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Abstract. We describe our work in the Trustworthy Systems group
at Data61 (formerly NICTA) in reasoning about concurrency in high-
assurance, high-performance software systems, in which concurrency may
come from three different sources: multiple cores, interrupts and application-
level interleaving.

Formal verification – mentality shift

Recent years have seen a shift in the perception of formal software verification in
the academic community and, to some more emerging extent, in the industrial
community. The strength of a mathematical proof to guarantee the correctness,
security and safety of programs deployed in high-assurance systems has made its
way from utopia to reality, and the absence of such strong evidence will hopefully
soon be considered negligence for critical systems.

This shift was possible thanks to highly successful verified artifacts, such as
the CompCert compiler [16] and the seL4 operating system (OS) kernel [14,15].
A remaining grand challenge in formal software verification is concurrency rea-
soning, much harder than sequential reasoning because of the explosion of the
number of interleaved executions that need to be considered.

Concurrency in software systems can have three different sources: multiple
cores, interrupts and application-level interleaving. In this paper we first briefly
explain these kinds of concurrency and their challenges, and we then describe
our recent and current work in providing concurrency reasoning framework and
verifying concurrent software systems in these three areas.

Software systems and concurrency – background

Multicore platforms provide a computing power boost that is hard to resist
for a very competitive software system market, even for high-security solutions.
Code execution can be parallelised on different cores, and the challenge, for
implementation as well as verification, is to ensure safe sharing between cores.
This can be done using locking mechanisms: a core can access shared data only
after acquiring a lock guaranteeing that no other core is manipulating the data
at the same time. This effectively eliminates concurrency, but has a performance



impact and bears liveness risks (e.g. potential for deadlocks). Another option
is to let cores access shared data without any locking, relying on more indirect
arguments that the resulting race conditions are still safe. This requires much
more careful reasoning.

Interrupts introduce a different kind of concurrency, where interleaving is
controlled in the sense that the only thing that truly happens in parallel with
code execution is the occurrence of interrupts (i.e. a flag’s being set in hardware).
The code being executed can still be stopped at any time, and control switched to
handler code that will service the interrupt; but the execution of the handler code
is then sequential until the return from interrupt (except when nested interrupts
are supported, in which case further interleaving is allowed). Handler code and
“normal” code may share data (e.g. the list of runnable threads), whose access
needs to be carefully designed. Once again, there is a radical way of ensuring safe
sharing: manually switching off interrupts during manipulation of data shared
with handlers. However, that has a performance and latency impact.

Application-level, or user-level, concurrency is another form of controlled
concurrency. In an OS-based system, the OS kernel provides hardware abstrac-
tion primitives, such as threads, to applications. Threads run concurrently in the
sense that the OS kernel will simulate parallel execution through scheduling and
time sharing between threads. For better latency, threads are often preemptible
by the kernel: their execution can be paused at any time by the kernel, their
execution context saved, and execution switched to another thread. Safe mem-
ory sharing between threads can also be handled via locking mechanisms, where
more feature-rich sychronisation mechanisms can be provided by the kernel.

For all these types of concurrency, the general trend on the reasoning and
verification side is to aim for limiting the concurrency as much as possible: local
operations can be parallelised, but sharing should be done only when mutual
exclusion can be guaranteed (by locking or other indirect arguments). This ap-
proach is the basis of many existing verification frameworks and verified systems
(e.g. [18,8,9,11]).

However, on the implementation side, the trend goes for more racing to im-
prove performance: some systems need to run with interrupts enabled as much as
possible, or to run some critical code unlocked. We are targeting such real-world
systems, where the possible races need to be proven not to violate the desired
properties for the system.

Interrupt-induced concurrency

Our work on reasoning about interrupt-induced concurrency is initially moti-
vated by the verification of eChronos [2], a small embedded real-time operating
system in commercial use in medical devices. In an eChronos-based system, the
kernel runs with interrupts enabled, even during scheduling operations, to be able
to satisfy stringent latency requirements. The formal verification of eChronos’
correctness and key properties thus required a reasoning framework for controlled
concurrency that describes interleaving between “normal” code (application code



and kernel code) and interrupt-handler code. We want such a framework to sup-
port potentially racy sharing between handlers and normal code, rather than
having to bear the cost of interrupt disabling to ensure safe sharing.

We developed a simple, yet scalable framework for such controlled interleav-
ing and have used it to define a high-level model of eChronos scheduling be-
havior [7]. We then proved its main scheduling property: that the running task
is always the highest-priority runnable task [6]. Our framework is embedded in
Isabelle/HOL [17] and the verification relies on the automation of modern theo-
rem provers to automatically discharge most of the generated proof obligations.
Our models and proofs are available online [1].

Our modelling framework builds on foundational methods for fine-grained
concurrency, with support for explicit concurrency control and the composi-
tion of multiple, independently proven invariants. The foundational method is
Owicki-Gries [19], a simple extension on Hoare logic with parallel composition,
await statements for synchronisation, and rules to reason about such programs
by inserting assertions, proving their (local) correctness sequentially as in Hoare
logic, and then proving that they are not interfered with by any other statement
in parallel.

We model an interruptible software system as a parallel composition of its
code with code from a number of interrupt handlers. We also model the hardware
mechanisms that switch execution to handlers and that return from interrupts,
via the scheduler. Such parallel composition allows more interleaving than can
happen in reality – for instance it allows the execution of the handler code
suddenly to jump back to executing application code at any time. We therefore
then restrict the interleaving by a control mechanism, that we call await painting:
every instruction is guarded by a condition, which by default enforces sequential
execution, but is relaxed for all hardware mechanisms that do allow interleaving,
such as taking an interrupt or returning from one.

For the verification, the main property of interest in an invariant, which, as
most invariants, rely on a number of helper invariants. To make the verification
scalable, we have a compositionality theorem allowing the proof of helper lemmas
independently, with separate Owicki-Gries assertions, after which those invari-
ants can be assumed when proving further invariants. We have also developed
proof-engineering techniques to address scalability issues in the verification of the
generated proof obligations. These techniques range from subgoal deduplicating
and caching, to exploiting Isabelle’s parallelisation and powerful simplifier.

With this framework, we proved eChronos’ main scheduling property with a
single tactic application. This proof is about a high-level model of eChronos and
the obvious missing piece is the link to the implementation.

To bridge the gap to the implementation, we have developed a verification
framework for concurrent C-like programs, called COMPLX [3], available on-
line [10]. The COMPLX language builds on SIMPL [22], a generic imperative,
sequential language embedded in Isabelle/HOL. SIMPL allows formal reasoning
about sequential C programs via the translation of C programs into SIMPL by
the C-to-Isabelle translation [24]. It has been used for the verification of seL4: the



C-level formal specification of seL4 is in SIMPL, inside Isabelle/HOL. COMPLX
extends SIMPL with parallel composition and await statements, and we devel-
oped a logic for Owicki-Gries reasoning as well as its compositional counter-part
Rely-Guarantee reasoning [13]. Using this framework to extend the eChronos
verification to the implementation and to full functional correctness is future
work. We are also planning to use it in our ongoing verification of the multicore
version of seL4.

Multicore concurrency

The seL4 microkernel is a landmark in software verification [14,15]. It is the
world’s “most verified” OS kernel, while also being the world’s fastest operating
system designed for security/safety. It has formal, mechanically checked theo-
rems for functional correctness, binary verification, integrity- and information-
flow security, and verified system initialisation. It has seen 3rd-party use, demon-
strated in automotive, aviation, space, military, data distribution, IoT, compo-
nent OS, and military/intelligence . It is also the only verified kernel that has
been maintained, extended with new features and ported to new platforms over
a number of years. A direct implication is a very large (and evolving) proof stack
(0.74M lines of specifications and proofs). One of the remaining challenges is to
extend the formal verification, so far for unicore platforms, to multicore.

A multicore version of seL4 has been developed following a (mostly – as we
will explain shortly) big-lock kernel approach. The idea of a big-lock kernel al-
lows us to run kernel-based systems on multicore machines, where the user code
can make use of the multicore computation power, while parallelism during ker-
nel calls is reduced by a so called “big lock” around all kernel executions. Recent
work in our group [20] indicates that this coarse-grained locking approach, at
least for a well-designed microkernel with short system calls, can have less over-
head than a fine-grained locking approach on modern hardware, and performs
indistinguishably from fine-grained locking in macro-benchmarks on processors
with up to 8 cores. The reason is that the time spent inside a fast microkernel
using big lock is comparable to the time spent in fine-grained locks in mono-
lithic kernels like Linux. Fine-grained locking is traditionally used for scalable
multicore implementations, but comes with considerable complexity. Since the
big-lock approach implies a drastic reduction in interleaving, it makes real-world
verification of multicore kernels feasible.

The challenges in verifying this multicore seL4 are manifold. Firstly, the ker-
nel is only mostly locked when executed. Some kernel code executes outside of the
lock, for performance reasons and to deal with unavoidable hardware-software
sharing. Indeed some hardware registers that are shared between cores are ac-
cessed by critical code in kernel calls, such as the deletion of a thread from
another core. These operations cannot be locked and need careful design and
reasoning to avoid data corruption. To start addressing this, we have performed
a formal proof that the validity of such critical registers is always preserved.
This involves proving the correctness of the complex OS design for deletion on
multicore. This proof is done on a very high-level model of interleaving (reusing



the verification framework from our eChronos verification). It still needs to be
connected to more concrete models of seL4, but it already identifies the guar-
antees that need to be provided by each core for the safe execution of the other
cores.

The second challenge is to identify correctly the shared state between cores.
This can be shared state between user code on one core and kernel code on an-
other core, or shared state between two instances of kernel execution (at least one
unlocked). There exists an earlier formal argument for an experimental multicore
version of seL4 that lifts large parts of the sequential functional correctness proof
to the multicore version [23]. This version relies on an informal identification of
the shared state between the kernel and the user components (and very limited
code outside the lock), and an informal argument that this shared state does not
interfere (and therefore cannot invalidate) the kernel’s (sequential) correctness
result.

In our current work, we are aiming for a more foundational verification, and
support for kernel-to-kernel interaction. We want to model all possible inter-
ference, then exclude the impossible ones by proof and finally show that the
remaining ones do not violate the kernel invariants and properties. In particu-
lar we want, at the bottom level, to model explicitly the parallel composition of
cores, with a framework like COMPLX (with potentially further work to port the
guarantees to binary and to weak memory). This raises the question of bridging
the gap, through refinement, between the high-level model of multicore seL4, a
functional specification of seL4 and the lowest implementation level.

This leads to the remaining challenge, which is to leverage the existing large
proof stack, whose complexity reflects the complexity of a high-performance,
non-modular microkernel. This is ongoing work. We are aiming for an approach
that will preserve as much as possible the sequential specifications and the cor-
responding refinement theorems.

User-level concurrency

Our vision for proving security for entire large systems [4,12,21] is to build them
on a trustworthy foundation like seL4 and then to leverage its isolation properties
in a way that the applications can be componentised into trusted- and untrusted
components, avoiding in particular having to verify any of the untrusted com-
ponents, thanks to the kernel’s integrity and confidentiality enforcement.

We have previously built [5] an initial prototype framework that provides,
for such microkernel-based, componentised systems, and for any targeted system
invariant, a list of proof obligations. Once proved by the user of the framework,
these theorems will imply that the invariant is preserved at the source code level
of the whole system. We have already demonstrated this approach on a simplistic
system with two components: a small trusted component with write access to
a critical memory area, and one potentially very large untrusted component
with only read access to the same region and otherwise isolated. We were able
to prove properties about the memory content without any proof about the
untrusted components, relying only on seL4’s integrity enforcement.



This approach however suffered from strong limitations in terms of scalability
and the kind of properties supported (they needed to rely solely on integrity
enforcement). This piece of work was prior to the more foundational treatment of
concurrency we developed more recently for the ongoing verification of eChronos
and multicore seL4. Our current aim is to incorporate the possibility of user-level
reasoning in the modelling and refinement framework currently developed for the
multicore seL4, with proper explicit modelling of user-to-user interactions and
the specification of rely- and guarantee conditions.

Tackling the formal verification of concurrent high-performance software sys-
tems is both challenging due to the combined complexity of high-performance
and concurrency, and indispensable to keep such systems real-world relevant. We
have presented challenges, progress made, and future work in building reasoning
frameworks that can support such scale and complexity, and their application
to the verification of real-world operating systems such as eChronos and seL4.
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