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In this talk we will be exploring the use of foundational proof techniques
in the formal verification of real-world operating system (OS) kernels. We will
focus on eChronos [2], a small interruptible real-time OS, and seL4 [78], the
landmark verified microkernel, currently undergoing verification of its multicore
version. Both are deployed in various safety- and security-critical areas, and
present challenging complexities due to their performance constraints and con-
currency behavior. Foundational techniques have been and are being used for
their verification, ranging for standard Hoare logic [5], to concurrency logics like
Owicki-Gries [10] and Rely-Guarantee [6]. We will describe their use and com-
bination with theorem proving and automation techniques to achieve impact on
large-scale software.

Hoare logic is well known to be the foundation of formal verification for main-
stream programs. It is what is taught to university students to prove formally
the correctness of programs. Hoare logic can also be the basis of large-scale,
real-world software verification, such as the verified sel.4 microkernel. sel.4 is a
very small OS kernel, the core and most critical part of any software system.
It provides minimal hardware abstractions and communication mechanisms to
applications. selL.4 additionally enforces strong access control: applications can
be configured to have precise rights to access memory or to communicate, and
selL4 guarantees the absence of unauthorised accesses. seL.4 has undergone ex-
tensive formal verification [7J8] when running on unicore hardware. The central
piece of this verification is the proof of functional correctness: that sel.4 source
code satisfies its specification. This proof uses Hoare logic at its core, while the
top-level theorem is a traditional refinement proof through forward simulation:
we show that all behaviors of the source program are contained in the behaviors
of the specification. For small programs, Hoare logic can be the central method
to prove functional correctness, where the specification is defined as being the
description of the state in the postcondition. For larger programs, and in par-
ticular for programs where further verification is desired (like sel.4’s further
security proofs), having the specification as a separate standalone artifact saves
significant overall effort. In this case a refinement proof links the concrete source
code to the abstract specification, and often relies on global invariants to be
maintained. In selL4 verification, invariant proofs represent the largest part of
the effort [8]. They heavily use Hoare logic reasoning, combined with important



use of automation in the Isabelle/HOL theorem prover [9], both to generate the
required invariant statements for each of the hundreds of sel.4 functions and to
discharge as many as possible without need for human interaction.

Following this verification of a large and complex, but sequential program,
we investigated the impact of concurrency in settings where interrupts cannot
be avoided (sel4 runs with interrupts mostly disabled), or where running on
multiple processors is desired.

Reasoning about interrupt-induced concurrency is motivated by our verifica-
tion of the eChronos [2] embedded OS. In an eChronos-based system, the kernel
runs with interrupts enabled, even during scheduling operations, to be able to
satisfy stringent latency requirements. The additional challenge in its concur-
rency reasoning is that racy access to shared state between the scheduler and
interrupt handlers is allowed, and can indeed occur.

The modelling and verification approach we chose for this fine-grained con-
currency reasoning is Owicki-Gries [I0], the simple extension on Hoare logic
with parallel composition and await statements for synchronisation. Owicki-
Gries provided the low-level of abstraction needed for the high-performance
shared-variable system code we were verifying. We could conveniently identify
localised Owicki-Gries assertions at the points of the racy accesses, and tune
them to enforce the overall correctness invariant of eChronos scheduler. In con-
trast, the Rely-Guarantee (RG) approach [6] would have required identification
of global interference conditions, which was challenging for such racy sharing
with no clear interface, unless we made heavier use of auxiliary variables to
identify racy sections of code, but this defeats the compositionality of the RG
approach, one of its principal purposes. The explosion of verification conditions
inherent in the Owicki-Gries approach has been minimized by the controlled na-
ture of the interrupt-induced concurrency, and mitigated by proof-engineering
techniques and automation of a modern theorem prover. We were able to develop
an abstract model of eChronos scheduling behavior and prove its main scheduling
property: that the running task is always the highest-priority runnable task [41/3].
Our models and proofs are available online [1].

We are currently exploring multicore-induced concurrency for sel.4 in a set-
ting where most but not all of the code is running under a big lock. Here we
have explored the RG approach, on an abstracted model identifying the allowed
interleaving between cores. In this setting, the relies and guarantees can express
what shared state the lock is protecting, and what the conditions are under
which shared state can be accessed without holding the lock. The main chal-
lenge is resource reuse. The kernel runs in privileged mode, and as such has
access to everything; it can for instance delete objects on other cores to which
critical registers point. This could create a system crash if later on in that core,
the kernel code accesses these registers pointing to corrupted memory. Designs
to solve this issue include forcing kernel operations on all other cores without
holding the lock. The proof that this is sound needs to be expressed via relies
and guarantees between cores. We proved, on our abstract model of the multi-



core selLl4-system, that critical registers remain valid at all times.

The main challenge now, for both the eChronos verification and multicore
sel.4 one, is to transfer the verification down to the source code via refinement.
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