc j ∧∗ stack-height h ∧∗ R

and

continuing ∧∗ gas-pred (д − 10) ∧∗

pc i ∧∗ stack-height h ∧∗ R

respectively.

4.3 Block Rules
At the level of basic blockswe need only two simple rules that
handle the cases of non-empty and empty lists of instructions
to be processed:

(i)
⊢instr [P] x [R]
⊢block [R] xs [Q]

⊢block [P] x ::xs [Q]
and

(ii)
P ⇒ Q

⊢block [P] Nil [Q]
where P ⇒ Q means P s implies Q s for any state s .

4.4 Instruction Rules
To be able to verify any possible EVM bytecode program
we need to provide a rule for each of 70 EVM instructions.
Presently we provide rules for 36 commonly used instruc-
tions, and extend this set gradually ‘on-demand’. However,
the behaviour of instructions referring to the Ethereum
global state, such as CALL for inter-contract calls, cannot
be fully captured by the EVM state alone. As a result, in the
EVM semantics (and accordingly in our logic) these instruc-
tions lead to an environment action that must be modelled
separately. Such modelling is however possible and we dis-
cuss it further in Section 8.
The following rule for PUSH1, the operation pushing one

byte on the stack, is quite representative as it shows how
we specify the necessary conditions for the instruction to be
performed by the EVM in the precondition, as well as the
effect of the operation on state elements in the postcondition:

⊢instr [P] (n, PUSH1 x) [Q]
where P stands for

⟨h ≤ 1023 ∧ д ≥ 3⟩ ∧∗ continuing ∧∗ gas-pred д ∧∗

pc n ∧∗ stack-height h ∧∗ F

and Q for
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continuing ∧∗ gas-pred (д − 3) ∧∗

pc (n + 2) ∧∗ stack-height (h + 1) ∧∗ stack h x ∧∗ F

In particular, we have stated that the height of the stack
increases by 1 (stack-height (h + 1)) and that the top index
h of the stack points to the value x (stack h x) among the
effects of PUSH1. As the size of the instruction including the
byte to push is 2 bytes, the program counter increases by
2. It is also worth noting that we incorporate frames into
such instruction-specific rules by carrying a variable F in
pre- and postconditions, as shown above. This is in contrast
to the more common way, which is introducing a generic
frame rule (cf. [19]) of the form

⊢instr [P] i [Q]
⊢instr [P ∧∗ F ] i [Q ∧∗ F ]

and removing F from all instruction-specific rules. Although
the rule is sound, this treatment leads to a considerable over-
head in the verification process, since we would need to
apply the frame rule each time an instruction-specific rule is
applied.

Apart from the frame rule we still have two generic rules
at the instruction level:

(i)

⊢instr [P ′] i [Q ′]
P ⇒ P ′

Q ′ ⇒ Q

⊢instr [P] i [Q]

(ii) ⊢instr [⟨False⟩] i [Q]
The rule (i) is the usual ‘consequence’ rule, allowing us to
adjust pre- and postconditions, whereas (ii) is needed to dis-
charge trivial proof obligations having unsatisfiable precon-
ditions. Such obligations arise frequently from conditional
jumps (rule (iv), Section 4.2) where the condition is fully
evaluated prior to the actual jump, such that we need to
follow only one of the emerging branches.
The following section puts the program logic and the re-

sults of Section 3 together by means of a soundness property
and outlines its proof.

5 Soundness
As our program logic is separated in three layers, we establish
its soundness in three steps.

At the level of instructions, amounts to the property

⊢instr [P] x [Q]
(P ∧∗ code([x]) ∧∗ F ) s

(Q ∧∗ code([x]) ∧∗ F ) next(s)
(1)

which we prove by structural induction on ⊢instr [P] x [Q].
By this, we need to show that the pre- and postconditions, as
specified in each rule for individual instructions, are indeed
covered by the behaviour of the respective instruction. Note
that code([x]) ensures that x = (addr, instr) is present in
the code-element of s , such that next executes precisely the

instruction instr , if pc addr is present in s as well. This, in
turn, is obtained from the preconditions of instruction rules,
such as the PUSH1-rule from the previous section.

Next, at the level of blocks we show
⊢block [P] xs [Q]
(P ∧∗ code(xs) ∧∗ F ) s

(Q ∧∗ code(xs) ∧∗ F ) next |xs |(s)
(2)

where the usage of next |xs | is justified, since we consider
a basic block xs which requires precisely |xs | steps to be
processed completely. By induction on ⊢block [P] xs [Q] we
need to consider the cases when xs is non-empty or empty.
In case xs = x :: zs we can assume ⊢instr [P] x [R] and
⊢block [R] zs [Q] such that

(R ∧∗ code(zs) ∧∗ F ) s
(Q ∧∗ code(zs) ∧∗ F ) next |zs |(s)

holds by the induction hypothesis. Furthermore, from (1)
and ⊢instr [P] x [R] we can further conclude

(P ∧∗ code([x]) ∧∗ F ) s
(R ∧∗ code([x]) ∧∗ F ) next(s)

which combined establish (2). Thereby we also make use of
the equality

code(x :: zs) = code([x]) ∧∗ code(zs)
which holds since x = (addr, instr) does not occur in zs due
to the unique addr .
Next, in case xs is empty, we can assume P ⇒ Q which

immediately gives us (2).
The ultimate soundness statement is at the program level:

build-blocks c ⊢prog [P] first-block [Q]
0 < |c | < 2256

|= [P] c [Q]
(3)

where first-block is a shorthand for the block with the small-
est index in build-blocks c , and the assumption 0 < |c | < 2256
is necessary to avoid dealing with empty programs as well
as programs with more than 2256 instructions (imposed by
the design of EVM). In other words, in order to establish
an input/output property specified by |= [P] c [Q], we can
transform c into its basic blocks bs, pick the first block b
from bs, and apply the rules of our program logic to derive

bs ⊢prog [P] b [Q]
However, in order to show (3) we need some preparations

to be able to apply structural induction on the program logic
rules. To this end we deploy our function connect-blocks and
state the proposition

bs ⊢prog [P] b [Q]
b ∈ bs
wf -blocks bs

|= [P] connect-blocks bs [Q]

(4)
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where wf -blocks is our well-formedness predicate capturing
all necessary technical details about block structure, essen-
tially retaining the property

0 < |c | < 2256

wf -blocks(build-blocks c)
for any program c .
Thus, the proposition (4) is a generalisation of (3), since

for any c we can instantiate bs by build-blocks c and b by
first-block in (4), and use the identity

connect-blocks(build-blocks c) = c
from Section 4.1. to obtain (3).

Unfolding the definition of |= [P] connect-blocks bs [Q] in
(4) we further obtain

bs ⊢prog [P] b [Q]
b ∈ bs
wf -blocks bs
(P ∧∗ code(connect-blocks bs) ∧∗ F ) s

(Q ∧∗ code(connect-blocks bs) ∧∗ F ) nextµ (s)

(5)

and can proceed by induction on bs ⊢prog [P]b[Q]. By this, we
have to consider four cases: one for each type of the block b.
So, for instance, if b = (n, xs, Terminal), i.e. a terminal block,
we have ⊢block [P] xs [Q]. Since b is a part of the block list
bs by assumption, we can separate some bs′ such that

(P ∧∗ code(connect-blocks bs) ∧∗ F ) s =

(P ∧∗ code(xs) ∧∗ code(connect-blocks bs′) ∧∗ F ) s
Hence, we can instantiate frame F in (2) by

code(connect-blocks bs′) ∧∗ F

and consequently obtain

(Q ∧∗ code(connect-blocks bs) ∧∗ F ) next |xs |(s)
As we consider a terminal block, the state next |xs |(s) is the
first one containing the not-continuing element, i.e.

next |xs |(s) = nextµ (s)
holds, concluding this case.

Although slightly more involved, the proof of the remain-
ing three cases follows the same principles, making however
additional use of the induction hypothesis.

6 Case Study
Our development provides the ground work for full func-
tional correctness of Ethereum smart contracts. These con-
tracts are typically implemented in a high-level language
called Solidity. In this case study, we demonstrate the practi-
cality of our framework by formally specifying and verifying
properties of the bytecode generated by Solidity compiler
from an escrow agreement smart contract. Section 6.1 de-
scribes the design and implementation of the contract; Sec-
tion 6.2, its specification; Section 6.3, its verification; and

Section 6.4, the machinery we developed to maximise proof
automation.

6.1 Design and Implementation
We designed an escrow agreement smart contract for the
Ethereum blockchain. In our scenario, a buyer wants to pur-
chase a good from a seller, but there is no particular reason
to assume that they trust each other. To this end both parties
rely on an escrow agent: an arbiter they both trust. In this
agreement, the arbiter creates the contract specifying the
expected amount of Ether (the Ethereum cryptocurrency),
waits for the buyer to transfer the money to the contract and
decides whether to pay the seller or refund the buyer. Apart
from the arbiter’s decision to pay or to refund, the purchase
process is governed by the smart contract.

1 contract Escrow {
2 address buyer ;
3 address s e l l e r ;
4 address a r b i t e r ;
5 uint256 amount ;
6
7 function Escrow ( address _buyer ,
8 address _ s e l l e r ,
9 uint256 _amount ) {
10 require ( amount > 0 ) ;
11 buyer = _buyer ;
12 s e l l e r = _ s e l l e r ;
13 a r b i t e r = msg . s ende r ;
14 amount = _amount ;
15 }
16
17 function addfund ( ) payable public {
18 require ( amount > 0 &&
19 msg . v a l u e == amount &&
20 msg . s ende r == buyer ) ;
21 amount = 0 ;
22 }
23
24 function r e fund ( ) public {
25 require ( amount == 0 &&
26 msg . s ende r == a r b i t e r ) ;
27 s e l f d e s t ru c t ( buyer ) ;
28 }
29
30 function pay ( ) public {
31 require ( amount == 0 &&
32 msg . s ende r == a r b i t e r ) ;
33 s e l f d e s t ru c t ( s e l l e r ) ;
34 }
35 }

Figure 3. Escrow smart contract allowing an arbiter to clear
a transaction between two parties.

Figure 3 shows our implementation of the contract. In
Solidity, the functionality of a smart contract is encapsulated
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into a contract interface which has a well-defined interface
with public and private elements, similarly to a class in object-
oriented programming (OOP). Creating a contract on the
blockchain instantiates the contract interface. Just like class
instantiations in OOP, contracts are stateful objects where
storage variables are stored on the blockchain.
Every variable declared as a member of a contract inter-

face is a storage variable, and hence persists across multiple
invocations of the contract. Lines 2–5 in Figure 3 declare
variables carrying blockchain addresses of the three parties
involved in the agreement, as well as amount that serves
two purposes. It not only stores the amount of Ether for the
purchase, but is also used to enforce the order in which the
contract operations can be invoked.
The constructor part (lines 7–14) is run by the Ethereum

platform to initialise the contract when it gets deployed.
The environment variablemsg carries the information about
the Ethereum transaction that led to a contract deployment,
including the address of the account that sent the transaction
(msg.sender). Solidity’s built-in function require throws an
exception if the specified condition evaluates to false. In this
case, only the amount of gas consumed so far is retained; the
rest of the transaction is rolled back.
We use require (line 10) to ensure that the arbiter cre-

ates an escrow agreement with amount greater than zero.
This condition is critical because addfund (line 21) expects
amount to be strictly positive, before setting it to zero. This
way we guarantee that the buyer can only add fund to the
contract once. Note that msg.value is an environment vari-
able, telling us how much Ether has been transferred as part
of the transaction.

Further, addfund is annotated as payable, which indicates
that this function is allowed to be invoked by an Ethereum
transaction along with a non-zero amount of Ether. By de-
fault, all contract functions are not payable in order to pre-
vent accidental loss of Ether.

According to the require-clause on line 20, only the buyer
shall be able to successfully invoke addfund. To this end, the
exact amount of Ether (as specified by the arbiter) must be
transferred along with the invocation. Similarly, only the
arbiter is entitled to successfully invoke the functions refund
(lines 25–27) and pay (lines 31–33). Moreover, in both cases
amount is required to be zero, i.e. the buyer must already
have placed the funds in the contract. Both functions make
use of the EVM selfdestruct mechanism, which transfers the
totality of the funds held by the contract to the address passed
as argument, and subsequently destroys the contract. Note
that the amount transferred by selfdestruct corresponds to
the balance of the contract stored in the Ethereum global
state, which in our case is just the amount specified by the
arbiter during contract construction.
The keyword public is used in the contract to indicate

that the respective function must be exported in the con-
tract interface, thus becoming accessible to the users. For the

compiler this means adding the function to the abstract bi-
nary interface (ABI) and generating dispatch code to jump to
this function within bytecode using the hash value, obtained
from its signature. Since dispatch code is added by the com-
piler, it is only visible at the bytecode level. Hence, verifying
contract’s bytecode implicitly means verifying the contract’s
dispatcher as well. As shown in the following section, in
order to specify the behaviour of our contract, we compare
the input hash to addfund_hash, refund_hash and pay_hash,
and, in particular, require a safe behaviour in cases when the
input hash does not match any of these three hash values.

6.2 Specification

definition

spec_Escrow :: [address , address , address ,

address , 256 word , 32 word ,

256 word]

⇒ contract_action

where

spec_Escrow sender buyer seller arbiter

amount hash value =

(if hash = addfund_hash ∧ sender = buyer ∧
value = amount ∧ amount > 0 then

ContractReturn []

else if hash = r e f und_ha sh ∧
sender = arbiter ∧ value = 0 ∧
amount = 0 then

ContractSuicide buyer

else if hash = pay_hash ∧ sender = arbiter ∧
value = 0 ∧ amount = 0 then

ContractSuicide seller

else

ContractFail [ShouldNotHappen ])

definition

spec_amount :: [address , address , address ,

256 word , 32 word , 256 word]

⇒ 256 word

spec_amount sender buyer seller amount

hash value =

(if hash = addfund_hash ∧ sender = buyer ∧
value = amount ∧ amount > 0 then

0

else

amount)

Figure 4. Functional specification of the Escrow smart con-
tract.

Figure 4 and Figure 5 show our handwritten specification
of Escrow and the functional correctness theorem we proved
in Isabelle/HOL. The spec_Escrow definition is used in the
main theorem to specify the return values expected by the
contract. The arguments have the same names as the storage
variables or the environment variables they carry the value
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for, except for hash which corresponds to the first 32-bit
word of the input passed as an argument to the bytecode.
Note, that the actual hash values, denoted by the constants
addfund_hash, pay_hash and refund_hash, are obtained from
the ABI information generated by the Solidity compiler. More
precisely, spec_Escrow requires that

(i) addfund is only successful if it is called by the buyer
who must simultaneously transfer the amount of Ether
specified by the arbiter;

(ii) refund triggers the self-destruct mechanism, that trans-
fers the totality of the funds to the buyer, only if called
by the arbiter with amount = 0;

(iii) pay behaves in the same way, except sending the funds
to the seller;

(iv) any other input leads to a failure of the contract, can-
celling the transaction.

In addition to specifying the return action of the contract,
we also want to ensure that addfund can only be called once.
This is done with the spec_amount definition which is used in
the main theorem to specify the value of the amount storage
variable after an invocation of the contract. It states that
when the precondition of addfund to return successfully is
met, amount is set to zero, thus disabling that precondition.
As a result, invocations of pay and refund become enabled
and of addfund — disabled.

theorem verify_escrow:

∃r. |= [pc 0 ∧* stack_height 0 ∧*
sent_data (word_rsplit hash ) ∧*
sent_value v ∧* caller s e n d e r ∧*
memory_usage 0 ∧* continuing ∧*
gas_pred 40000 ∧*
storage 0 (ucast buye r ) ∧*
storage 1 (ucast s e l l e r ) ∧*
storage 2 (ucast a r b i t e r ) ∧*
storage 3 (ucast amount) ∧*
... ]

(build_blocks bytecode_Escrow)

[action (spec_Escrow s e n d e r buye r s e l l e r
a r b i t e r amount hash v) ∧*

storage 0 (ucast buye r ) ∧*
storage 1 (ucast s e l l e r ) ∧*
storage 2 (ucast a r b i t e r ) ∧*
storage 3 (spec_amount s e n d e r buye r

s e l l e r amount hash v) ∧*
r]

Figure 5. The correctness statement in our program logic.

Now, the main theorem, shown in Figure 5, states the over-
all input/output property we proved. It has the form of Hoare
triples introduced in Section 3. The precondition initialises
the machine state, e.g. program counter is 0, stack is empty,
etc. Importantly, hash is the 32-bit word contract argument
used by the dispatcher code as well as the specification. We

convert it into a string of bytes to form the input data of
the contract using word_rsplit. Further, gas-pred sets a gas
budget, sufficient for invoking any of the functions, whereas
storage binds storage entries to the free variables buyer, seller,
arbiter and amount. Using ucast we convert 160-bit words,
representing Ethereum addresses, into the storage unit, i.e.
256-bit word. The constant bytecode_Escrow denotes the ac-
tual bytecode of the contract, which we convert into a list of
basic blocks with build-blocks.

Finally, in the postcondition we specify that
(i) the resulting action complies with spec_Escrow;
(ii) the storage variables buyer, seller, and arbiter contain

the same values as in the input state;
(iii) the storage variable amount contains the value speci-

fied by spec_amount;
whereas the rest of the output state r remains unspecified.

6.3 Verification
Smart contract bytecode is divided into two sections: the
pre-loader and the runtime code. The pre-loader bootstraps
the contract by deploying it on the Ethereum network and
running its constructor. The runtime code only contains
the core functionality of the contract that can be invoked
by other blockchain agents. Our verification considers only
the runtime code of Escrow, thus excluding the contract’s
constructor.

We obtain the runtime code as a byte string of hexadecimal
opcodes from the Solidity compiler and convert it into a list
of EVM instructions via an Isabelle/HOL function. In this
sense we work directly on the bytecode output of the Solidity
compiler.

In this case, bytecode_Escrow comprises 191 EVM instruc-
tions that are split into 45 basic blocks, including 12 of type
Jumpi (i.e. conditional jumps), 23 Terminal, 6 Next and 4
Jump. Once the automation support, described in the next
section, reached maturity, proving correctness of the byte-
code was a rather routine task.
Some creativity was required to handle all of the cases

where the contract ends with an exception. The existentially
bounded variable in the postcondition of our correctness
statement means that we have to provide a witness for the
unspecified part of the state. The witness is automatically
constructed by running our proof automation tactics. How-
ever, for this to work the existentially bounded variable must
remain unspecified until we reach a Terminal basic block.
Then the rule for a Terminal block instantiates the variable by
a concrete value. In order to ensure that each execution path
can make its own instantiation, we manually distinguish
each case in the proof.

Furthermore, a difficult proof arose when parsing the con-
tract input data in order to extract the argument passed to
the dispatcher. This involved dealing with operations on
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words of different size, which is notoriously hard. In particu-
lar, the instruction CALLDATALOAD reads a 256-bit machine
word from the input data array. Since the hash value passed
in the input data is only a 32-bit word, the dispatcher does
the following word arithmetic to convert the value

w32-hash = (w256-input-data ≫ 224) & 0xffffffff

With the help of Isabelle’s machine word library [2], we
proved that when the hash is packed in the input data, the
bit-wise operations above return the same hash value.

The total development of our framework is ≈6000 lines of
Isabelle/HOL theories, excluding the existing formalisation
of EVM model, etc. The size of the top-level specification of
Escrow is ≈30 lines and the functional correctness proof of
the contract is ≈40 lines of proof, specific to this example,
which compares favourably with the ≈500 lines of reusable
proof automation machinery we developed. We describe this
automation next.

6.4 Automation

method prog_vcg =

(prog_jumpi_vcg | prog_jump_vcg

| prog_terminal_vcg | prog_next_vcg)+

Figure 6. The Isabelle-tactic at the program level.

When reasoning about bytecode, even the verification
of small contracts can involve long, tedious and repetitive
proofs. Hence, our program logic was purposefully designed
to be amenable to proof automation.

The inductively defined inference rules, presented in Sec-
tion 4, are designed to be used in a syntax-driven verification
condition generator (VCG). Shaping the rules in a way that
the conclusion of at most one of them can match the subgoal
at each point in the proof makes it easy to write a VCG that
just tries applying all of the rules one after another. This
tactic can be implemented with a few lines of Eisbach [13]
— Isabelle/HOL’s high-level tactic language. We developed
a VCG for each level of our program logic. For instance,
the program-level tactic is shown in Figure 6, where e.g.
prog_jumpi_vcg is another tactic applying the Jumpi-rule
(iv) in Section 4.2 and solving its resulting subgoals by means
of more specific tactics we designed.

That is, prog_vcg in Figure 6 tries each of the tactics, sep-
arated by the | symbol on the right-hand side, whereas the
+ sign at the end means that it will do so repetitively until
none of these tactics is applicable. Clearly, this stage will
eventually be reached in absence of loops, whereas the gas
consumption argument (cf. Section 3) could be applied to
achieve termination of the VCG otherwise.
A common source of friction we experienced during the

early development phase of our framework was with prov-
ing goals of the form: ∀s . R s −→ P s where P and R are

separation logic predicates comprising the same separation
conjunctions but in different orders. Such proof obligations
arise when we weaken a precondition to be able to apply an
⊢instr rule. Since each ⊢instr rule expects a separation logic
expression with conjunctions in a specific order, we routinely
have to re-order these to match a given precondition.
To ease the pain, we reuse the separation logic algebra

framework [9], which provides a set of generic Isabelle tac-
tics to manipulate separation logic terms. We instantiated
the algebra with the EVM machine state and created Isabelle
tactics which try to re-order separation conjunctions such
that the first term in P matches the first one of R. Once the
first elements match, we leverage the tactics of the separa-
tion algebra framework to remove these from both R and P .
Thereby we additionally might have to re-order terms in P
in such way that the variables in R get instantiated in the
correct order.

7 Related Work
As a consequence of the repeated exploitation of security
flaws in smart contracts, a notable amount of approaches
and tools have already been proposed (e.g. [1, 3, 12]).

The major trend is to apply various kinds of static analysis
not only at the level of structured contract languages (e.g.
Solidity’s Why3 backend [4, 18]) but also at the bytecode
level [1, 12, 20]. The obvious advantage of static analysis ap-
proaches is that full automation can be achieved for contract
properties that can be confirmed statically, e.g. certain orders
of transactions [1]. The tools Oyente [12] and Porosity [20]
decompile bytecode into a control flow graph and perform
control flow analysis in order to detect common smart con-
tract security defects such as reentrancy bugs. These tools
are of great value when added to the development process
so they can unveil mistakes in early stages, but they do not
prove functional correctness.
Our approach is more general as we aim to specify and

verify contract properties in pre/postcondition style where
the conditions can comprise any higher-order logic formula
describing an EVM state. For that reason, the degree of au-
tomation is limited in our case such that the user will need
to interact with the proof system to discharge elaborated
claims.
Bhargavan et al. [3] proposed a technique using an in-

termediate functional language called F ∗, which is more
amenable to verification. It provides not only translation of
a subset of Solidity programs to F ∗, but also decompilation
of EVM bytecode to F ∗ as well. This use of decompilation
makes the approach similar to ours, since our program logic,
in fact, resembles decompilation. As explained in Section 4,
we split bytecode program into blocks without jumps and
determine the actual jump destinations dynamically ‘on-the-
fly’, by applying logic rules. By contrast, Bhargavan et al.
perform static stack analysis to this end. However, a more
striking difference is that our approach is homogeneous since
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every step of our verification process is performed and justi-
fied within a single, trusted logical framework without any
translations to or from other formalisms. Such translations
must be either assumed to behave correctly in some sense or
formally modelled and verified, whereas we aimed to avoid
both of these options.

KEVM [7] is a formal semantics of the EVM written using
the K-framework. Like the formalisation in Lem [8] we use,
KEVM is executable and therefore can run the Ethereum
foundation’s validation test suite. Reasoning about KEVM
programs involves specifying properties in Reachability Logic
and verifying them with a separate analysis tool. As ex-
plained earlier, we preferred the option of working in a single
trusted logical framework.

8 Conclusions and Future Work
In this paper we have presented our approach to the ver-
ification of Ethereum smart contracts at the level of EVM
bytecode. Building strictly on the thoroughly validated for-
mal EVM model [8] in Isabelle/HOL, we have augmented it
using the fact that EVM gas consumption allows us to state
properties of contracts in pre/postcondition style with all
termination considerations discharged. Further, we have out-
lined how we split contracts into a structure of basic blocks
as well as how a sound program logic proceeds from such
blocks down to the level of instructions. The presented case
study has demonstrated the applicability of our program
logic to real bytecode, verifying an escrow agreement smart
contract implemented in Solidity. Moreover, the case study
outlined how we use Isabelle tactics to automate large parts
of verification condition generation process.
To further foster formal verification of Ethereum smart

contracts, we could restore more of Solidity’s control struc-
tures as well as function calls. For instance, restoring loops
would require using heuristics to detect them and the pro-
gram logic would be proved sound only for the subset of
EVM bytecode accepted by this heuristic. Similarly detect-
ing function calls in EVM bytecode requires complex stack
analysis because the EVM provides no support for calling
subroutines and for stack unwinding. Thus, heuristics must
be used to distinguish call sites and stack unwinding from
other stack-manipulating instructions. However, the pro-
posal [6] is currently being discussed, and suggests adding
static jumps as well as instructions to call and return from
sub-routines (internal functions) to the EVM instruction set.
If implemented, it would greatly facilitate decompilation and
reasoning about EVM bytecode, as most of the aforemen-
tioned issues would go away.

Asmentioned in Section 4.4, our framework currently does
not support reasoning about inter-contract message calls,
i.e. contracts making use of instructions such as CALL or
DELEGATECALL. That is, when a contract Amakes a message
call to another contract B then the execution of A termi-
nates in our formal model with a ContractCall action. Hence,

within our program logic we can only prove properties about
the local state of A right before it calls B. To reason further
about such interactions, the Ethereum global state must be
modelled separately to capture the behaviour of B. For ex-
ample, Hirai [8] has extended his framework, on which ours
is based, to formally verify that a smart contract throws an
exception if it is subject to a reentrant invocation (B attempts
to call A). As future work, we could imagine an EVM for-
malisation parameterised by a contract environment which
directly invokes the target contract when a message call
occurs.

Another promising avenue for research are verified com-
pilers [10, 11, 17]. We believe that the Ethereum community
would benefit from a provably sound structured program-
ming abstraction. Our work may also be used in verification
of the final phase of such compilers.
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