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Abstract

Timing channels are a significant and growing security threat

in computer systems, with no established solution. We have

recently argued that the OS must provide time protection,
in analogy to the established memory protection, to pro-

tect applications from information leakage through timing

channels. Based on a recently-proposed implementation of

time protection in the seL4 microkernel, we investigate how

such an implementation could be formally proved to prevent

timing channels. We postulate that this should be possible

by reasoning about a highly abstracted representation of the

shared hardware resources that cause timing channels.

CCS Concepts • Security and privacy→ Trusted com-

puting; • Software and its engineering → Operating

systems; Software verification.
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1 Introduction

Timing channels are a major threat to information security;

they exist where the timing of a sequence of observable

events depends on secret information [Wray 1991]. The ob-

servation might be of an externally visible event, such as

the response time of a server, and might be exploitable over

intercontinental distances [Cock et al. 2014]. Or it might only

be locally observable, i.e. by a process or VM co-located on

the same physical machine. Even the latter scenario may still

enable remote attacks – if the observing process has access

to the network and is controlled by a remote agent. The seri-

ousness of the threat was recently highlighted by the Spectre

attacks [Kocher et al. 2019], where speculatively executed

gadgets leak information via a covert timing channel.
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The secret-dependence of events may have algorithmic
causes, e.g. crypto implementations with secret-dependent

code paths. Or they may arise from interference resulting

from competing access to limited hardware resources, such as

caches; there exists a wide variety of such microarchitectural
channels [Ge et al. 2018b].
Whether algorithmic or microarchitectural, those chan-

nels represent information flow across protection bound-

aries, i.e. the boundaries are leaky. Ensuring the security of

these boundaries should be the job of the operating system

(OS); yet, no contemporary, general-purpose OS seems to

be capable of it. Clearly, this is not an acceptable situation,

and we have recently called for OSes to provide time pro-
tection [Ge et al. 2018a] as the temporal equivalent of the

well-established concept of memory protection.

Memory protection is a solved problem: the formal ver-

ification of seL4 proved, among others, that the kernel is

able to enforce spatial integrity, availability and confidential-

ity [Klein et al. 2014]. This categorically rules out informa-

tion leakage via storage channels (provided that the kernel

is aware of the state that can be used for such channels).

However, the approach taken in the seL4 verification has

no concept of time, and therefore cannot make any claims

about timing channels.
Our aim is to rule out timing-channel leakage just

as categorically as information flow via storage. Put

differently, we aim to formally prove correct implementation
of time protection. This paper investigates the feasibility of,

and prerequisites for, achieving such a proof. Obviously, we

would not bother writing this paper if we were not convinced

that it is feasible to achieve our aim, under certain conditions,

which come down to hardware satisfying certain require-

ments. We have recently demonstrated that not all recent

processors satisfy these requirements, resulting in a call for a

new, security-oriented hardware-software contract [Ge et al.

2018a].

We claim that, for hardware that honours this contract,

we will be able to achieve our aim of proving time protection,

and thus eliminate microarchitectural timing channels. The

key insight behind this claim is that these channels

result from competing accesses to shared hardware re-

sources, and thus proving the absence of such compe-

tition precludes the timing channel.

Note that other physical channels, such as power draw,

temperature, or acoustic or electromagnetic emanation, are

outside the scope of this work.

https://doi.org/10.1145/3317550.3321431
https://doi.org/10.1145/3317550.3321431
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2 Threat Scenario

The basic problem we are concerned with is a secret held by

one security domain, Hi, being leaked to another domain,

Lo, which is not supposed to know it. The leaking might be

intentional, by a bad actor (Trojan) inside Hi, constituting a

covert channel. Or it can be unintentional, via a side channel.
Note that Hi, Lo are relative to a particular secret, we do

not assume a hierarchical security policy such as Bell and

LaPadula [1976], and there may be other secrets for which

the roles of the domains are reversed. It is the duty of the

OS to prevent any unauthorised information flow, no matter

what the system’s specific security policy might be.

Our notion of a security domain refers to a subset of the

system which is treated as an opaque unit by the system’s

security policy (i.e. intra-domain information flow is not

restricted by the policy). In OS terms, a domain consists of

one or more (cooperating) processes.

We assume that the OS provides strong, verified memory

protection, and is free of storage channels, seL4 being an ex-

ample. Our primary concern is microarchitectural channels,

i.e. channels that exploit competition for finite hardware

resources that are abstracted away by the instruction-set

architecture (ISA), the classic hardware-software contract.

This means that algorithmic channels are not our primary

concern, but we will discuss in Sect. 4.3 how time protection

can be employed to remove such channels (within limits).

Like memory protection, time protection is a black-box OS

mechanism, that provides mandatory security enforcement
without relying on application cooperation.

For realism, i.e. to ensure that contemporary hardware is

at least close to satisfying the requirements of time protec-

tion (and can fully satisfy them with minor enhancements)

we limit our scope in one important way: we do not (yet)

attempt to prevent covert channels through stateless inter-

connects. Such channels, exploiting the finite bandwidth of

interconnects through concurrent competing access, are triv-

ial to implement [Hu 1991; Wu et al. 2012]: a Trojan running

on one core signals by modulating its use of interconnect

bandwidth, and a spy running on a different core measures

the remaining bandwidth by trying to saturate the shared

interconnect. Such channels can only be prevented with

hardware support that is not available on any contempo-

rary mainstream hardware.
1
We will be able to extend time

protection in a fairly straightforward way, should such hard-

ware support (or at least an accepted model for it) become

available.

An obvious example of the excluded scenario would be

a covert channel between two virtual machines (VMs) con-

currently executing on different cores of the same processor

1
Intel recently introduced memory bandwidth allocation (MBA) technology,

which imposes approximate limits on the memory bandwidth available

to a core [Intel Corporation 2016]. While this represents a step towards

bandwidth partitioning, the approximate enforcement is not sufficient for

preventing covert channels.

on a public cloud. Such a covert channel is not a particular

concern: the Trojan in the victim VM does not need the co-

located spy, as it can communicate by other means, e.g. by

modulating its network communication. Shared-cache side
channels are a real concern in the cloud scenario [Irazoqui

et al. 2015; Liu et al. 2015] and our threat scenario includes

this case (i.e. requires their prevention). But stateless inter-

connects reveal no address information, and no intercon-

nect side channels have been demonstrated to date [Ge et al.

2018b]; they are most likely impossible.

There are covert-channel scenarios we would like to ad-

dress but are unable to do so with present hardware. For ex-

ample, server-provided JavaScript code running in a browser

may contain attack code that uses a covert channel to com-

municate with a (supposedly confined) Trojan inside one of

the same user’s untrusted apps. If attacker and Trojan are

executing concurrently on different cores, the interconnect

channel can be used by the Trojan to leak to the attacker,

which then relays the secrets back to the server. While such

an attack would not be easy to execute, it is clearly possible

and should be prevented. However, this is impossible on

contemporary commodity hardware.

In summary, our threat scenario assumes that on multi-

core processors, security domains are co-scheduled across

all cores (allowing full protection against covert channels) or,
if multiple domains are executing concurrently, only side-
channel attacks are prevented. Where multiple domains time-

share a core, full isolation is provided (including covert chan-

nels).

For now we exclude timing channels resulting from hard-

ware beyond the main processor, such as DRAM row buffers,

peripheral devices, disks. We note that it should be possible

to fit those into the samemodel, e.g. DRAM buffers are a form

of physically-addressed cache, but we leave their detailed

treatment to future work.

3 Timing-Channel Mechanisms

There are two ways in which Lo may learn Hi’s secret: by

timing observable actions of Hi, or by Lo observing how its

own execution speed is influenced by Hi’s execution.

3.1 Timing Lo progress

This channel utilises the performance impact of interference

between processes resulting from competition for shared

hardware resources, especially stateful resources such as

caches, TLBs, branch predictors and pre-fetcher state ma-

chines. For example, Lo’s rate of progress (performance) is

affected by cache misses. If Lo shares a cache with Hi (either

time-sharing a core-private cache or concurrently sharing

a cache with Hi’s core), then the miss rate will depend on

Hi’s cache usage. If the cache is set-associative (which they

inevitably are nowadays), then the pattern of cache misses

will also reveal address information from Hi. Such address
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Figure 1. Encryption engine as a downgrader.

information supports the implementation of side channels

with potentially high bandwidth, e.g. where the secret is

used to index a table [Ge et al. 2018b].

An effective exploitation of such a channel is the prime-
and-probe technique [Osvik et al. 2006; Percival 2005]. Here

Lo fills the cache by traversing a buffer large enough to cover

the cache (prime phase). After, or while, Hi is executing, Lo

traverses the buffer again, monitoring the time taken for

each access (probe phase); a long latency indicates a conflict

miss with Hi’s cache footprint. The address of the missing

access reveals the index bits of Hi’s access.

Prime-and-probe can be used as a high-bandwidth covert

channel, where Hi explicitly encodes information into the

memory addresses accessed, or as a side channel, where

the encoding is implicit in Hi’s normal execution (e.g. via a

secret-derived array index). It can be used for time-shared

(core-private) caches as well as caches shared between cores.

3.2 Timing Hi events

This attack is based on observing the exact timing of Lo’s

interactions. It may be observing external interactions, such

as timing response latencies of a server, or internal events,

such as the timing of messages Lo exchanges with other

components.

On a first glance this might seem like a silly case, why

worry about a covert channel if there is an overt one, such as

message passing? In fact, this is a common scenario:Himight

be a downgrader, an entity trusted to handle secrets and

decide which can be safely declassified. A common example

is a crypto component, which encrypts secrets, e.g. from a

web server, and publishes the encrypted text, by handing

them to a network unit; this is shown in Figure 1.

In this case, the leakage might be resulting from an algo-

rithmic channel (e.g. a crypto implementation with secret-

dependent execution), a Trojan modulating the speed of the

encryption (possibly via microarchitectural interference), or

the server itself leaking through the timing of messages to

the crypto component.

Time protection here must make execution time determin-

istic, meaning that message passing or context switching

happen at pre-determined times. Obviously, the OS can only

provide the mechanism here (deterministic switch/delivery

time), not the policy (the time of the switch). This must be

set by the system designer or security officer, taking into

Shared Cache
Bus

BP TLB

I-Cache D-Cache

PF

L2 Cache

BP TLB

I-Cache D-Cache

PF

L2 Cache

Figure 2. Partitioning hardware resources. Resources shown

(dark) green must be temporally partitioned, those in (light)

blue spatially, hatched ones may be either.

account issues like the worst-case execution time (WCET)

of the encryption.

Cock et al. [2014] proposed a possible model: a synchro-

nous IPC channel switches to the receiver only once the

sender domain has executed for a pre-determined minimum

amount of time. It is then left to the system designer to

determine a safe time threshold.

4 Closing the Leaks: Time Protection

Our principled defence against unauthorised information

flow through timing channels is time protection, just as mem-

ory protection stops unauthorised access to storage. We de-

fine time protection as a collection of OS mechanisms which
jointly prevent interference between security domains that
would make execution speed in one domain dependent on the
activities of another [Ge et al. 2019].

4.1 Spatially and temporally partitioning hardware

As microarchitectural timing channels result from competi-

tion for (non-architected) hardware resources, eliminating

them requires removing the competition. This means that

on order to provide time protection, the OS must partition
those resources between security domains, either spatially or
temporally (by time sharing). With temporal partitioning,

any history dependence must be erased when re-assigning

the hardware to a different domain, by resetting any state to

a defined value (eg. flushing).

Figure 2 shows how resources are partitioned. Temporal

partitioning is obviously incompatible with concurrent ac-

cess, meaning it can only work for resources that are private

to an execution stream. In the absence of hyperthreading,

this applies to core-local resources, such as the L1 caches, pri-

vate L2 caches (on Intel hardware), TLBs, branch predictors,

and core-local prefetchers.

Resources that are accessed concurrently, especially

caches shared between cores, must therefore be spatially

partitioned. This would also be the only option for core-

local state when hyperthreading is enabled. However, no
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mainstream hardware supports partitioning of hardware re-

sources between hyperthreads, and such partitioning would

seem fundamentally at odds with the concept of hyperthread-

ing, which is based on improving hardware utilisation by

sharing. Consequently, there are a plethora of side-channel

attacks between hyperthreads [Ge et al. 2018b]. We have to

conclude that hyperthreading is fundamentally insecure, and
multiple hardware threads must never be allocated to different
security domains (multi-threading a single domain is not a

security issue). This is well understood [Zhang et al. 2012],

and hypervisor vendors advise against enabling hyperthread-

ing [Marshall et al. 2010].

Spatial partitioning of shared (physically-addressed)

caches is possible without extra hardware support by us-

ing page colouring [Kessler and Hill 1992; Liedtke et al. 1997;

Lynch et al. 1992]. Colouring makes use of the fact that the

associative lookup of a large cache forces a page into a spe-

cific subset, so only pages mapping to the same subset, said

to have the same colour, can compete for cache space. By

ensuring that different security domains are allocated physi-

cal page frames of disjoint colours, the OS can partition the

cache between domains. Modern last-level caches have at

least 64 colours.

Note that TLBs are virtually-indexed caches that cannot

in general be spatially partitioned (ASIDs notwithstanding)

and must be flushed on a partition switch. This is orthogonal

to the need for shooting down remote TLBs when removing

mappings. TLB shoot-down is a requirement for functional

correctness irrespective of timing channels, and as such as-

sumed to be verified already.

To summarise, microarchitectural timing channels

can be prevented if the OS can partition all shared

hardware either spatially or temporally, with tempo-

ral partitioning implying the ability to reset any rele-

vant hardware state. Furthermore, spatial partitioning is

the only option for hardware that is concurrently accessed.

Together with a few other conditions outlined by Ge et al.

[2018a], these form part of a security-oriented hardware-

software contract, which we call the augmented ISA (aISA).

The aISA allows the OS to prevent timing channels, while

the ISA alone is an insufficient contract for ensuring secu-

rity [Heiser 2018; Hill 2018].

4.2 Implementing time protection

We have recently proposed an implementation of time pro-

tection in seL4, for hardware that conforms to a security-

oriented aISA [Ge et al. 2019]. It uses cache colouring to

spatially partition shared caches. As even read-only sharing

of code is sufficient for creating a channel [Gullasch et al.

2011; Yarom and Falkner 2014], we also colour the kernel im-

age. This is achieved by a policy-free kernel clonemechanism,

which allows setting up a domain-private kernel image in

coloured memory, with only a small amount of static data

shared between images.

We flush temporally partitioned microarchitectural state

on a security-domain switch (but not on intra-domain con-

text switches). For writable microarchitectural state (e.g. the

L1 data cache), the latency of the flush is itself dependent on

execution history (number of dirty lines), whichwould create

a channel. We avoid this channel by padding the domain-

switch latency to a fixed value.

Padding is performed at the very end of the domain-switch

operation, just before the kernel returns to user mode. To

ensure deterministic timing of the few instructions required

to return, we force all required shared kernel data into the L1

cache prior to padding. This guarantees a defined hardware

state prior to performing the exit from kernel mode, and thus

a fixed latency for those instructions. Note that pre-fetching

instructions is not needed, as the kernel text is coloured.

The overall effect is that the user-visible time taken by the

kernel to switch partitions, from when the timer interrupt is

raised until return to user mode in the destination domain,

is constant and thus cannot leak information.

The padding time must obviously be at least the worst-

case latency of the flush, but also needs to account for any

delay of the handling of the preemption-timer interrupt by

other kernel entries. The domain switch could be delayed

if user code invokes a system call, or an interrupt happens,

just before the domain-switch timer interrupt. Such a delay

would also constitute a channel. The padding time must be

long enough to allow the system to handle the kernel entry

before performing the domain switch. To avoid very long

domain-switch latencies, this should be done by determin-

ing whether there is sufficient time left in the present time

slice, and if not, configure the kernel state to perform the

operation during the present domain’s next time slice, and

then progress directly to the domain switch. This is similar

to the way seL4 restarts preempted operation at preemption

points [Klein et al. 2014].

For generality (see Sect. 4.3) we make determination of

the padding time not the job of the OS, but an attribute of

the switched-from security domain, controlled by the system

designer: the next domain will not start executing earlier

than the previous domain’s time slice plus the padding time.

Use of the correct padding time requires some reasoning

outside the formal model, as it needs to use the output of the

WCET analysis and the experimentally determined worst-

case flush time. In terms of assurance, this is similar to other

cases where the formal world must be connected to the

physical world.

Finally, interrupts could also be used as a channel, if Hi

triggers an I/O such that its completion interrupt fires during

Lo’s execution. We prevent this by partitioning interrupts

(other than the preemption timer) between domains, and

keep all interrupts masked that are not associated with the

presently executing domain [Ge et al. 2019].
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4.3 Preventing algorithmic channels

Padding is a general mechanism that can also be used to

prevent algorithmic channels. In the scenario of Figure 1, we

can pad the execution time of the downgrader’s domain to a

safe value (an upper bound of its execution time). This means

that the kernel will not switch away from the domain before

the padding time has passed. If the downgrader’s domain

has no other runnable threads, the system would have to

idle until the switch time.

5 Proving Time Protection

At first glance, one might expect that proving time protec-

tion is a hopeless exercise. After all, the precise interaction

between microarchitectural state and execution latency is

unspecified for modern hardware platforms, and the latency

of some instructions may vary by orders of magnitude de-

pending on hardware state. Formally reasoning about precise

execution latencies is therefore infeasible [Klein et al. 2011].

However, we argue that reasoning about the exact latency

of executions is unnecessary.The key insight is that these

channels are effected by shared hardware resources,

and if we can prove that no sharing happens, there can

be no timing channels. Consequently, proving temporal

isolation requires formal models of microarchitectural state,

but these can be kept abstract. They only require enough

detail to identify resources that need to be spatially parti-

tioned (and how such partitioning is performed), and state

that must be reset at switch time (and how to reset it). That

is, we do not need to know how long an instruction will take

to execute, only which microarchitectural state its execution

time depends on and how this state behaves wrt. partitioning

and flushing.

5.1 Reasoning about hardware state

For spatially partitionable state, temporal isolation becomes

a functional property (namely an invariant about correct

partitioning) that can be verified without any reference to

time, existing verification techniques therefore apply.

For state that requires flushing, correct application of the

flush is also a functional property. As mentioned in Sect. 4.2,

the latency of flushing operations themselves needs to be

hidden by the OS, by padding its execution latency. As the

padding time is an explicit property of the previously execut-

ing domain, correct padding can be verified with a relatively

simple formalisation of hardware clocks, which allows verify-

ing padding time by simply comparing time stamps, reducing

this to a functional property as well.

Once timing-channel reasoning is reduced to the verifica-

tion of functional properties, it should be possible to integrate

it into existing proof frameworks of storage-channel free-

dom, such as seL4’s information flow proofs [Murray et al.

2013].

Indeed, under this approach timing-channel reasoning

is transmuted into reasoning about storage channels,

reducing it to a solved problem, and also enabling reasoning

about timing-channels without reference to precise execu-

tion time. This possibility may seem surprising, but it is

known that the distinction between storage and timing chan-

nels is not fundamental, but refers to the mechanisms used

for exploitation [Wray 1991]. In our case we transform the

temporal interference problem into a spatial one, by reason-

ing about the shared hardware resources which the channels

exploit.

5.2 Hardware formalisation

Carrying out these proofs requires a model of the shared

hardware resources (the microarchitectural model) that in-
fluence execution latencies, as well as a simple model of a

hardware clock (the time model) to allow reasoning about

elapsed time intervals. Naturally these models are interre-

lated: how much an execution step advances the hardware

clock naturally depends on the microarchitectural state that

influences execution time.

Crucially, a precise description of this interaction is not

necessary. Instead, the interaction can be faithfully yet fea-

sibly modelled as follows. Firstly, the microarchitectural

model must delineate the spatially partitionable state from

the flushable state, and all microarchitectural state must be

spatially partitionable or flushable (Sect. 4.1). Secondly, the

time model, which captures how far time advances on each

execution step, is defined as a deterministic yet unspecified
function of the microarchitectural state. Then, when the mi-

croarchitectural state is properly partitioned and flushed, one

can prove that a security domain’s execution time cannot be

influenced by other domains (see Sect. 5.3 below).

This construction neatly reflects the basic assumptions

that (i) the hardware provides sufficient mechanisms to spa-

tially partition or flush microarchitectural state between

security domains, that (ii) such mechanisms work correctly,

and that (iii) these account for all microarchitectural state

that influences execution time.

5.3 Information-flow proofs

With these models in hand, time protection can then be

proved by showing that there is no way in which the ex-

ecution of one domain can affect the execution timing of

another domain.

Specifically the proofs must show that all resource parti-

tioning and flushing is applied at all times and not bypassable,

and that domain switches (including flushing) are correctly

padded to a constant amount of time (under the assump-

tion that the specified padding value, obtained by a separate

analysis, is sufficiently large). These proofs can then be inte-

grated with existing proofs of storage-channel freedom to

derive the absence of timing channels as follows.
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Without loss of generality, fix some domain (Lo) and con-

sider one of its execution steps for which we want to show its

timing cannot be influenced by another domain (Hi). There

are two possibilities: (Case 1) either it is an ordinary user-

mode instruction, or (Case 2) it is a trap (a system call, ex-

ception, or interrupt arrival). For Case 1, the execution time

given by the time model will be affected by the shared hard-

ware resources in the microarchitectural model. Recall that

this effect can be modelled by an unspecified deterministic

function from the state of the microarchitectural model to an

elapsed (symbolic) time value. For an individual instruction

this function will examine the state of the instruction cache,

namely the cache set identified by the program counter, and

the state of the data cache for any memory address accessed

by that instruction. Since the access does not fault (otherwise

it would be a trap), all such memory accesses must lie within

the physical memory of the current domain and thus within

areas of the cache that cannot be affected by other partitions

(due to correct cache partitioning by the kernel, or correct

flushing, e.g. for the on-core L1 cache).

In the above, “instruction cache” refers to any microarchi-

tectural state that affects the latency of fetching and execut-

ing an instruction, including pipeline state, branch predictor,

pre-fetcher and TLB. The hardware model does not even

have to distinguish these resources, they can be lumped into

the same abstraction, with the flush operation potentially

consisting of multiple steps. Similarly, for load or store in-

structions, “data cache” includes any state that affects the

time to load or store a register. The upshot is that the result-

ing execution time cannot be affected by other partitions.

For Case 2, we distinguish two sub-cases: The trap is ei-

ther (Case 2a) a system call, an exception or a partitioned

interrupt, or (Case 2b) it is the arrival of a timer interrupt

signalling a switch to the next domain. For Case 2a, the exe-

cution time depends on the state of the instruction cache (in

the above generalised meaning) wrt. the kernel instructions

executed, plus the data cache for any data accessed. However,

in a partitioned system with the kernel correctly cloned as

in Sect. 4.2, the former cannot be affected by other parti-

tions and the latter accesses only data of the current domain.

The only remaining state that might be accessed is global

kernel data, for which we will prove that it is accessed de-

terministically, and whose cache state after a domain switch

is independent of prior Hi activity (due to correct flushing).

A similar, if naturally more involved, argument applies as

to the user mode case (Case 1). For Case 2b, we invoke the

proof of the constant-time domain switch property. □

Expressing elapsed time as a value in the state of the time

model (updated by an unspecified function of the microar-

chitectural model) achieves the above discussed reduction of

timing-channel reasoning to storage-channel reasoning. As a

result, time protection itself can be phrased and proved akin

to storage-channel freedom via a suitable noninterference

property [Murray et al. 2012].

5.4 TLB

The TLB is an example where the principles of partitioning

and flushing can already be observed in a formal model

for pure functional correctness: while not yet suitable for

reasoning about timing, Syeda and Klein [2018] provided a

logic for functional correctness under an ARM-style TLB.

For instance, it is easy to show in this model that page table

modifications under one address space identifier (ASID) do

not affect TLB consistency for any other ASID. This is the

kind of partitioning theorem we will use for timing-relevant

spatially-partitionable state (i.e. shared caches).

For time protection, the TLB must be temporally parti-

tioned (flushed), so this model is not directly applicable, but

it points the way towards a model for spatially-partitionable

caches. The model is a high-level abstraction of the TLB

proved sound with respect to a low-level model that would

be infeasible to reason about directly. We propose the same

for timing behaviour. Instead of reasoning about a detailed

low-level architecture model with precise timing informa-

tion, we only record the information needed for timing-

independence.

6 Conclusions

We conclude that proving time protection should be pos-

sible with established formal methods, thanks to the key

insight that they result from spatial-type microarchitectural

resources, and can thus be treated as storage channels. This

requires some reasoning about those hardware resources,

but we expect to get away with very high-level abstractions.

The key challenge is to achieve agreement on a hardware-

software contract [Ge et al. 2018a] that makes it at least

possible to remove timing channels. Verifying time protection

implies formalising (at least aspects of) this contract, which

will also enable verifying hardware implementations against

the contract.

In terms of getting agreement on such a contract, and hon-

ouring it into the future, we are clearly at the mercy of pro-

cessor manufacturers. The RISC-V community is presently

taking the lead in incorporating the security contract into

the processor/platform specification.
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