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Abstract. Psi-calculi is a parametric framework for process calculi simi-
lar to popular pi-calculus extensions such as the explicit fusion calculus,
the applied pi-calculus and the spi calculus. Mechanised proofs of standard
algebraic and congruence properties of bisimilarity apply to all calculi
within the framework.

A limitation of psi-calculi is that communication channels must be sym-
metric and transitive. Here, we give a new operational semantics to
psi-calculi that allows us to lift these restrictions and simplify some of
the proofs. The key technical innovation is to annotate transitions with a
provenance—a description of the scope and channel they originate from.
We give mechanised proofs that our extension is conservative, and that
the standard algebraic and congruence properties of bisimilarity are
maintained. We show correspondence with a reduction semantics and
barbed bisimulation. We show how a pi-calculus with preorders that was
previously beyond the scope of psi-calculi can be captured, and how to
encode mixed choice under very strong quality criteria.

Keywords: Process algebra - Psi-calculi - Nominal logic - Interactive
theorem proving - Bisimulation

1 Introduction

This report is mainly concerned with channel connectivity, by which we mean the
relationship that describes which input channels are connected to which output
channels in a setting with message-passing concurrency. In the pi-calculus [18],
channel connectivity is syntactic identity: in the process

a(z).P|by.Q

where one parallel component is waiting to receive on channel ¢ and the other is
waiting to send on channel b, interaction is possible only if a = b.

Variants of the pi-calculus may have more interesting channel connnectivity.
The explicit fusion calculus pi-F [9] extends the pi-calculus with a primitive for
fusing names; once fused, they are treated as being for all purposes one and the
same. Channel connectivity is then given by the equivalence closure of the name
fusions. For example, if we extend the above example with the fusion (a = b)
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a(2).P | 5y.Q | (a = b)

then communication is possible. Other examples may be found in e.g. calculi for
wireless communication [19], where channel connectivity can be used to directly
model the network’s topology.

Psi-calculi [1] is a family of applied process calculi, where standard meta-
theoretical results, such as the algebraic laws and congruence properties of
bisimulation, have been established once and for all through mechanised proofs [2]
for all members of the family. Psi-calculi generalises e.g. the pi-calculus and the
explicit fusion calculus in several ways. In place of atomic names it allows channels
and messages to be taken from an (almost) freely chosen term language. In place
of fusions, it admits the formulas of an (almost) freely chosen logic as first-class
processes. Channel connectivity is determined by judgements of said logic, with
one restriction: the connectivity thus induced must be symmetric and transitive.

The main contribution here is a new way to define the semantics of psi-calculi
that lets us lift this restriction, without sacrificing any of the algebraic laws
and compositionality properties. It is worth noting that this was previously
believed to be impossible: Bengtson et al. [1, p. 14] even offer counterexamples
to the effect that without symmetry and transitivity, scope extension is unsound.
However, a close reading reveals that these counterexamples apply only to their
particular choice of labelled semantics, and do not rule out the possibility that the
counterexamples could be invalidated by a rephrasing of the labelled semantics
such as ours.

The price we pay for this increased generality is more complicated transition
labels: we decorate input and output labels with a provenance that keeps track
of which prefix a transition originates from. The idea is that if I am an input
label and you are an output label, we can communicate if my subject is your
provenance, and vice versa. This is offset by other simplifications of the semantics
and associated proofs that provenances enable.

Contributions This report makes the following specific technical contributions:

— We define a new semantics of psi-calculi that lifts the requirement that channel
connectivity must be symmetric and transitive, using the novel technical
device of provenances. (Section 2)

— We prove that strong bisimulation is a congruence and satisfies the usual
algebraic laws such as scope extension. Interestingly, provenances can be
ignored for the purpose of bisimulation. These proofs are machine-checked’
in Nominal Isabelle [24]. (Section 3.1)

— We prove, again using Nominal Isabelle, that this paper’s developments
constitute a conservative extension of the original psi-calculi. (Section 3.2)

— We further validate our semantics by defining a reduction semantics and
strong barbed congruence, and showing that they agree with their labelled
counterparts. (Section 3.2)

! Tsabelle proofs are available at https://github.com/IlmariReissumies/newpsi


https://github.com/IlmariReissumies/newpsi

Psi-Calculi Revisited: Connectivity and Compositionality 3

— We capture a pi-calculus with preorders by Hirschkoff et al. [11], that was
previously beyond the scope of psi-calculi because of its non-transitive channel
connectivity. The bisimilarity we obtain turns out to coincide with that of
Hirschkoff et al. (Section 4.1)

— We exploit non-transitive connectivity to show that mixed choice is a derived
operator of psi-calculi in a very strong sense: its encoding is fully abstract
and satisfies strong operational correspondence. (Section 4.2)

This report constitutes supplementary material for the author’s paper of
the same title, to appear at the 14th International Federated Conference on
Distributed Computing Techniques (FORTE 2019). The final publication is
available at Springer via http://dx.doi.org.

In particular, this report includes an appendix, which gives justification for
all formal claims made: pointers to the relevant parts of the Isabelle formalisation
for theorems with machine-checked proofs, and full proof details for hand-written
proofs.

2 Definitions

This section introduces core definitions such as syntax and semantics. Many
definitions are shared with the original presentation of psi-calculi, so this section
also functions as a recapitulation of [1]. We will highlight the places where the
two differ.

We assume a countable set of names N ranged over by a,b,c,...,x,y,z. A
nominal set [8] is a set equipped with a permutation action -; intuitively, if X € X
and X is a nominal set, then (z y) - X, which denotes X with all occurences of
the name 2 swapped for y and vice versa, is also an element of X. n(X) (the
support of X) is, intuitively, the set of names such that swapping them changes
X. We write a#X (“a is fresh in X) for a ¢ n(X). A nominal set X has finite
support if for every X € X, n(X) is finite. A function symbol f is equivariant if
p- f(z) = f(p- x); this generalises to n-ary function symbols in the obvious way.
Whenever we define inductive syntax with names, it is implicitly quotiented by
permutation of bound names, so e.g. (va)a(x) = (vy)a(y) if x, y#a.

Psi-calculi is parameterised on an arbitrary term language and a logic of
environmental assertions:

Definition 1 (Parameters). A psi-calculus is a 7-tuple (T, A,C,F, ®,1,-)
with three finitely supported nominal sets:

1. T, the terms, ranged over by M, N, K, L, T
2. A, the assertions, ranged over by ¥; and
3. C, the conditions, ranged over by .

We assume each of the above is equipped with a substitution function [ :=_] that
substitutes (sequences of ) terms for names. The remaining three parameters are
equivariant function symbols written in infiz:
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F: A x C= bool (entailment) & :A x A= A (composition)
1:A (unit) = : T x T = C (channel connectivity)

Intuitively, M — K means the prefix M can send a message to the prefix K. The
substitution functions must satisfy certain natural criteria wrt. their treatment
of names; see [1] for the details.

Definition 2 (Static equivalence). Two assertions W, W’ are statically equiv-
alent, written ¥ ~ W', if Vo. U ¢ & ¥ .

Definition 3 (Valid parameters). A psi-calculus is valid if (A/ ~ ®,1) form
an abelian monoid.

Note that since the abelian monoid is closed, static equivalence is preserved
by composition. Henceforth we will only consider valid psi-calculi. The original
presentation of psi-calculi had <+ for channel equivalence in place of our —,
and required that channel equivalence be symmetric (formally, ¥ - M < K iff
U+ K < M) and transitive.

Definition 4 (Process syntax). The processes (or agents) P, ranged over by
P,Q, R, are inductively defined by the grammar

P:=0 (nil) () (assertion)
M N.P  (output) M(AZ)N.P (input)
case §: P (case) PlQ (parallel composition)
(va)P (restriction) P (replication)

A process is assertion guarded (guarded for short) if all assertions occur un-
derneath an input or output prefiz. We require that in P, P is guarded; that in
case ¢ : P, all P are guarded; and that in M(AZ)N . P it holds that T C n(N).
We will use Pg, Q¢ to range over guarded processes.

Restriction, replication and parallel composition are standard. M N.P is a
process ready to send the message N on channel M, and then continue as P.
Similarly, M (AZ)N.P is a process ready to receive a message on channel M
that matches the pattern (AZ)N. The process (@) asserts a fact ¥ about the
environment. Intuitively, (¥) | P means that P executes in an environment where
all conditions entailed by ¥ hold. P may itself contain assertions that add or
retract conditions. Environments can evolve dynamically: as a process reduces,
assertions may become unguarded and thus added to the environment. case ¢ : P
is a process that may act as any P; whose guard ¢; is entailed by the environment.
For discussion of why replication and case must be guarded we refer to [1,15].

The assertion environment of a process is described by its frame:

Definition 5 (Frames). The frame of P, written F(P) = (vbp)¥p where bp
bind into Yp, is defined as

F(W) = wew  F(P|Q)=F(P)®FQ) F((va)P) = (va)F(P)

F(P) =1 otherwise
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where name-binding and composition of frames is defined as (va)(vbp)Wp =
(v, bp)¥p, and, if bp#bg, Yy and bo#HPp,

(I/ZP)WP ® (VEQ)WQ = (VEP,EQ)LDP ® WQ.

We extend entailment to frames as follows: F(P) b ¢ holds if, for some b P, ¥p such
that F(P) = (pr)LPp and bp#(p, Up F . The freshness side-condition bp#go is
important because it allows assertions to be used for representing local state. By
default, the assertion environment is effectively a form of global non-monotonic
state, which is not always appropriate for modelling distributed processes. With
v-binding we recover locality by writing e.g. (vz)((x = M| | P) for a process P
with a local variable x.

The notion of provenance is the main novelty of our semantics. It is the key
technical device used to make our semantics compositional:

Definition 6 (Provenances). The provenances I, ranged over by 7, are either
L or of form (vz;y)M, where M is a term, and Z,y bind into M.

We write M for (ve;e) M. When T, y#x y and T#y, we interpret the expres-
sion (vZ; ) (va';y )M as (vZa';5y')M. Furthermore, we identify (vZ;7)L and
L. Let 7 | denote the result of moving all binders from the outermost binding
sequence to the innermost; that is, (vZ; )M |= (ve;Z,y)M. Similarly, © | z
denotes the result of inserting z at the end of the outermost binding sequence:
formally, (vz;9)M | z = (vz,z;y) M.

Intuitively, a provenance describes the origin of an input or output transition.
For example, if an output transition is annotated with (vZ;y)M, the sender
is an output prefix with subject M that occurs underneath the v-binders z, 3.
For technical reasons, these binders are partitioned into two distinct sequences.
The intention is that x are the frame binders, while y contains binders that
occur underneath case and replication; these are not part of the frame, but may
nonetheless bind into M. We prefer to keep them separate because the x binders
are used for deriving - judgements, but § are not (cf. Definition 5).

Definition 7 (Labels). The labels L, ranged over by «, 83, are:
M (vZ)N (output) M N (input) T (silent)
The bound names of o, written bun(alpha), is T if o = M (vZ)N and € otherwise.

The subject of cv, written subj(«), is M if = M (vZ)N or o = M N. Analogously,

the object of a, written obj(«), is N if a« = M (vt)N or a = M N.

While the provenance describes the origin of a transition, a label describes how
it can interact. For example, a transition labelled with M N indicates readiness
to receive a message N from an output prefix with subject M.

Definition 8 (Operational semantics). The transition relation —C AXP x
L x IT x P is inductively defined by the rules in Table 1. We write W > P = P’

for (¥, P,a,m, P") €—. In transitions, bn(«) binds into obj(a) and P’.
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Mpav{phN o, b€ n(N) REP _T

Table 1. Structured operational semantics. A symmetric version of CoM is elided. In
the rule CoMm we assume that F(P) = (vbp)¥p and F(Q) = (vbg)Wo where bp is fresh

for ¥ and @, 7 is fresh for ¥, ¥y, P, and EQ,ﬂ are similarly fresh. In rule PARL we
assume that F(Q) = (vbg)¥q where bq is fresh for ¥, P,m and a. PARR has the same
freshness conditions but with the roles of P, Q swapped. In OPEN the expression a U {b}

means the sequence a with b inserted anywhere.

The operational semantics differs from [1] mainly by the inclusion of prove-
nances: anything underneath the transition arrows is novel.

The OUT rule states that in an environment where M is connected to K, the
prefix M N may send a message N from M to K. The IN rule is dual to OUT,
but also features pattern-matching. If the message is an instance of the pattern,
as witnessed by a substitution, that subtitution is applied to the continuation P.

In the CoM rule, we see how provenances are used to determine when two
processes can interact. Specifically, a communication between P and @) can be
derived if P can send a message to M using prefix K, and if Q) can receive a
message from K using prefix M. Because names occuring in M and K may be
local to P and @ respectively, we must be careful not to conflate the local names
of one with the other; this is why the provenance records all binding names
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that occur above M, K in the process syntax. Note that even though we identify
frames and provenances up-to alpha, the CoMm rule insists that we consider
alpha-variants such that the frame binders and the outermost provenance binders
coincide. This ensures that the K on Q’s label really is the same as the K in the
provenance.

It is instructive to compare our CoM rule with the original:

U e > p MEON, pr
KN_ .
Up QW > E VRUpQUyt- M K
CoM-OLD r @ @ ° @ a#Q
v PlQ — (va)(P'|Q")

where F(P) = (vbp)¥p and F(Q) = (vbo)¥p and bp#¥, bg,Q, M, P and
EQ#W, EQ, Q, K, P. Here we have no way of knowing if M and K are able to
synchronise other than making a channel equivalence judgement. Hence any
derivation involving COM-OLD makes three channel equivalence judgements:
once each in IN, OUT and CoM-OLD. With CoM we only make one — or more
accurately, we make the exact same judgement twice, in IN resp. OUT. Eliminat-
ing the redundant judgements is crucial: the reason COM-OLD needs associativity
and commutativity is to stitch these three judgements together, particularly
when one end of a communication is swapped for a bisimilar process that allows
the same interaction via different prefixes.

Note also that CoMm has fewer freshness side-conditions. A particularly unin-
tuitive aspect of COM-OLD is that it requires bp#M and bo#K, but not bp#K
and EQ #M: we would expect that all bound names can be chosen to be distinct
from all free names, but adding the missing freshness conditions makes scope
extension unsound [14, pp. 56-57]. With CoM, it becomes clear why: because bg
binds into M.

All the other rules can fire independently of what the provenance of the premise
is. They manipulate the provenance, but only for bookkeeping purposes: in order
for the CoM rule to be sound, we maintain the invariant that if ¥ > P < P/,

™
the outer binders of 7 are precisely the binders of F(P). Otherwise, the rules are
exactly the same as in the original psi-calculi.

The reader may notice a curious asymmetry between the treatment of prove-
nance binders in the PARL and PARR rules. This is to ensure that the order of
the provenance binders coincides with the order of the frame binders, and in the
frame F(P | @), the binders of P occur syntactically outside the binders of @
(cf. Definition 5).

3 Meta-theory

In this section, we will derive the standard algebraic and congruence laws of
strong bisimulation, develop an alternative formulation of strong bisimulation in
terms of a reduction relation and barbed congruence, and show that our extension
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of psi-calculi is conservative. While weak equivalences are beyond the scope of
the present paper, we believe it is possible (if tedious) to adapt the results about
weak bisimilarity from [15] to our setting.

3.1 Bisimulation

We write ¥ > P -% P’ as shorthand for 7. ¥ > P < P’. Bisimulation is

then defined exactly as in the original psi-calculi:

Definition 9 (Strong bisimulation). A symmetric relation R C A x P x P
is a strong bisimulation iff for every (¥, P,Q) € R

1. P® F(P) ~ ¥ ® F(Q) (static equivalence)

2. VW' . (T RW,P,Q) R (extension of arbitrary assertion)

3. IfU>P % P’ andbn(a)#V¥,Q, then there exists Q' such that W > Q
Q' and (¥, P',Q") € R (simulation)

We let bisimilarity ~ be the largest bisimulation. We write P ~g Q to mean
(q/vPaQ) € ’:‘/; andP&QfOTP’:Jl Q

Clause 3 is the same as for pi-calculus bisimulation. Clause 1 requires that two
bisimilar processes expose statically equivalent assertion environments. Clause 2
states that if two processes are bisimilar in an environment, they must be bisimilar
in every extension of that environment. Without this clause, bisimulation is not
preserved by parallel composition.

This definition might raise some red flags for the experienced concurrency
theorist. We allow the matching transition from ) to have any provenance,
irrespectively of what P’s provenance is. Hence the CoM rule uses information
that is ignored for the purposes of bisimulation, which in most cases would result
in a bisimilarity that is not preserved by the parallel operator.

Before showing that bisimilarity is nonetheless compositional, we will argue
that bisimilarity would be too strong if Clause 4 required transitions with
matching provenances. Consider two distinct terms M, N that are connected to
the same channels; that is, for all ¥, K we have VF M - K if Y - N =5 K.
We would expect M.0 and N .0 to be bisimilar because they offer the same
interaction possibilities. With our definition, they are. But if bisimulation cared
about provenance they would be distinguished, because transitions originating
from M.0 will have provenance M while those from N .0 will have N.

The key intuition is that what matters is not which provenance a transition
has, but which channels the provenance is connected to. The latter is preserved by
Clause 3, as this key technical lemma—formally proven in Isabelle, by a routine
induction—hints at:

Lemma 1. (Find connected provenance)

1. Ifv > P % P’ and C is finitely supported, then there exists Bp,!pp,.%, K

such that F(P) = (VEP)WP and ™ = (Vgp;%)K and bp#¥, P, M,N,P',C.%
and 40, PN, P',C and W @ Wp - M = K.
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2. A similar property for output transitions (elided).

In words, the provenance of a transition is always connected to its subject, and
the frame binders can always be chosen sufficiently fresh for any context. This
simplifies the proof that bisimilarity is preserved by parallel: in the original
psi-calculi, one of the more challenging aspects of this proof is finding sufficiently
fresh subjects to use in the CoM-OLD rule, and then using associativity and
symmetry to connect them (cf. [1, Lemma 5.11]). By Lemma 1 we already have
a sufficiently fresh subject: our communication partner’s provenance.

Theorem 1 (Congruence properties of strong bisimulation).

1.P~Q = P|R~Q|R

2. Py Q = (va)P Ay (vr)Q if a#P

3. Pg~y Qe = !Pg~v!Qqg L

4. Vi.P; ~y QQ; = casep: P~y case ¢:Q if P,Q are guarded

Theorem 2 (Algebraic laws of strong bisimulation).
PRy PO Pl@Q|IR)~ (PIQ)IR  P[QAw QP  (va)0~y 0

P (va)Q ~y (va)(P| Q) if a#P M N.(va)P ~y (va)M N.P if a#M, N

MOF)N.(va)P ~g (va)M(\F)N.P if a#¥, M, N IP 2y P[P
case ¢ : (;;)73 2y (va)case G : P if a#3 (va)(vb)P ~y (vb)(va)P

The proofs of Theorems 1 and 2 have been mechanised in Nominal Isabelle. Note
that bisimilarity is not preserved by input, for the same reasons as the pi-calculus.
As in the pi-calculus, we can define bisimulation congruence as the substitution
closure of bisimilarity, and thus obtain a true congruence which satisfies all the
algebraic laws above. We have verified this in Nominal Isabelle, following [1].

The fact that bisimilarity is compositional yet ignores provenances suggests
that the semantics could be reformulated without provenance annotations on
labels. To achieve this, what is needed is a side-condition S for the CoM rule
which, given an input and an output with subjects M, K, determines if the input
transition could have been derived from prefix K, and vice versa:

MEaN, pr goew s Y o g

vePlQ — (va)r|Q)

WQ@WDP

But we already have such an S: the semantics with provenances! So we can let

S=wpevsp N, papgersqQ XN @
(vbp;T)K (vbg;y)M
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Of course, this definition is not satisfactory: the provenances are still there, just
swept under the carpet. Worse, we significantly complicate the definitions by
effectively introducing a stratified semantics. Thus the interesting question is not
whether such an S exists (it does), but whether S can be formulated in a way
that is significantly simpler than the semantics with provenances. The author
believes the answer is negative: S is a property about the roots of the proof trees
used to derive the transitions from P and Q). The provenance records just enough
information about the proof trees to show that M and K are connected; with
no provenances, it is not clear how this information could be obtained without
essentially reconstructing the proof tree.

3.2 Validation

We have defined semantics and bisimulation, and showed that bisimilarity satisfies
the expected laws. But how do we know that they are the right semantics, and
the right bisimilarity? This section provides two answers to this question. First,
we show that our developments constitute a conservative extension of the original
psi-calculi. Second, we define a reduction semantics and barbed bisimulation that
are in agreement with our (labelled) semantics and (labelled) bisimilarity.

Let —, and ~, denote semantics and bisimilarity as defined by Bengtson
et al. [1], i.e., without provenances and with the CoM-OLD rule discussed in
Section 2. The following result has been mechanised in Nominal Isabelle:

Theorem 3 (Conservativity). When = is symmetric and transitive we have

Ry =~ and —, = —>.

Our reduction semantics departs from standard designs [3,17] by relying on
reduction contexts [7] instead of structural rules, for two reasons. First, standard
formulations tend to include rules like these:

P — P
PlQ — P |Q aP+Q|aR+S — P|R

A parallel rule like the above would be unsound because ) might contain assertions
that retract some conditions needed to derive P’s reduction. The reduction axiom
assumes prefix-guarded choice. We want our semantics to apply to the full calculus,
without limiting the syntax to prefix-guarded case statements.

But first, a few auxiliary definitions. The reduction contezrts are the contexts
in which communicating processes may occur:

Definition 10 (Reduction contexts). The reduction contexts, ranged over
by C, are generated by the grammar

C:=Ps (process) ] (hole)
C | C (parallel) caseg:Pg ¢ :C[¢": Qg (case)
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P=Q Q — @ Q =P P — Q

STRUCT SCOPE
P — P (va)P — (va)@

Crrxr VM- N K=L[Z:=T] V¢e&conds(C). ¥+ ¢
() | C[M K.P, NOZ)L.Q] — (¥) | P| Q[ :=T] | ppr(C)

Table 2. Reduction semantics. Here ¥ abbreviates the composition ¥; @ ¥2 ® ..., and

(¥) abbreviates the parallel composition (¥1) | (¥2) | ...—for empty sequences they
are taken to be 1 and O respectively.

Let H(C) denote the number of holes in C. C[Pg) denotes the process that results

from filling each hole of C with the corresponding element of Pg, where holes are
numbered from left to right; if H(C) # |Pg|, C[Pg] is undefined.

We let structural congruence = be the smallest equivalence relation on pro-
cesses derivable using Theorems 1 and 2. The conditions conds(C) and parallel
processes ppr(C) of a context C' are, respectively, the conditions in C' that guard
the holes, and the processes of C' that are parallel to the holes:

ppr(Pe) = P ppr([]) =0 ppr(C1 | Cz) = ppr(C1) | ppr(C2)
ppr(case &: P | ¢': C | ¢" : Q) = ppr(C) conds(Pg) = 0
conds([]) =0 conds(C1 | Co) = conds(C1) U conds(Cy)

conds(case 3: Pe | ¢ 1 C ¢ : Qc) = {¢'} U conds(C)

Definition 11 (Reduction semantics). The reduction relation — C P x P
is defined inductively by the rules of Table 2.

In words, CTXT states that if an input and output prefix occur in a reduction
context, we may derive a reduction if the following holds: the prefixes are
connected in the current assertion environment, the message matches the input
pattern, and all conditions guarding the prefixes are entailed by the environment.
The ppr(C) in the reduct makes sure any processes in parallel to the holes are
preserved.

Theorem 4. P — P’ iff there is P" such that 1 > P s P" and P" = P’

For barbed bisimulation, we need to define what the observables are, and
what contexts an observer may use. We follow previous work by Johansson et
al. [15] on weak barbed bisimilarity for the original psi-calculi on both counts.
First, we take the barbs to be the output labels a process can exhibit: we define
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P l3tan (P exposes M(va)N) to mean 3P 1 > P MEDN, P We write
P |47 for da, N.P iM(VZ)Nv and P |}, for P 5 |,. Second, we let observers
use static contexts, i.e. ones built from parallel and restriction.

Definition 12 (Barbed bisimilarity). Barbed bisimilarity, written ~ , is

barb
the largest equivalence on processes such that P br;b Q implies
ar

1. If P iﬂ(ua)z\r and a#Q then Q Vatayn (barb similarity)

2. If P — P’ then there exists Q' such that Q — Q' and P’ b&b Q'
ar

(reduction simulation)
3. (va)(P | R) bf;b (va)(Q | R) (closure under static contexts)

Our proof that barbed and labelled bisimilarity coincides only considers psi-
calculi with a certain minimum of sanity and expressiveness. This rules out some
degenerate cases: psi-calculi where there are messages that can be sent but not
received, and psi-calculi where no transitions whatsoever are possible.

Definition 13. A psi-calculus is observational if:

1. For all P there are Mp, Kp such that F(P)+ Mp = Kp and not P l}Kfp.
2. If N=(Ty) M and y#M and T,y are distinct then M[Z :=y] = N.

The first clause means that no process can exhaust the set of barbs. Hence
observing contexts can signal success or failure without interference from the
process under observation. For example, in the pi-calculus Mp, Kp can be any
name z such that x#P. The second clause states that for swapping of distinct
names, substitution and permutation have the same behaviour. Any standard
definition of simultaneous substitution should satisfy this requirement. These
assumptions are present, explicitly or implicitly, in the work of Johansson et
al. [15]. Ours are given a slightly weaker formulation.

We can now state the main result of this section:

Theorem 5. In all observational psi-calculi, P b&b Qiff P~1 Q.
ar

4 Expressiveness

In this section, we study two examples of the expressiveness gained by dropping
symmetry and transitivity.

4.1 Pi-calculus with preorders

Recall that pi-F [25] extends the pi-calculus with name equalities (z = y) as
first-class processes. Communication in pi-F gives rise to equalities rather than
substitutions, so e.g. zy.P | Tz.Q reduces to y = z | P | Q: the input and output
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objects are fused. Hirschkoff et al. [11] observed that fusion and subtyping are
fundamentally incompatible, and propose a generalisation of pi-F called the
pi-calculus with preorders or wP to resolve the issue.

We are interested in mP because its channel connectivity is not transitive. The
equalities of pi-F are replaced with arcs a/b (“a is above b”) which act as one-way
fusions: anything that can be done with b can be done with a, but not the other
way around. The effect of a communication is to create an arc with the output
subject above the input subject, so z(y).P | Z(2).Q reduces to (vzy)(z/y | P | Q).
We write < for the reflexive and transitive closure of the “is above” relation. Two
names x,y are considered joinable for the purposes of synchronisation if some
name z is above both of them: formally, we write Y y for 3z.x < 2 Ay < z.

Hirschkoff et al. conclude by saying that “[it] could also be interesting to study
the representation of 7P into Psi-calculi. This may not be immediate because
the latter make use of on an equivalence relation on channels, while the former
uses a preorder” [11, p. 387]. Having lifted the constraint that channels form
an equivalence relation, we happily accept the challenge. We write WP for the
psi-calculus we use to embed wP. We follow the presentation of 7P from [12,13],
where the behavioural theory is most developed.

Definition 14. The psi-calculus WP is defined with the following parameters:

TEN Ce{z<y:z,yeN}u{zYyy: 2,y N}
A2P({x<y:2,yeN}) 12{} ® £U
52y F £ the relation denoted - in [13].

The prefix operators of 7P are different from those of psi-calculi: objects are
always bound, communication gives rise to an arc rather than a substitution, and
a conditional silent prefix [p]7.P is included.? These are encodable as follows:

Definition 15 (Encoding of prefixes). The encoding [-] from 7P to WP is
homomorphic on all operators except prefizes and arcs, where it is defined by

[a/b] = (b < a) [a(y).P] = (vay)(@z.((z < o) | [P]) where x3ty, P
la(y).P] = (vy)(a(Ax)z.([y < =) | [P])) where z#y, P
[[¢]7.P] = case ¢ : (vz)(z(Ax)z.0 | Tz.[P]) where x#P

This embedding of 7P in psi-calculi comes with a notion of bisimilarity per
Definition 9. We show that it coincides with the labelled bisimilarity for «P
(written ~) introduced in [12,13].

Theorem 6. P ~ Q iff [P] ~ [Q]

2 We ignore protected prefixes because they are redundant, cf. Remark 1 of [12].
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Thus our encoding validates the behavioural theory of 7P by connecting it
to our fully mechanised proofs, while also showing that a substantially different
design of the LTS yields the same bisimilarity. We will briefly compare these
designs. While we do rewriting of subjects in the prefix rules, Hirschkoff et al.
instead use relabelling rules like this one (mildly edited to match our notation):

p 2D p F(P)Fa<b
p Y@, p

An advantage of this rule is that it allows input and output labels to be as simple
as pi-calculus labels. A comparative disadvantage is that it is not syntax-directed,
and that the LTS has more rules in total. Note that this rule would not be a
viable alternative to provenances in psi-calculi: since it can be applied more than
once in a derivation, its inclusion assumes that the channels form a preorder
wrt. connectivity.

7P also has labels [¢]7, meaning that a silent transition is allowed in environ-
ments where ¢ is true. A rule for rewriting ¢ to a weaker condition, similar to
the above rule for subject rewriting, is included. Psi-calculi does not need this
because the PAR rules take the assertion environment into account. 7P transitions
of kind P &7, pr correspond to WP transitions of kind {p} > P -~ P’

Interestingly, the analogous full abstraction result fails to hold for the em-
bedding of pi-F in psi-calculi by Bengtson et al. [1], because outputs that emit
distinct but fused names are distinguished by psi-calculus bisimilarity. This issue
does not arise here because P objects are always bound; however, we believe the
encoding of Bengtson et al. can be made fully abstract by encoding free output
with bound output, exploiting the pi-F law ay.Q ~ a(z)(Q | x = y).

4.2 Mixed choice

This section will argue that because we allow non-transitive channel connectivity,
the case operator of psi-calculi becomes superfluous. The formal results here will
focus on encoding the special case of mixed choice. We will then briefly discuss
how to generalise these results to the full case operator.

Choice, written P + @, is a process that behaves as either P or Q). In psi-
calculi we consider P + @ to abbreviate case T : P [| T : @ for some condition
T that is always entailed. Mized choice means that in P + @, P and ) must
be prefix-guarded; that is, the outermost operators of P, () must be input or
output prefixes. In particular, mixed choice allows choice between an input and
an output. There is a straightforward generalisation to n-ary sums that, in order
to simplify the presentation, we will not consider here.

Fix a psi-calculus P = (T, A, C,F, ®,1,-) with mixed choice; this will be
our source language. We will construct a target psi-calculus and an encoding such
that the target terms make no use of the case operator. The target language
E(P) adds to T the ability to tag a term M with a name z; we write M, for the
tagged term. We write o, for tagging the subject of the prefix a with x. Tags are
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used to uniquely identify which choice statement a prefix is a summand of. As
the assertions of £(P) we use A x Pan(N), where Pin(N) are the disabled tags.

The encoding [] from P to £(P) is homomorphic on all operators except
assertion and choice, where it is defined as follows:

[ = (@, 0)  [e.P+B.Q = (va)(ow. (TP [ (1, {x})) | Be-([QT | (1, {x}))

where x#a, 8, P, Q. If we disregard the tag x, we see that the encoding simply
offers up both summands in parallel. This clearly allows all behaviours of a..P +
B.Q, but there are two additional behaviours we must prevent: (1) communication
between the summands, and (2) lingering summands firing after the other branch
has already been taken. The tagging mechanism prevents both, as a consequence
of how we define channel equivalence on tagged terms in £(P):

Y,N)FM, 5N, fovFM-S>Nandez#yandz,y¢ N

That is, tagged channels are connected if the underlying channel is connected. To
prevent (1) we require the tags to be different, and to prevent (2) we require that
the tags are not disabled. Note that this channel connectivity is not transitive,
not reflexive, and not monotonic wrt. assertion composition—not even if the
source language connectivity is.

Theorem 7 (Correctness of choice encoding).

1. If > P % P’ then there is P" such that (¥,0) > [P] = P” and
P Xy [P']-

2. If (W,0) > [P] = P’ then there is P" such that W > P %% P" and
P ’:’(W,Q)) [[P”]].
3. P21 Qiff [P] ~,0) [Q]

Here a; denote the label a with all tags removed. It is immediate from Theorem 7
and the definition of [_] that our encoding also satisfies the other standard quality
criteria [10]: it is compositional, it is name invariant, and it preserves and reflects
barbs and divergence.

In the original psi-calculi, our target language is invalid because of non-
transitive connectivity. If we remove the requirement that tags are distinct, and
only allow separate choice (where either both summands are inputs or both
summands are outputs), the encoding is correct for the original psi-calculi.

These results generalise in a straightforward way to mixed CASE state-
ments case ¢ : a.P [ g2 : 5.Q by additionally tagging terms with a condition,
ie. M, ,,, that must be entailed in order to derive connectivity judgements
involving the term. The generalisation to free choice, i.e. P+ @ where P, can
be anything, is more involved and sacrifices some compositionality. The idea is
to use sequences of tags, representing which branches of which (possibly nested)
case statements a prefix can be found in, and disallowing communication between
prefixes in distinct branches of the same CASE operator.
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5 Conclusion and related work

We have seen how psi-calculi can be conservatively extended to allow asymmetric
and non-transitive communication topologies, sacrificing none of the bisimulation
meta-theory. This confers enough expressiveness to capture a pi-calculus with
preorders, and makes mixed choice a derived operator.

The work of Hirschkoff et al. [11] is closely related in that it uses non-transitive
connectivity; see Section 4.1 for an extensive discussion.

Broadcast psi-calculi [5] extend psi-calculi with broadcast communication
in addition to point-to-point communication. There, point-to-point channels
must still be symmetric and transitive, but for broadcast channels this condition
is lifted, at the cost of introducing other side-conditions on how names are
used: broadcast prefixes must be connected via intermediate broadcast channels
which have no greater support than either of the prefixes it connects, precluding
language features such as name fusion. We believe provenances could be used to
define a version of broadcast psi-calculi that does not need this side-condition.

Kouzapas et al. [16] define a similar reduction context semantics for (broadcast)
psi-calculi. Their reduction contexts requires three kinds of numbered holes with
complicated side-conditions on how the holes may be filled; we have attempted to
simplify the presentation by having only one kind of hole. While (weak) barbed
congruence for psi-calculi has been studied before [15] (see Section 3.2), barbed
congruence was defined in terms of the labelled semantics rather than a reduction
semantics, thus weakening its claim to independent confirmation slightly.

There is a rich literature on choice encodings for the pi-calculus [10,20,21,22,23],
with many separation and encodability results under different quality criteria for
different flavours of choice. Encodings typically require complicated protocols
and tradeoffs between quality criteria. Thanks to the greater expressive power
of psi-calculi, our encoding is simpler and satisfies stronger quality criteria than
any choice encoding for the pi-calculus. Closest to ours is the choice encoding of
CCS into the DiX calculus by Busi and Gorrieri [6]. DiX introduces a primitive
for annotating processes with conflict sets, that are intended as a generalisation
of choice. Processes with overlapping conflict sets cannot interact, and when
a process acts, every process with an overlapping conflict set is killed. These
conflict sets perform the same role in the encoding as our tags do. We believe the
tagging scheme used in our choice encoding also captures DiX-style conflict sets.
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Appendix

This appendix contains proofs of the formal claim made in the paper, as well as
some comments on the accompanying Isabelle formalisation.

Notes on the formalisation

Regrettably, a discussion of the Isabelle formalisation did not fit within the page
budget.

The Isabelle formalisation can be downloaded from https://github.com/
IlmariReissumies/newpsi. The current version runs on Isabelle2018 using the
HOL-Nominal logic. To start Isabelle with the HOL-Nominal logic loaded the
command-line invocation is

isabelle jedit -1 HOL-Nominal

The semantics and induction principles are defined in the theory file Semantics.
Note that since frames in the formalisation take a type parameter — that is,
’a frame extends the nominal datatype ’a with a binding sequence — prove-
nances are modelled by the type ’term frame frame option. This corresponds
to an arbitrary nominal datatype (the locale parameter representing terms) ex-
tended with an inner and outer binding sequence, and the additional value None
which encodes L.

The requisites of psi-calculi are the various locale assumptions scattered
throughout the theory files: see in particular Subst_Term for substitution laws, and
Frame for monoid laws of ®. Confusingly, even though there are no assumptions
on channel connectivity other than equivariance, for historical reasons it is still
written with an Isabelle notation similar to <+, which suggest bidirectionality
even though it is not in general symmetric.

Lemma 1 is the conjunction of input_provenance and output_provenance
from Semantics.

The clauses of Theorem 1 are proven in the theory file Bisim Pres, except
for Theorem 1.3 which is is Bisim_Struct_Cong.bisim_bang pres. The clauses
of Theorem 2 can be found in the theory file Bisim_Struct_Cong.

Theorem 3 is the conjunction of the theorems old_semantics_sound and
old_semantics_complete from 0ld_Semantics; and old_bisim_eq bisim from
01d Bisimulation. Note that the precondition that connectivity is transitive and
symmetric is present as locale assumptions in the locale 01d_Semantics.old psi.
This locale contains a copy of Bengtson’s original definition of the psi-calculi
semantics, renamed so as to avoid naming conflicts with our new one.

Finally, the formalisation of bisimulation congruence alluded to in the paper
resides in Bisim_Subst.

The formalisation uses Bengtson’s formalisation of the original psi-calculi
as a starting point. Almost all proofs are different in some way; in some cases
for purely syntactic reasons (provenances must now be considered), but often
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for more interesting reasons related to the loss of symmetry and transitivity,
particularly in the congruence proofs for bisimilarity.

One of the most difficult parts of the old proofs was the case when a com-
munication is to be derived between P with subject M and @ with subject K
and ¥ @ Vp @¥g F M’ <5 K, and Q is swapped for a bisimilar process R; In
particular, this requires finding a subject M’ such that ¥ @ ¥p @ W+ M' <+ K
and M’ is fresh for F(P). This is proved to be possible by a laborious process in
the switching lemma [1, Lemma 5.11], where the main thrust of the proof idea is
that we can always choose as M’ the prefix that R used to derive its transition.
With our semantics, this exercise is unnecessary: by construction, P’s subject is
already @’s prefix, and R’s prefix is already present in the provenance.

There is one spot where, interestingly, the introduction of provenances com-
plicates proofs that were previously fairly routine: the proof that replication
preserves bisimulation. Suppose P ~ @) and !P derives a 7 transition from com-
munication between two unfolded copies of P, with input subject M and output
subject K. We need to mimic the same communication between two copies of @,
but after using P ~ @ to match the input transition, the subject M is not useful
to derive a communication since it is P’s provenance, not Q)’s. In order to obtain
eligible subjects M’, K’ we need to repeatedly apply Lemma 1, and relabel the
transitions using Semantics.comml_aux and Semantics.comm2_aux.

Pi-calculus with preorders

Readers of this section would do well to acquaint themselves with the work of
Hirschkoff et al. [12,13], from which we will freely use definitions and theorems
without restating them here. In particular, we will use «, 5 to range over protected
names, and sometimes use the extension of F to protected names, even though
the psi-calculus instance does not use them.

Definition 16. The psi-calculus WP is defined with the following parameters:

T2N CE{z<y:myeNyu{rYy:z,ye NJUT
AL Bu({r <y o,y €N 12 @2
4 - £ the relation denoted \- in [13].

T is outside the scope of the relation b in [13]; here we let W = T hold for all W.

Note that T is used to encode the choice of 7P, as par the section on mixed
choice. Technically this is just a convenience since we may use any reflexive arc
as condition guard in place of T, at the cost of either name invariance or the
homomorphic translation of choice.

All statements about psi-calculi made in this section shall be taken to refer to
the psi-calculus WP. We will sometimes overload ¥ as shorthand for a nP parallel
composition Il ey, where the ¢s may occur in any order.
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The main result, that psi-calculus bisimilarity on encoded terms coincides
with 7P bisimilarity on source terms, is an immediate corollary of Lemmas 16-17.

Lemma 2. UP is a valid psi-calculus.

Proof. Commutativity, associativity and identity are immediate from the corre-
sponding laws about U.

For compositionality, we know that ¥ ~ ¥’ and need to show that WU¥" F ¢
implies ¥ UP" |- ¢ (the proof for the < direction is the same). We proceed by
induction on the derivation of the judgement ¥ U¥’ I . We have formalised this
proof in Isabelle. All cases are trivial; in the base case of F_x where o € ¥ U W¥”,
we use static equivalence in the subcase where ¢ € W.

Lemma 3. IfVp e WU+ ¢ and W'+ ¢’ then ¥+ .

Proof. By induction on the derivation of ¥’ | ¢’. In the 1y case, we have ¢’ € ¥’
and the desired result follows from the premise Vo € ¥/ & F .

Lemma 4 (Monotoniticy of F). If U - ¢ then U @ ¥’ + .
Proof. By induction on the derivation of ¥ - .

Lemma 5. If W UY' + ¢ and ¥, ¥ are finite then there exists finite W1,V
such that ¥1,¥] and ¥+ ¥ and W'+ W] and &1 VP F ¢ and n(¥1) Un(¥]) C
n(p) U (n(¥) N n(¥')).

Proof. By induction on the derivation of the judgement ¥ U¥’ I . In the Frpaxs,
Fiomw and Fexrjon cases we use the fact that if ¥ - ¢ and ¥ is finite and ¢ is
not reflexive then n(¢) C n(¥).

Lemma 6. F([P))F e iff P>

Proof. <= By induction on the derivation of P > ¢. In the > pyr—1 and >pgr—pg
cases we use monotonicity of F. In the >cousmwe case, we have P > ¥ and
¥ + ¢; by the induction hypothesis we have Vo' € W.F([P]) F ¢'. Let
F(P)) = (Vgﬂpﬂ)%pﬂ where gﬂpﬂ#g/7 @, P. By definition of I on frames we
have Yp) = ¢’ for all ¢’ € ¥'. By Lemma 3 we get ¥py - ¢; F([P]) - ¢
follows by definition of frame entailment.

= By induction on P. The interesting case is parallel composition, where
P = Q| R. Fix frames F(Q) = (vbg)¥% and F(R) = (vbr)¥r such that
bQ#WR, bR, Q, R,y and bR#WQ, bQ Q, R, . Since ¢ is sufficiently fresh we
have ¥y U g F ¢. By Lemma 5 we obtain finite ¥, ¥’ such that ¥ @ ¥’ I ¢
and ¥ F ¥ and ¥ F ¥ and n(¥) Un(¥’) C n(p) U (n(%) Nn(¥g)). By
definition of freshness and the freshness assumptions of the frame binders
bQ, b r we have bQ, b r#V, ¥’ which means these facts can be observed outside
the frame binders: F(Q) !P and F(R) F ¥'. By the induction hypothesis
we obtain Q > ¥ and R > ¥’. By repeatedly applying > pg,_ 1, and I>pgr_ g
we get Q | R>W UW'; by rule I>combine it follows that P = Q | R> .
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Lemma 7. (y < y) ~g 0
Proof. Easy since F(0) -y < y.

Lemma 8. [fWUa <bkFdY b and b#Y and d # b and ¥ is a finite set of <
axioms then ¥+ d < a.

Proof. W Ub/a t d Y b must have been inferred by a chain of non-reflexive <
judgements ag < a1 < -+ < an and by < by < --- < by, such that ag =d, bg = b
and a,, = b,, and each a; < a;+1 or b; < b; 41 is an element of ¥ Ua < b. Since
nothing is above b, m = 0 and a,, = b. Thus the arc from a,,_1 < a,, can only be
a < b, which suffices.

Lemma 9. If ¥ > P —~— P and P ~y Q and F(P) = (vbp)¥p and
(l/bp;g)b
bp,Z#V, P,a,z,Q and bp#z and Y U¥p - b < a and
F(Q) = (vbq)¥o and bo#¥, P,a,x,Q,bp, %
then there is y, ¢, Q" such that y#¥, P,a,z,Q,bp,bg and ¥ > Q f—x> Q'
(vbg;y)e
and P! ~g Q' PUW Fc<a.

Proof. Pick a name d that is fresh for all names under consideration. Using
YUY b < awemay infer W UWp Ua < d F b Y d and, using lemma
Semantics.comml_aux or Semantics.comm2_aux as the case might require, ¥ U

a<d>P ~4—1> P’ . By simulation we have ¥ Ua < d > [Q] 4z, Q'
(vbp;2)b T

and P’ “gyg<d Q. By Theorem 1, P’ | (vd)(a < d) ~¢ Q' | (vd)(a < d) and,

because (vd)(a < d) ~1 0, P’ <~y Q. We may then use Lemmas 1 to find a

sufficiently fresh provenance connected to d, and Lemma 8 to conclude that this

provenance is below a.

Lemma 10. If F([P]) = (vbp)¥p and W UWp b o <y and bp#W,~ then there
exists B such that W UWp F B <~ and ¥p - a < B and bp#L.

Proof. By induction on the structure of P, using either Lemma 13 or 14 of [13]
for each restriction depending on whether it binds into « or not.

Lemma 11. If F([P]) = (vbp)¥p and F([Q]) = (vbq)¥ and ¥ UWe U, - aY'b
and ZP#EQ, Y,¥,b and EQ#WQ, U, a and ¥ is finitely supported with no Y axioms,
then there exists «, B such that gp#oz and EQ#ﬂ and¥pt-a < aand¥ b <p
and VU%p U¥% FaY .

Proof. By case analysis.

— If a#gp and b#gQ we can choose o = a and 8 = b.

— If a#bp and b € n(P) we can choose a = a. Since ¥ U ¥p U ¥, contains
only < judgements, ¥ U¥p U ¥y - a Y b must be derivable via a chain of
non-reflexive judgements ag < a3 < ... < a, and by < b; < ... < b, with



Psi-Calculi Revisited: Connectivity and Compositionality 23

an = by, and ag = a and by = b, where each a; < a;41 is an axiom of either
LD, WP or WQ.
If there exists a least ¢ such that b; < b;41 and bi+1#gp, pick B8 = b;y1.
Otherwise, if there exists a greatest j such that a; < a;41 and aj#gp, pick
B ={a;}. If no such ¢ or j can be found we have a contradiction because
apg = CL#ZP.

— The remaining two cases are similar.
Lemma 12. If P ~ Q then Pla :=b] ~ Q[a :=b]

Proof. Assume a # b; if not there is nothing to prove. We can prove that
(va)(a/b| b/a | P) ~ Pla :=b], in two steps.

First, we prove Fa/b | b/a | P =F a/b|b/a | Pla :=b] by induction on the
structure of P, using laws L11-L16 of [13, Table 2] to replace all free occurrences
of b with a in the leftmost P.

Second, - (va)(a/b|b/a| P) = (va)(a/b|b/a| Pla :=b]) = Pla :=b] follows
by scope extension and L23, and (va)(a/b | b/a | P) ~ Pla :=b] by transitivity
and soundness of the axiom scheme.

Thus by transitivity it suffices to prove (vb)(a/b | b/a | P) ~ (vb)(a/b | b/a | Q),
which follows immediately because ~ is a congruence.

Lemma 13. If [P] ~1 [Q] then [P]la :=b] ~1 [Q][a :=b].

Proof. (Sketch) Along the same lines as Lemma 12, but instead of going via an
axiomatisation we use the arcs a/b and b/a to mimic transitions by reconstructing
connectivity judgements, and thus channel subjects. The idea is that any sequence
of arcs in P that is broken by the substitution Pla :=b] because it goes via a
can be reconstructed by going via b instead. Note that communication objects
are not affected by the substitution because all outputs are bound in the range
of the encoding.

Lemma 14. If¥ > P 2% P’ and x#a, P,¥ then ¥ > P 2% P/ :=z].
Proof. A straightforward induction on the derivation of the transition.

Lemma 15 (Operational correspondence).

1. If P @), prognd C is finitely supported then there is P//,gp,yv/p,b such

that 1 > [P] —=— P" and [P'] ~1 P" and F([P]) = (vbp)¥p and
(vbp;e)b

EP#P,a,x,P’,P”,C and Yp F b < a.
2. If P 1@, prognd O is finitely supported then there is P”,gp,g/p, b such

that 1 > [P] —2%— P" and [P'] ~1 P" and F([P]) = (vbp)¥p and
(vbp;e)b

bp#P,a,z, P, P",C and ¥p - b Y a.
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3. If P @), proand C is finitely supported then there is P",Zp,u'/p,b such
that 1 & [P] Y% P and [P'] <1 P" and F([P]) = (vbp)¥p and

_ (vbp;e)b
bp#P,a,C and Yp b < a.

4. If P @ prognd O is finitely supported then there is P",bp, Wp,b such
that 1 > [P] —Y2%% P and [P'] %1 P" and F([P]) = (vbp)¥p and

(VEP§5)b
bp#P,a,C and Up b Y a.
5. IfP Lel7y pr then there is P" such that o> [P] = P" and [P'] | [¢] *1
Pl o
6. If o> [P] (UZ;—~Z)IJ> P andy#P, ¥ and F([P]) = (wbp)¥p andbp,Z#¥, P,a, 8,y
and ¥p b < B then there is P" such that n(8) C n(P) and P LW, pr gnd
[Py =] ~g P'.

7. If 0 > [P] U P oand F(P]) = (vbp)¥p and bp, 340, P,a, § and

(vbp;2)b
Up b < B then there is P" such that n(8) C n(P) and P 2w, prgnd
[[PUH Ly P
8. If v > [P] % P’ then there exists P" ¢ such that P Ll prand
WU F([P]) F ¢ and [P"] ~y P

Proof. The clauses are proved in order and do not depend on subsequent clauses;
hence the proofs of later clauses may use the earlier clauses.

1. By induction on the derivation of P a(@), pr,

In We have a(y).P ate), (vy)(z/y | P) and x#a,y, P. By rules IN and RES
(assuming y is chosen sufficiently fresh) we can derive

x

15> (vy)(a(Aa)e(ly <2) | [PD) == (vy)(ly <) | [P])

The side-conditions are vacuous: frame freshness because there are no
frame binders, bisimilarity of derivatives because they are syntactically
equal, and the arc 1 F a < a by rule Fryp;.

In-> We know that P 2%, P’ and P>a < b. By the inductive hypothesis
there is P”,bp,¥p, ¢ such that 1 > [P] ——— P" and [P'] ~4 P”

(vbp;e)e

and F([P]) = (vbp)¥p and bp#P,a,z,P',P" b,C and ¥p F ¢ < a.
By Lemma 6 and definition of frame entailment, ¥» - a < b. By rule
Frrans We have ¥Yp F ¢ < b, and by oy we have ¥p F ¢ Y b. By lemma
Semantics.comm2_aux from the Isabelle formalisation we obtain

15 [P] —22 P

(vbpse)c

Res By rule REs and Theorem 1.



Psi-Calculi Revisited: Connectivity and Compositionality 25

Par-L By rule PARL and Theorem 1.
Par-R By rule PARR and Theorem 1.
Sum By rule CASE and Theorem 1.

2. By induction on the derivation of P 1@, pr The only case where the
proof differs from the case of unprotected inputs is for the IN-r> rule. Here
there are two subcases. _

— P % prand Pab. By Lemma 15.1 we obtain P”,bp,¥p, ¢ such
that 1 > [P] ——— P” and [P'] ~1 P” and F([P]) = (vbp)¥ and
(vbpse)c
bp#P,a,z,P',P" b,C and ¥p F ¢ < a.
By Lemma 6 and definition of frame entailment, ¥p F a Y b. By rule
Fexr-jon We have ¥p F ¢ Y b. By lemma Semantics.comm2_aux from the
Isabelle formalisation we obtain

15 [P] 22 P
(vbp;e)e
—p 9@ prand Peb < a By the induction hypothesis we obtain

P" bp,¥p,c such that 1 > [P] ——— P” and [P'] ~1 P" and

(vbp;e)c
F([P]) = (vbp)¥p and bp#P,a,z,P’',P" b,C and ¥p - ¢ Y a.
By Lemma 6 and definition of frame entailment, ¥p - b < a. By rules
Fexr-Jomn and Fanrror We have Up F ¢Yb. By lemma Semantics. comm2_aux
from the Isabelle formalisation we obtain

15 [P] —22— P

(vbp;e)c

3. By induction on the derivation of P @), P’ The proofs are the same as

for the input case.

4. By induction on the derivation of P 1)@, pr The proofs are the same as

for the input case.

5. By induction on the derivation of P Lelm, pr,

Tau Here [p]T.P Lol pr Using rules IN, OuT, CoM, RES and CASE

we can derive ¢ > case ¢ : (va)(z(Az)z.0 | Tz.[P]) % (vz)(0 | [P])-
[P] | Tl ~1 (vz)(0| [P]) | [¥] follows by Theorem 2 (using z#P and
hence z#[P] to push the restriction down to 0).

Comm-L We know that P 22, P’ and Q ba), @'. By the first
two clauses of Lemma 15 we obtain bp, ¥p, bg, ¥y, ¢,d, P”, Q" such that
1> [P] —2— P”and [P'] ~1 P” and F([P]) = (vbp)¥ and

(vbpse)c

EP#P7Q,Q/7a7bax7P/7P//7gQ5WQ and Wpl—c<aand1 > [[Q]] M

(vbg;e)d
Q" and [Q'] ~1 Q" and F([Q]) = (vbg)¥ and bo#Q,a,b,C, P, P",
P" ¥ and [Z6) Fd=<b.



26

Johannes Aman Pohjola

By monotonicity of - and lemma Semantics.transfer_frame from the
formalisation, we can strengthen the frames of the transitions to

VoUW > [P] —=— P"

(vbp;e)e

and _
b(vz)z

Tp U > [Q] Q"

(vbg;e)d

where ¥ = {a < e,b < e} for some e fresh for all names under consid-
eration. By monotonicity of - we have that ¥p U¥o UV I ¢ < a and
UpUWo UV I-d < b. By Fratjoin and Farirrer we then have that the
provenances are joinable:

WpUWQUWl—CYd

This lets us use lemmas Semantics.comml_aux and Semantics.comm2_aux
from the formalisation to relabel the transitions as follows:

Vo UV > [P] —25 P

(vbp;e)c

and _
QP U w > [[Qﬂ b(uz)m Q//

(VEQ;E)d

By rule CoMm we can derive
v e [P QD 5 (v)(P” | Q)

Since (ve)¥ ~1 a Y b, All that remains is to show that (vz)(P” | Q") ~y
(vz)([P'] | [Q']), which follows from P” <9 [P’] and Q" ~1 [Q'] by
Theorems 1-2 and extension of arbitrary assertion.

Comm-R This case is symmetric to COMM-L.

Tau-> Follows from lemma Semantics.transfer_frame from the Isabelle
formalisation.

Res By rule REs and Theorem 1.

Par-L By rule PARL and Theorem 1.

Par-R By rule PARR and Theorem 1.

By structural induction on P, followed by inversion on the derivation of the

transition from [P].

P =a(x).QQ We know that ¥ > [P] % (vz)((z < y) | [Q])- Because

Up = {} it must be the case that either 3 = a or 8 = {a}. In either
case, we may choose a fresh name z and derive—by rule IN and, if 3 is
protected, IN-r>—the following:

P 2% (va)(z/z | Q)

The remaining conjuncts are easily discharged: support inclusion by
n(5) = {a} C n(P), bisimilarity because of reflexivity and freshness of y.
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P = (vz)Q The transition from [P] must have been derived by the RES

rule. We thus know that ¥ > @ —> Q' where z#V¥,a,x, 3,y and

(vbQiZ)b

y#P, ¥ and F([Q]) = (vbg)¥% and by, z, 2#Y, P, B,y and ¥ - b < (.
Using y#z we get y#Q.

By applying the induction hypothesis we obtain @’ such that Q LION Q"
and n(8) C n(Q) and [Q"]|y :=x] ~¢ Q'. Because z#0,y we can derive
(v2)Q B), (v2)Q". By Theorem 1, (v2)([Q"][y := z]) ~w Q'. To
conclude it suffices to note that (vz)([Q"][y :=z]) = ((v2)[Q"])]y :=x]
because y, x#z.

P =@ | R We consider only the case where the transition was derived via
tha PAR-L rule (the other case is symmetric). In other words, we have
that N
Ul > [Q —— Q y#P.Q.¥ and F([Q]) = (vho)¥p and

(vbq;2)b
F([R]) = (vbr)¥g and bg,br,2#¥,Q, R, 3,y and br#bg,b, z, ¥, and
Yo Udr b= B.
By Lemma 10 there is «y such that Yo Ub < v and ¥ U ¥ry <  and
QY-

By the induction hypothesis there is Q” such that Q 2W), Q" and

[Q'y :=z] ~¢ Q" and n(vy) C n(Q). The latter yields br#~, which

suffices to derive P | R> v < (. By rules PAR-L and IN->, Q | R LION
Q"I R
Because y#R, Theorem 1 yields [Q” | R][y :=x] ~¢ Q" | R.

P = X, .m;.P; Similar to the case for input, using also rule CASE to derive
the matching transition.

. Analogous to the input case, but easier because we only deal in bound outputs;
hence no need to consider a substitution.

. By structural induction P, followed by inversion on the derivation of ¥ >
[[P]] — P’. The interesting case is when P = @ | R and the transition from

a(vx)z Q/
(vbo;2)b

and PU¥, > [R] —=— R and F([Q]) = (vbo)¥ and F([R]) = (vbr)¥
(vbr:)b

and bQ#W,Q,R,a,z,%bR,WR and bR#W,Q,R, b, ZER,WQ and z#V¥, R and

z,y are similarly fresh.

By Lemma 1 ¥ U% U%ra Y b. By Lemma 11 we get o, 3 such that bg -0 <

and br - a < 8 and bo#a and br# B and Y UPr U¥p - a Y B.

By Lemmas 15.6 and 15.7 (instantiated with the identity substitution) we can

derive Q”, R” such that Q@ —= GICIN Q" and R == R’ and [Q"] ~vuw, Q'

and [R"] ~yug, R and n(a) € n(Q) and n(ﬁ) C n(R). By Theorem 1 and

Theorem 2, [(vz)(Q" | R")] ~¢ (vz)(Q" | R').

[P] is derived via the CoM rule. There we have that WUWg &> [Q]
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laYg]T

By ComMm-L, Q | R —== (vz(Q" | R”). It suffices to show that WUF(P) -
a Y 3; this follows from ¥ U¥r U¥, = o Y B and the fact that «, 3 are fresh
wrt. the frame binders.

Lemma 16. If P ~ Q then [P] ~1 [Q].

Proof. By showing that R = {(P, Q).[P] ~1 [Q]} is a bisimulation relation. We
consider each kind of transition label separately, ignoring the cases for output
(which are similar to, but easier than, input):

— We know that Pr>¢. By Lemma 6 we obtain F([P]) F ¢. By static equivalence
F([Q]) F ¢, and by Lemma 6 we conclude Q > .
— We have P 2%, P/ and [P] %4 [Q]. By Lemma 15 there is P, bp, ¥p, b

such that 1 > [P] ——— P’ and [P'] ~; P” and F([P]) = (vbp)¥p
(vbp;e)db

and bp#P,a,z, P, P",Q and ¥p - b < a.
By Lemma 9 (choosing suitably fresh frame binders for [Q]) we obtain
1> Q —~— Q" such that Yy Fc<aand P~ Q.
(vbg;y)e

By Lemma 15.6 (choosing y = z) we conclude that there is @ — Q' such
that [Q'] ~1 Q"[x :=2] = Q”. that [P'] ~1 [Q’] follows by associativity
and commutativity.

— We have P 14, prangd [P] ~1 [Q]. By Lemma 15 there is P”,bp, ¥p, b

such that 1 > [P] ——— P” and [P'] ~1 P” and F([P]) = (vbp)¥p
(vbp;e)b

and bp#P,a,z,P',P",Q and Up F b Y a.

By simulation and Lemma 1, we obtain Q”, ¢ such that 1 > [Q] ——— Q"
(hoiZ)e
and Yo F a Y ¢ = ¢ < {a} for some suitable fresh frame binder bg. By

Lemma 15.6 (choosing y = z) we conclude that there is Q SCIN Q' such
that [Q'] ~1 Q"[x :=z] = Q". That [P'] ~1 [Q'] follows by associativity
and commutativity.

— We know that P &7 P’ and [P] ~1 [@Q]. By Lemma 15 there is P”
such that ¢ > [P] - P"” and [P'] | [¢] ~1 P" | [¢]- By extension of

arbitrary assertion and simulation, there is Q" such that ¢ > [Q] — Q"
and P" <, Q". From Lemma 15 we obtain @', ¢’ such that [Q'] ~, Q" and

Q Lele, Q' and ¢ U F(P) F ¢’ By Lemma 6 and rule TAU-I> we obtain

Q 12, @' All that then remains is to show that [P ]¢] ~1[Q | ], which
follows by Theorem 1 and the definition of [_].

Lemma 17. If [P] ~1 [Q] then P ~ Q.

Proof. By showing that R = {(¥,[P],[Q]).P | ¥ ~ Q | ¥} is a bisimulation up
to ~. There are four cases to consider:
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Static equivalence is immediate from Lemma 6.

Symmetry is immediate from the symmetry of ~.

Extension of arbitrary assertion is immediate from the compositionality and
associativity of ~.

— Simulation. We know that ¥ > [P] = P’ and bn(a)#P and P |¥ ~ Q | ¥,

™
and proceed by case analysis on «.

e oo = g . We use Lemma 1 to obtain ZP,EQ,f,b such that F([P]) =
(vbp)Pp and ™ = (Vbp; Z)band bp#W¥, P,a,x, P',Q,% and T#Y¥, P,a, P',Q
and YU - a Y b. Since a Y b = b < {a} we can use Lemma 10 to obtain
a 8 such that p Hb < and WU Pp - 8 < {a} and S#bp.

Choosing a fresh name y#%, P,Q,a,z, P’ and using Lemma 15.6 we
obtain P such that P 2% P and [P"]ly :==x] ~¢ P’. By simulation,
and inversion on the derivation of the resulting transition from Q | ¥,
we get Q" such that Q | ¥ LN Q" |¥ and P" | ¥ ~ Q" | ¥. By static
equivalence, freshness of 8,a and Lemma 6 we get @ | ¥ > 8 < {a},

and by rule IN->>, Q | & daly, Q" | ¥. Lemma 15.2, and inversion
on the derivation of the resulting transition from [Q] | ¥, yields a @’
such that 1 > [Q] | [¢] 2% Q' | [¥]. and Q' | [¥] ~1 [Q"] | [¥].
By Lemmas 13 and 14, 1 > [Q] | [¥] +5 Q'ly := =] | [¥] and
Q'ly :=2] | [¥] ~1 [Q"][y := =] | [¥], which implies ¥ > [Q] <%
Q'ly :=z] and Q'[y :=x] ~y¢ [Q"]]y :=2] = [Q"[y :=x]]. By Lemma 12,
Plly :=2] | ¥ ~Q"y:=x] | P.

We now have all we need to conclude

P' 2y [Py =] Ry [Q"fy =al] “u Q'ly =al

which closes the bisimulation diagram up to ~.

e o = a(vz)x. Elided. Analogous to the input case, but easier because
there is no need to consider substitutions.

e o = 7 (and hence # = 1). By Lemma 15.8 there is P”, ¢ such that
YUF(P)F ¢and P Lelm, prrand [P"] ~¢ P'. By simulation there is
Q" such that @ €5 @7 and P' 2y Q.

By static equivalence and Lemma 6, and by rules PAR-R and TAU-I>,
Q|¥ 5 Q" |¥. Then [Q] can mimic the transition by Lemma 15.5
(instantiated with ¢ = y < y for some fresh y), yielding a @’ such

that a < a > [Q] | [¥] — Q| []and [Q"] | [¥] | ly < y) ~1
Q' | [#] ] (y < y). Using Lemma 7 this is equivalent to [Q"] ~¢ Q'
Thus we have established P <~y [P"] R [Q"] ~¢ Q" which closes the
bisimulation diagram up to ~.

Mixed choice

Definition 17. Let P = (T, A,C,,®,1,-5) be a psi-calculus. Then E(P) =
(Te,Ae,Ce,be,®g, 1, ¢) is a psi-calculus whose components are as follows:



30 Johannes Aman Pohjola

Te=TW{M,:x €N, M e T¢} A=A X Pipn(WNV)
Ce=CW{M S>N:M,NecTtuyN (I,N)®e ' N)= eV NUN)
1: =(1,0) WU N)Fep ifpeCand¥ ko
(U,N)bgz ifreN andzeN
(W,N) g My - Ny, if%+-M = N andzx #y and z,y ¢ N
(O,N) e My >N if@+M 3N andz ¢ N

(B, N)Fe M N, if¥+M-sN andz¢ N

We will sometimes write N to abbreviate (1,IN) or ((1,N)).

Before proceeding we will make—and justify—a few simplifying assumptions
for presentation purposes.

First, we assume that in the source language under consideration 1o = 1 for
all substitutions o. This is to ensure that input-guarded assertions (1, {z}), whose
sole purpose is to disable the tag x, has the same effect on the source-language
environment as if there had been no assertion at all underneath the input prefix.
Otherwise, the encoding fails because the target term may expose the assertion
1o even if the source term does not, thus potentially entailing different conditions.

This assumption can be easily lifted by allowing target-language assertions
to be taken from P, (N), ie. with no source-language assertion attached to it,
and using such assertions underneath prefix instead. We have opted against this
presentation style in order to avoid redundancy in the definition of assertion
composition.

Second, we assume that the target language is constrained by a sorting
system as in [4] that ensures only terms M € T can ever occur as objects of
communication, and in particular, that for all substitutions [z =T 1, T C T. The
purpose of this simplification is to avoid having to consider input transitions such
as

¥ > M(AZ)N.P £ pr

that may result in substitutions where tagged terms must be substituted into
source-language terms or vice versa.

This assumption can be lifted by changing the target-language terms as
follows:

Te =T
| Te(N)
| Te(N)
where terms M (z) play the same role as terms M,, and terms M (z) serve

as input patterns to prevent receipt of tagged terms. Let M (y) abbreviate
M{yo){y1) - .. (yn). Specifically, we would encode input as
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[M(AZ)N.P] = (vy) M(AT)N (2, y).[P]

where y is a fresh name. Substitution on terms N(y) is then defined as

Nz, y)[x ::T] =N[Z ::f]if y#%,f and Z=Fand T C T
Nz y)[x :=T) = N[z :=T|(Z,y)if y#Z,T and z#z,T and T C T

= T,(w)where w = n(T) U ((n(N) UZ Uy) — Z) otherwise

The idea is that because we maintain the invariant that y is (v)-bound
directly above all input prefixes, any message M matching pattern (A\Z)N(Z, y)
via a substitution N(Z,y)[Z :=T] = M, all of T are source-language terms and
M = N[z ::T} (by Clause 1); hence M is a source-language term because the
set of source-language terms are closed under substitution. If any of T are target-
language terms, Clause 3 of the definition of substitution applies, and we have
y € n(M) which contradicts freshness of y. The second clause ensures that for
nested input prefixes, the tag y is not removed by subtitutions applied to the inner
prefixes as a result of consuming the outer prefixes. The somewhat convoluted

definition of Clause 3 is to enforce the requisite that all names substituted into
the term are present in the result of substitution.

Lemma 18. (¥,N) ~ (¢'.N’) iff ? ~ ¥ and N =N’

Proof. Easy since entailment ¢ is only defined in terms of membership in N
and entailment on V.

Lemma 19. If P is a valid psi-calculus then so is E(P)

Proof. Associativity and commutativity of ®¢ are immediate from the corre-
sponding properties of ® and U. Compositionality follows from Lemma 18 and
the compositionality of ® (up to ~) and U (up to extensional equality).

Definition 18 (Encoding). The encoding [_] from processes of P to processes
of £(P) is homomorphic on all operators except choice and assertion, where it is
defined as follows:

[(@W)] =(w,0) [P +B.Q) = (va)(a.(P | ((L,{z})) | B-(Q | (1, {z}))
where x#a, 8, P, Q
Lemma 20. IfT C T then [P][Z :=T] = [P[z :=T]]
Proof. By a straightforward structural induction on P.
Lemma 21. (va)(((L, {e})) | au-P) 2y 0

Proof. (Sketch) Static equivalence follows because the (1, {z}) affects only judge-
ments involving the name x, which are not considered outside the scope of the
v binder. Simulation follows because since «, is disabled, no transitions can be
derived.
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Lemma 22. F([P]) = (vbp,y)(@p,0), where F(P) = (vbp)Wp and y#P,¥p, bp.

Proof. A straightforward structural induction on P.

Theorem 8 (Operational correspondence).

1.

Ifw > P 2 P then there is P" such that (¥,0) > [P] 25 P” and
P ’;’(W 0 [[P/]]

s P MON, pryhen there is P such that (¥,0) & [P] L@, pr
cmd P N(@@) [P ﬂ
Ifo > P =5 P then there is P" such that (¥,0) > [P] — P” and
p ":'(gg@) [[Pl]].
M N / ; 7 M, N 1"

If W,N) > [P] =— P’ then there is P"” such that ¥ > P ——— P
and P ’:"(‘I/,N) [[P”H.

M VE)N / . Y72 m(VE)N /!
If (v, N) > [P] ——— P’ then there is P"” such that¥ > P ———— P
and P’ ~ Ny [P"].

If (O,N) > [P] —— P’ then there is P" such that ¥ > P — P" and
P '{/(@N) HPH]]'

Proof. 1. By induction on the derivation of the transition from P. The interest-

ing case is choice. There we have ¥ > M(AZ)N.P+a.Q LNEA], Pz :=T]
and Y+ K = M. Let y#¥, M, N, x, f, P be the tag used for encoding the
choice. Then by definition of ¢ we have (¥,0) ¢ K = M,. By rule IN we
can derive

K N[z T] - =

@, 0) > MyAD)N.({y} | [P]) ——— {y} | [P]lz:=T]

By rule PAR (letting R = a,.({y} | [Q]))

_T]

(#,0) > MyO\DN-({y} | [P]) | B =575 (g} | [P][7 =T] | R

and by RES
(2.0) > ILODN.P +a.Q) Z2E (wy)(y} | [PIfE =T) | B

Since y#7, T, P it follows that y#[P'][= ::f]. By scope extension, associa-
tivity, commutativity and Lemma 21 we have
(vy){y} | [P][Z :=T] | R) ~w0) [P]lz:=T]

We may then conclude by using Lemma 20 to push the substitution inside
the [] brackets.
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By induction on the derivation of the transition from P. The proof is sym-
metric to the proof for input transitions.

By induction on the derivation of the transition from P. The interesting
M(vT)N
—

case is CoM, where we know that ¥ @ ¥y > P — P and ¥ ®
(vbp;y) K
Up > Q — s Q' and F(P) = (vbp)¥p and F(Q) = (vbo)¥ and

(UgQ;E)]\/I
bp#q/, P, Q, M, E, g, bQ, JIQ and bQ#Q/, P, Q, b, :Zv, bQ, g/p and f#g/, P, Q and
z,y are similarly fresh.
By Lemma 8.2 we obtain P” such that (¥, 0) ®¢ (¥, 0) > [P] p”
and P ~(y 0o (2,0) [P']- By Lemma 1 and Lemma 22 there are sufficiently

fresh @,y such that 7 = (bp,y;a)K’ and (¥ @ ¥p @ ¥y,0) H K' =+ M. By
Lemma Semantics.comml_aux we have

M(vT)N
e

K| N
rdp > Q —— Ql
(vbq;z)M

K N
By Lemma 8.1 we obtain Q" such that (¥,0) ®¢ (¥, 0) > [Q] %—» Q"
and Q" ~w 0@ (7p,0) [Q']- By Lemma 1 and Lemma 22 there are sufficiently
fresh b, z such that 7’ = (bg, z;a) M’ and (¥ @ ¥p @ ¥y, 0) - K’ = M'. By
Lemmas Semantics.comml_aux and Semantics.comm2_aux and the absence
of disabled tags we may conclude

(2.0) 8¢ (%.0) > [Q] ——— Q"
(bQ 7Z§E)M,
M’ (vZ)N .
and (¥,0) ®¢ (¥, 0) > [P] ———— P” from which we may use the CoM
(bp,y;a) K’

rule to infer

(@.0) = [P [Q] - (»@)(P"]Q")

We may then derive P” | Q" ~y [P'] | [Q'] using Theorem 1, Lemma
Semantics.extend _frame and extension of arbitrary assertion, and finally

wz)(P" | Q") ~u (vD)(IP'] Q)

by Theorem 1.

By structural induction on P followed by inversion on the derivation of the
transition from [P]. We show only the cases of input and choice; the rest are
routine because the encoding is homomorphic.

P = K(AZ)L.Q. Then the transition from [P] = K(A\z)L.[Q] must have
been derived via the input rule, so (¥, N) ¢ M = K and N = L[7 :=1T).
Since K is not tagged we have ¥ - M| - K, and we may use the IN
rule to derive

WP % Q7 =T
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whose encoding is bisimilar to the derivative of [P] because it’s syntacti-
cally equal.
P = a.QQ + 5.R. Then the transition from

[P] = (va)(aw- ({2} | Q) | Bo-({2} | R))

with x#a, Q, 8, R, M, N, W, N, must have been derived via RES, PAR and
IN. Assume « is the prefix used to derive the transition (the case for 3,

is symmetric). Then there exists K, %, T, L such that o = Kx(AzL) and
N = L[7 :=T] and (¥,N) F¢ M ¢+ K, and

(#.N) > a.Q S {o} | Q[F =T

and, by rules RES and PAR,

(@.N) > [P] =5 (vo)({a} | QU =T) | o-({a} | [R]))

By scope extension and Lemma 21,

(vao)({«} | QF :=T] | Bo-({z} | R) ) [QF :=T]]
The matching transition from P is, by CASE and IN and ¥ - M < K,

W > a.Q+B.R % QF =T

which suffices.

5. By structural induction on P followed by inversion on the derivation of the
transition from [P]. Similar to the case for input.

6. By structural induction on P followed by inversion on the derivation of the
transition from [P]. The interesting case is P = a.Q + 5.R, where we need
to show the absence of a communication between «, and $, in [P]. This is
immediate from Lemma 1 and the definition of k¢, which requires distinct
tags.

Lemma 23. — If(¢,N)> P 2% 7P andy ¢ N then (¢,N) > P 2% 7P’
and x ¢ N.

- If(@,N) > P 5 7P andy ¢ N then (U,N) > P 2% 7P/

— If W,N) > P 2% 7P’ then (W,N) > P %% 7P’ and x ¢ N.

Proof. Follows from Lemma 1, Semantics.transfer_frame and the definition
of l—g.

Definition 19. A process P is untagged if it contains no free tags in subjects,
assertions or conditions, and if no name (free or bound) occurs both in the tags
of P and in the non-tags of P.

Lemma 24. [P] is untagged.
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Proof. By structural induction on P.

Lemma 25. If P is untagged and (¥, N) > P 25 Q, then (W,N)> P 2% Q
and @ is untagged.
Proof. By induction on the derivation of the transition from P. In the OPEN

rule we use the fact that since tags cannot occur in output objects, the name
being exported does not occur in tags.

Lemma 26. If P,Q are untagged then (¢,N) > P~ Q iff (¥,N') > P~Q

Proof. By showing that R = {((¥,N),P,Q).P ~w ) QA P,Q untagged} is a
bisimulation relation. Extension of arbitrary assertion and symmetry are trivial.
Static equivalence follows by Theorem 18.

For simulation, we have that (#,N) > P % P’ and P ~wNy Q. By
Lemma 23, (¢,N) > a %) . By Lemma 25, (¢,N’) > P %% P’ and P’
is untagged. By simulation there is @’ such that (¥,N') > @ % Q@' and
P" ~p Ny Q. By Lemma 25, (U, N) > Q % Q' and Q' is untagged. Finally
by Lemma 23, (¥,N) > Q — Q.

Lemma 27. If P %y Q then [P] ~(pp) [Q].

Proof. We show that the relation R = {(¥, P,Q) : [P] ~ .0 [Q]} is a bisimula-

tion relation.

— Static equivalence: follows from Lemma 22 and Lemma 18.
— Symmetry follows by symmetry of ~.
— Extension of arbitrary assertion follows by the corresponding property of ~.

— Simulation: We have ¥ > P =+ P’ and [P] ~(yg) [Q]. By Lemma 8 there
exists P” such that (7,0) > [P] < P” and P” <y gy [P']. By simulation
there is Q" such that (¥,0) > [Q] - Q" P” ~(y ¢y Q". By Lemma 8 and

since o = o) there is Q" such that Q" ~ (g g) [Q"] and ¥ > Q <5 @Q'. The
desired result follows by transitivity and symmetry of ~.

Lemma 28. If [P] ~wn [Q] then P~y Q.

Proof. We show that the relation R = {((¥,N),[P],[Q]) : P ~@w Q} is a
bisimulation up to ~.

Static equivalence: follows from Lemma 22 and Lemma 18.

Symmetry follows by symmetry of ~.

Extension of arbitrary assertion follows by the corresponding property of ~.
Simulation. (¢, N) > [P] % P” and P <~y Q. By Lemma 8 there exists

P’ such that ¥ > P == P’ and [P'] ~@g ) P”. By simulation there is Q'
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such that P’ Ly Q" and ¥ > Q 5 Q'. By Lemma 8 there is Q" such that
[Q'] ~ w0 Q" and (¥,0) > [Q] == Q". By extension of arbitrary assertion, by
Lemmas 23-25 and since [Q], [Q'], Q" are untagged, we conclude [Q'] ~w .~y Q"

and (7,N) > [Q] 25 Q.

Reduction semantics
Lemma 29. = is a bisimulation relation.
Proof. Similar to the proofs of Theorems 1-2.

Lemma 30. If¥ + M <> N and Y € conds(C). ¥ + ¢ then

1. There is P’ such that ¥ 1> C[M K.P) 7K> P’. and P' = P | ppr(C).
9. There is P' such that ¥ > C[M(O\&)L.P] XX prgnd P = Pli =

~ M
T | ppr(C).
Proof. By a straightforward structural induction on P.

Lemma 31. If P — P’ then there is P" such that 1 > P - P" and
pP’'=P.

Proof. By induction on the derivation of P —» P’. There are three cases:

Struct We know that P =Q and Q — Q' and P — P’. By the induction
hypothesis, 1 > P — P" and P"” = P’. Since = is a bisimulation relation
there is Q" such that 1 > Q@ — Q" and P = Q". Q" = P’ follows by
symmetry and transitivity of =.

Scope We have P — P’ and, by the induction hypothesis, 1 > P — P”

and P"” = P'. By rule SCOPE, 1 > (vx)P - (vx)P”, and because = is a
congruence, (vx)P"” = (vx)P'.

Ctxt We have ¥ - M = N and Vo € conds(C). ¥ ¢ and By structural
induction on C' (using Lemma 30 to derive a communication in the base case)

we can construct a derivation
¥ > C[M K.P, NO\Z)L.Q] = P’

such that P’ = P | Q[# :=T] | ppr(C). By rule PAR and closure of = under
parallel composition,

15 () | C(MK.P, NOF)L.Q] — (7)) | P’

and (¢) | P' = (%) | P | Q[# :=T] | ppr(C).
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Lemma 32. For every process P, there exists %,@, Pg such that

P =) (@) | Po)

and Pg contains no v-binders except underneath replication, input or output
operators.

Proof. By a straightforward structural induction on P.

Definition 20. The normalisation of a process P, written PV, is defined homo-
morphically on all operators except | P, where it is defined as (\P)* = P+ | P+ | |P.

Lemma 33.

1. Po =P}
2. If W > Pg = P’ then there is P such that P' = P" and there is a

(03

derivation of ¥ > Pé — P that does not use the REP rule.
s

Proof.

1. By structural induction on Pg. The only non-trivial case is when Pg =!Q¢.
Unfolding the replication twice yields !Q¢ = Q¢ | Qc | 'Qc, and by the
induction hypothesis Qg = Qé. We can then derive

(1Qc)* = Q% | Q4 |'Qc = Qc | Qe | Qe ='Q¢

2. By structural induction on Pg. Again, the non-trivial case is when Pg =!Q¢.
There are two cases: either the transition originates from a single copy of
Qq, or from a communication between two copies of Q. By the induction
hypothesis we can derive the same transitions from Qé, which allows the
matching derivation from (1Q¢)* to use its two top-level copies of Qé instead
of unfolding the replication.

Lemma 34. If Pg contains no v-binders except underneath replication, input
and output prefizes, and if there is a derwation of W > Pg — P’ that does not

use the REP rule, then

1. Ifa = MN and 7 = K then there is C,Q such that P = C[K N.Q] and
Vo € conds(C). ¥ ¢ and P' = Q | ppr(C).

2. Ifa=MN and m = K then there is C,Q,L,%,T such that N = L[z ::f]
and Pg = C[K(\%)L.Q] and Vo € conds(C). ¥ + ¢ and P' = Q[F :=
T] | ppr(C). B N

3. If a = 7 then there is C,Q, R, M, L, %, T such that Vo € conds(C). ¥ F ¢ and
P'=Q | R[Z:=T]|ppr(C) and ¥+ M = K and either Pg = C[M L[Z :=
T).Q, K(AZ)L.R)] or Pg = C[K(M\%)L.R, M L[Z :=T).Q)

4. Neither m nor a have any bound names.
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Proof.

1. Similar to, but easier than, the case for input below.
2. By induction on the derivation of ¥ > Py -~ P’. Note that rules REP and

us
SCOPE cannot be used in this derivation, and because Py is guarded there
are no additional frames to consider in the PAR rules. The cases to consider
are:

In Immediate by choosing C' = [].
Case We know that ¥ > P, BN pand w F @;. By the induction

hypothesis there is C’,Q,L,)N(,T such that N = L[z := T] and P; =
C'|K(A\Z)L.Q] and P} = Q[& :=T) | ppr(C’) V¢ € conds(C"). ¥ + .

We can close the proof by choosing C' = case ¢ : Pe [wi:C"] o Qc:
we then have ppr(C) = ppr(C’) and conds(C) = conds(C’) U g;, all of
whom are entailed by ¥.

Par-L We know that & > P ﬂ) P’. By the induction hypothesis there
is C',Q, L, X, T such that N = L[z :zf] and P = C'[K(\7)L.Q] and
P'=Ql[z :=T) | ppr(C’).

We can close the proof by choosing C' = C” | R. It follows that ppr(C) =
ppr(C’) | R and thus P’ | R = Q[z :=T] | ppr(C).

Par-R Symmetric to PAR-L.

3. By induction on the derivation of ¥ > Py < P’. The proof is similar to

the input case. The only interesting difference is the CoM case, where we use

Lemma 34.1-2 to obtain contexts P = C'[M N.Q] and R = C"[K (\%)L.S] for
the two communication partners. To close the proof we choose C = C’" | C”.

4. Any binders in 7 or a must have been introduced by the rules PAR, SCOPE
or OPEN. Since Pz has no binders except underneath prefixes, the derivation
of the transition does not use rules SCOPE nor OPEN, and the PAR rule is
only applied to processes with empty frame binding sequences.

Lemma 35. C[P,Q] = C[Q, P]

Proof. By induction on C.
Lemma 36. If1 > P — P’ then P — P’

Proof. By Lemma 32 there is 7, ¥, P such that P = (V@(m | Po) and Pg
contains no v-binders except underneath replication, input or output operators. By
Lemma 29 there is Pf such that 1 > (v3)((¥) | Pg) — P} and P’ = P, Case
analysis on the derivation of this transition yields that there must be P/ such that
P, = (vy)((¥) | P{) and v Py P/.. By Lemma 33 we have P = Pé and
obtain P/ such that Pg = P/ and v > Pé —» Pl through a derivation that
does not use the REP rule. By Lemmas 34.3 and 35 there is C,Q, R, M, L,z,T
such that Yo € conds(C). ¥ + ¢ and P% = Q | R[z :=1T] | ppr(C) and
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¥+ M- K and Pé = C[M L[Z :=T).Q, K(A\Z)L.R). This allows us to infer the
desired reduction as follows (where RES is applied [y] times):

Crxr VM-S K VY € conds(C). ¥ + ¢
W) | P — (@) | Q| RF =T] | ppr(C)
@) | Pe — (¥ | Pg

W) (%) | Pa) — (vy)((¥) | Pe)
P — P

STRUCT

REs

STRUCT

Barbed bisimulation
Lemma 37. =C~
Proof. Immediate from Theorems 1 and 2.

Lemma 38. =C ~
barb

Proof. By coinduction, using = as candidate relation. Barb similarity is immediate
from Lemma 37. Reduction simulation follows from rule STRUCT. Closure under
static contexts holds by definition of =

Lemma 39 (Soundness). P ~q Q implies P b&b Q.

Proof. By coinduction, using candidate relation ~;. We have three cases:

— (barb similarity) We have that P ~q1 Q, P It (ayn» and a#@Q. By definition

of |, there is P’ such that 1 > P M@aN, - pr, By simulation, 3Q’.1 >
Q MeaN, @', which by definition of | is Q Vst n-

— (reduction simulation) We have P ~7 @ and P — P’. By Theorem 4 there
is P” such that P’ = P’ and 1 > P =+ P”. By simulation there is Q’
such that 1 > @ —— Q' and P"” <y Q. Theorem 4 gives Q — @', and
P’ 21 Q' follows by transitivity of ~ and Lemma 37.

— (closure under static contexts) We have P ~q Q. By Theorem 1.1 we get and
P|R~1 Q| R. Then (va)(P | R) ~1 (va)(Q | R) follows by induction on
the length of @, using Theorem 1.2 and equivariance of 1.

Lemma 40. In all observational psi-calculi, P | (¥) br'vb Q | (@) implies ¥ ®
ar

F(P)~7¥ o F(Q)

Proof. By contradiction. Assume ¥ @ F(P) # ¥ ® F(Q). It follows, without loss

of generality, that there is ¢ such that ¥ ® F(P) F ¢ but not ¥ ® F(Q) I/ ¢. By

observationality, we obtain Mp, Kp such that F(P | (¥)) ~¥ ® F(P)F Mp =
Kp and not P | (@) K,
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Let R = case ¢ : Mp Kp.0 By closure under static contexts, P | R b,;b Q| R.
ar
Using the PARR, CASE and OUT rules we can derive 1 > P | R %

P

P | ((#) | 0); hence P | R |5+, By barb similarity we also have Q | R |z,
and by definition of | there is 7, Q' such that 1 > Q | R KrKe, Q.

T
The proof proceeds by case analysis on the derivation of this transition,
deriving a contradiction in each case. We have two subcases depending on which
parallel component the output originates from:

— (PARL) We have ¥ > @ Krke, Q" for some Q”. By rule PARL and

™
the definition of | this implies Q | (¥) Iz, - But by barb similarity and
symmetry of bm'ab we have P | (V) Jz;, which contradicts observationality.
ar

— (PARR) We have ¥ @ ¥y > R KekKe, Q" for some Q/’,WQ,EQ such that

EQ#w, Mp, Kp,¥. This transition can only be derived by the CASE rule, so

U ® ¥ - . But this means that (I/EQ)W @y~ V¥R F(Q)+F ¢, which is a
contradiction.

Lemma 41. (%) | (&) bf'vb (¥ %)

Proof. By soundness it suffices to show that the symmetric closure of
R=J{@" (@) | (@), (¥ @ ¥'))
W//

is a bisimulation relation. Symmetry and extension of arbitrary assertion hold by
construction, simulation because neither agent has any transitions, and static
equivalence because F((?) | (7)) = F(Z @) =¥ V¥ .

Lemma 42. In all observational psi-calculi: suppose T C N and T#HMp and
(vz)(P| MpN b&b (vZ)(Q | MpN) and not P 3. Then P béb Q.
ar P ar

Proof. (Sketch) The proof is a direct adaptation of [14, Lemma 6.61] to the case
of strong barbed bisimilarity.

Lemma 43 (Completeness). In all observational psi-calculi, P b&b Q implies
ar
P~ Q.

Proof. We show that R = {(¥,P,Q) : P | (¥) b.&b Q | (¥)} is a bisimulation

relation.

— (static equivalence) By Lemma 40.
— (symmetry) By symmetry of ~ .

barb
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— (simulation) We have ¥ > P % P’ P | (¥) br'vb Q | () and bn(a)#Q.
T ar
By observationality we obtain Mp, Kp and Mp/, Kp: such that ¥ @ F(P) -
Mp = Kp and ¥ ®@ F(P') = Mpr — Kpr but neither P | (¥)) |z, nor
P ) ek,
The proof proceeds by case analysis on what kind of label « is.
e a = 7. By rule PARL and Lemma 4, P | ¥ — P’ | ¥. By reduction

simulation, Q | (¢¥) — Q' and P’ | (¥) brlzb @'. By Lemma 4 there

is Q" such that Q" = Q" and 1 > Q | (¥) - Q. This transition
must have been derived from rule PARL; hence Q" = Q" | (@) for

some ¥ > Q — Q". By Lemma 38 and transitivity of b&» we have

arb
Pr(@) &~ Q" | (7). Finally, Q | (¥) — Q" | (¥) follows by rule
STRUCT. _ _
e a =M N. By Lemma 1 there is &, bp, ¥p, K such that F(P) = (vbp)¥p
and T = (I/bp;%)K and bp#@,P,M,N,P,,Q,MP,KP,MP/,KP/,E and
f#W,P,N,Q,P/,MP,KP,MP/,KP/ and W@Wp M- K. Let

R = case Mp—')KP MNO U Mp/ %Kp/ SMP/KPI.MP/KPI.O

By rules OuT and CASE we can derive ¥ @ Up > R K—A;V> 0 and from

CoM, Lemma 4 and STRUCT, P | (¥) | R — P’ | (¥) follows.

From closure under static contexts and reduction simulation, we obtain

Q' such that Q | (¢) | R — Q" and P | (¥) b&b Q@’'. From Lemma 4 we
obtain Q" =@’ such that 1 > Q| (%) | R % Q" . The proof proceeds

by case analysis on how this transition was derived; there are three cases
to consider.

* From an internal transition within @; that is, @” = Q" | (?) | R and
Rz > Q f) Q""" for some Q"". This, however, contradicts barb

similarity: with PARR, CASE, OUT and Lemma 40 we can derive
Q" | (W) | R 1%k, but P’ | (¥) does not expose this barb.

% From a communication between the prefix Mp/Kp/ in R and some
M ’ K !
prefix in Q; that is, Q" = Q" | (%) | Mp Kpr and ¥ > Q ————

(vE&;g) L
Q""" for some Q",Z,,y, L. This contradicts barb similarity: with
PARR, OUuT and Lemma 40 we can derive

Q") | Mp Kp Iz,

but P’ | (¥) does not expose this barb.
* From a communication between the prefix M N in R and some prefix

in Q; thatis, Q" =Q" | (¥) |0 and ¥ > Q (;]\i[iv)—; Q" for some
vy
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Q" z,,y, L. By Lemma 40 and transitivity of bf’Vb we can conclude
P/ ,_:/ n gp . :
Q) )

a = M(vZ)N. By Lemma 1 there is y,bp, ¥, K such that F(P) =
(l/bp)!pp and ™ = (l/bp;@K and bp#!p,P,M,N,P/,Q,MP,KP7MPI,
KPU%agand g#W,P,N,Q7P/,MP,KP,MP/,KP/,?E&Dd UVeUp kK=
M.
Let Z, L, p be such that p = (Z Z) and N = p- L and

g#q/,P,M,K,N,P/,Q,Mp,Kp,Mqup/,%,Zj.
We will use the observing context

By observationality we know that L[z :=y] = N and (p- Mp)[z :=y] =
Mp. Thus by rule IN we can derive Y @ ¥p > R % Mp: N, and from
CoM, Lemma 4 and STRUCT,

Pl@)|R — (v@)(P"| Mp N | (7))

From closure under static contexts and reduction simulation, we obtain

Q' such that Q | (¥) | R — Q' and (vZ)(P’' | Mp: N) brlzb Q’. By barb
ar

similarity and a similar case analysis to the case for input, we know that

since P’ Uz, v it must be that Q' V%, w3 however, this is only possible

if the reduction to @’ was derived from a communication between () and
R exposing said barb. That is, @ sends to M an object (vZ)N’ such that

L[E::f] = N’ and L[Z::T] =N and (p- Mp/)[Z ::f] = N, yielding
N’ = N. Thus there is Q" such that

Q' = a)(Q" | Mp N | (¥))

and —
V> Q M(vZ)N Q//
All that then remains is to show P’ | (¥) bf'vb Q' | (¢). By Lemma 38 we
know that
(V.%)(P/ ‘ Mp/ N) b;:;b (V%)(QN | Mp/ N)

and the desired conclusion follows by Lemma 42.

— (extension of arbitrary assertion) Immediate from the definition of R and

Lemma 41.

Theorem 9. In all observational psi-calculi, P bf’Vb Qiff P~1 Q.

Proof. Immediate from Lemmas 39 and 43.
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