
Successes in Deployed Verified Software
(and Insights on Key Social Factors)

June Andronick(B)

CSIRO’s Data61 and UNSW, Sydney, Australia
june.andronick@data61.csiro.au

Abstract. In this talk, we will share our experience in the successful
deployment of verified software in a wide range of application domains,
and, importantly, our insights on the key factors enabling such successful
deployment, in particular the importance of the social aspects of a group
working effectively together.

Our formally verified microkernel, seL4, is now used across the world
in a number of applications that keeps growing. Our experience is that
such an uptake is enabled not only by a technical strategy, but also by
a tight integration of people from multiple disciplines and with both
research and engineering profiles. This requires a strong social culture,
with well designed processes, for working as one unified team. We share
our observations on what concrete social structures have been key for us
in creating real-world impact from research breakthroughs.

1 The Dream

Precisely fifty years ago, Tony Hoare, in his seminal paper [1], outlined a dream;
a dream where verifying properties of programs can be achieved by purely deduc-
tive reasoning; a dream where such reasoning could be applied to non-trivial pro-
grams as long as considerably more powerful proof techniques became available;
a dream where software systems would not be deployed unless they were for-
mally verified; a dream where verified software would have become the standard
produced by industry; a dream where it would be legally considered negligence
to deploy unverified software.

We share this dream, and –with many others– have contributed towards it
by demonstrating that verified software is feasible and can be deployed on real-
world systems. We can, however, observe that, in fifty years, this dream has not
been fully achieved yet.

The main reason for verified software not yet being the standard could be
phrased as: it has not yet achieved the status of being the state-of-the-art. Ten
years ago, Hoare was invited to write a retrospective article [2], to share his
personal views on progress made since his first article forty years before, and
reflect on what he had hoped for back then and what actually happened. One
thing he realised he had not predicted correctly was what actually would drive
the push for more verified software; he had thought that it would be the fear
c⃝ Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 11–17, 2019.
https://doi.org/10.1007/978-3-030-30942-8_2



12 J. Andronick

of expensive lawsuits for damages due to software errors. This didn’t happen
because “the defense of ‘state-of-the-art’ practice would always prevail”.

We thus need to make verified software become the state-of-the-art practice.
For this we need (a) to lower the cost (Hoare said “Far more effective is the
incentive of reduction in cost” [2]) and (b) to have more success stories, where
insights can be shared. Together, these will not only bring economic incentives
for all software producers to follow the path of verified software, but lead to ‘no
more excuses’ not to follow that path.

Here we share our observations about the social structures and incentives
that have allowed us to bring together a large group of people with diverse
–sometimes even disjoint– technical backgrounds and to make them work effec-
tively towards a goal that must blend relentlessly formal techniques on the one
hand with uncompromising real-world performance on the other. In the last ten
years, we have been designing, developing, maintaining, and evolving the world’s
largest and most verified artefact, ported across multiple hardware platforms,
as well as a collection of tools and frameworks for the verification of real-world
software. In the last five years, our technology has seen an increasing uptake by
companies, governments and the open-source community. This has encouraged
a number of initiatives and projects pushing further this pervasive verified soft-
ware dream. Reflecting on our own experience of what made it possible to push
the boundaries of the state-of-the-art into deployed systems, our main insight
would be (1) having a single group with both researchers and engineers, and
both operating-system (OS) and formal method (FM) experts, all working very
closely together, towards a shared vision, and (2) having this vision being not
only technical, but also social: making sure this diverse range of people work
effectively and efficiently together. We will first give an overview of where our
verified software is deployed and the key steps leading to this uptake, and then
share our observations on the key social factors that allowed these successes.

2 Successes in Deployed Verified Software

Our story of successfully pushing verified software in deployed systems across a
variety of domains contains a few important milestones.

Performance. The first milestone, and starting point, was the research break-
through making formal program verification scale to an entire operating system
kernel, while maintaining high performance. This consisted in the formal proof,
in the Isabelle/HOL theorem prover [7], of the functional correctness of the seL4
microkernel [3,5], followed by the proof of the security properties of integrity [9]
and confidentiality [6] as well as correctness of the binary code [8]. Note that the
focus on performance as an equal objective as the correctness was a key factor
in the later uptake and deployment; and this was made possible only by the
close collaboration between the two disciplines’ experts, as we will describe in
the next section.



Successes in Deployed Verified Software (and Insights on Key Social Factors) 13

Retrofitting. A second key milestone was to move this research outcome
towards a technology transfer in industry by demonstrating the practicality
of building whole secure systems on the seL4 trustworthy foundation. We
worked with companies to retrofit their existing systems into secure architec-
tures, with isolated trusted components, running on seL4 guaranteeing the iso-
lation (as describes in [4]). The key effort that created the most impact was the
High-Assurance Cyber Military Systems (HACMS) program, funded by the US
Defense Advanced Research Projects Agency (DARPA), where we collaborated
with Boeing, Rockwell Collins, Galois, HRL, the University of Minnesota, MIT,
University of Illinois, CMU, Princeton University, and US Army’s TARDEC to
transition the seL4 technology to real-world autonomous vehicles. These included
a Boeing-built optionally piloted helicopter and an autonomous US-Army truck,
both originally vulnerable to cyber-attack, that we demonstrated to be able to
resist these cyber-attacks and others after being re-architected to run on seL4.
This kind of work is mainly engineering focused, with a join effort between the
systems engineers and the proof engineers, keeping the focus on formal guaran-
tees for the security of the overall system. Such projects are also an important
source of input about the real-world requirements that need to be addressed.

Focus on Grand Challenges. This leads to the third key ingredient: keep
tackling the grand challenges not yet addressed. Our engineering work, pushing
our technology on deployed systems, harvests further requirements calling for
still more research advances, such as extending the verification guarantees to
timing protection, or concurrent execution on multicore platforms, or increas-
ing the cost-effectiveness of verifying application code or porting the proofs to
new platforms. These open questions then constitute our research agenda and
roadmap.

Open Source. Finally, the last key contributing factor to the uptake of our
technology was the open-sourcing of seL4, both code and proofs, as well as all
the infrastructure, tools, and platforms to help building whole secure systems.
The first reason why this contributed to the uptake is that a kernel is only
a part of the solution, and transitioning to using it requires a retrofit, a re-
architecting of an existing system, which is not a decision taken lightly. Being
able to explore and ‘play’ with it before ‘buying into it’ has been instrumental to
people choosing to transition. The second reason open sourcing has been critical
is that it builds a community and an ecosystem supporting and extending the
technology, infrastructure, libraries, and platforms, helping with the scalability
of the support for transitioning. The caveat and challenge is to ensure that the
verification guarantees keep being maintained.

These few key milestones have led to an increased uptake of the seL4 kernel
and associated technology in real-world systems across a number of domains:
automotive (e.g. HRL, TARDEC), aviation (e.g. Boeing, Rockwell), space (e.g.
UNSW QB50), military (e.g. Rockwell Soldier Helmet), data distribution (e.g.
RTI Connext DDS Micro), Industry 4.0 (e.g. HENSOLDT Cyber), component



14 J. Andronick

OS (e.g. Genode platform), security (e.g. Penten Altrocrypt). Some of these
projects are a result of DARPA’s call for specific funding to build the seL4
ecosystem, through a number of Small Business Innovation Research (SBIR)
grants.

Much work is still to be done (and is ongoing) to lower the bar to transition
to seL4-based systems, and to ensure the verification guarantees are maintained
and extended, but these successful deployments are contributing to pushing the
dream of verified software becoming the default.

3 Insights on Key Social Factors

A major aspect of what we want to communicate here is the importance of social
factors, within our group1, that we have discovered are key contributors to the
technical aspects of what we have done. Our experience is that the successful
uptake of our technology comes from having a single group hosting both FM and
OS people, and both researchers and engineers, working effectively together, as
a tightly integrated team. We want to share concrete examples of the social
structures that enabled this tight integration for us. Some can be expected and
are not unique to our group; we here simply share which ones seem to have been
key for us.

Achieving the dream of pervasive verified software requires a combination of
academic research and industrial engineering. Today, these mostly live in sepa-
rated worlds. Industrial engineering brings the real-world requirements, requires
usability and performance, but is product-focused and aims at profitability.
Hoare said “The goal of industrial research is (and should always be) to pluck the
‘low-hanging fruit’; that is, to solve the easiest parts of the most prevalent prob-
lems, in the particular circumstances of here and now.” [2]. Academic research,
on the other hand, is innovation-focused, aiming at generic solutions, with a
timeframe allowing grand-challenges to be solved in a novel way. Hoare said
that “the goal of the pure research scientist is exactly the opposite: it is to con-
struct the most general theories, covering the widest possible range of phenomena,
and to seek certainty of knowledge that will endure for future generations.” [2].
When it comes to verified software, academic research is still crucially needed to
increase the scalability and applicability, while industrial engineering is critical
to produce specific instances that work.

There have been many studies on the barriers to the adoption of formal meth-
ods and the ideas for closing the gaps between academic research and industry
practices. These studies paint the world as composed of two separate entities;
the formal methods on one side, and the application domain on the other; or
the research on one side, and the industrial engineering on the other — with a
boundary in between that needs to be crossed, as a ‘baton’ transferred from one
part of the world to the other.

1 the Trustworthy Systems group, in Data61, CSIRO, https://ts.data61.csiro.au.



Successes in Deployed Verified Software (and Insights on Key Social Factors) 15

Our view is that success in deployable verified software comes with having
one single world, one single team2, tighly integrated. It is the notion of tight
integration that is crucial. That is what prevents the (undesirable) re-creation,
within the group, of the binary world we are presently forced to inhabit outside
it. If we don’t succeed there, then the same boundaries and gaps will be created
— where work is ‘handed over’ by one set of people to another set of people
for their consideration. Instead, people need to work hand in hand, day by day,
sometimes even hour by hour, sharing their perspective of the issues, solutions,
design decisions, all along the way.

In our group, this is illustrated by the fact that ‘every project involves every
subteam’, meaning that the majority of our projects involve both OS and FM
people and both researchers and engineers. Our engineering practices and pro-
cesses on the OS side and FM side are also tightly integrated; for instance, any
change in the code, from any side, starts with a discussion on the implications
for the ‘other side’; we have a continuous integration process that manages our
implementation code base as well as all our proof code base (now more than a
million lines of Isabelle/HOL), making sure they are always in sync, that changes
to code that is not yet verified can be seamlessly integrated, as well as changes
to verified code that happen to not break any proofs, whereas any changes that
break the proofs are clearly marked as such and follow a process where a team is
allocated to their verification and changes cannot be integrated until the proofs
are re-established.

For this tight integration to work, the frequency of the personal interactions
is crucial. Our group has experienced a few different physical setups, in different
locations, and our observation is that having people in the same location, same
building, if possible same floor is highly desirable: a proof engineer can just
walk up to the OS engineer to check e.g. whether a change in the code to ease
verification would have a performance impact; the impromptu encounters at
the coffee machine create the opportunity to share a viewpoint on e.g. a desired
kernel change; the kind of discussions needed across disciplines work best as face-
to-face discussions, with the support of a white board for design brainstorming,
or for sharing the knowledge between disciplines.

Another very important social aspect is ensuring good communication despite
the difference in backgrounds, or even sometimes languages and terminologies.
For instance, like many other groups, we run weekly talks and quarterly dive-ins
to update the rest of the group on progress in various project or share knowledge
in a specific area. Maybe unlike many other research groups, these talks cross
discipline boundaries and we strive –and in fact need– to keep them at a level
all can understand i.e. the OS-based talks have to be FM-comprehensible, and
vice versa. And everyone must give one of these talks, on a regular schedule.
This way everyone get the opportunity to share their views, to attract interest
in their work, and to grow their skills in explaining their work. This fosters a
culture inside the group of knowledge sharing and awareness of other people’s

2 and if possible, importantly, one single shared coffee machine, surrounded by plenty
of whiteboards.



16 J. Andronick

work, which is essential when having to then deliver together on a given project.
Being able to effectively communicate technical work to people outside of the
field is not easy. To help with this, we run annual ‘bootcamps’ focusing on
training ourselves on communication and presentation skills, and learning how
to best adapt to various kinds of audience. This has an important direct impact
on getting traction externally to increase the uptake of our technology, and
verified software in general. Importantly, it also enables the needed information
sharing and productive collaboration within the group.

Creating a one-team culture goes beyond the communication aspect. It
requires a technical vision that everyone shares, shapes and contributes to. But
it also needs a culture of achieving this vision together as a team, where we
have the urge to see each other succeed, where we help and support each other
in solving hard problems and delivering on projects, and where everyone con-
tributes to creating an environment where everyone can thrive. One way this is
achieved in our group is that a lot of activities such as trainings, social events,
or cultural awareness initiatives are done by people from the group, and tailored
to what our groups needs. For instance, our bootcamp mentioned above includes
sessions on active listening, mental health, life balance, and all sessions are given
by members of the group that have either training or first-hand experience in
the topic, and are delivering tailored information and practice that they know
are relevant to the type of work we do. The impact of this approach is that the
trust that people have in their peers amplifies the impact of the message, the
learning experience or the social interaction. It also extends the scope of the
collaboration between people from purely technical to all social aspects of the
group’s life.

All of the above creates and fosters an environment where you can get a
unique combination of people with different expertise and profiles that can work
well together to achieve their shared mission. Dealing with a truly wonderful mix
of personalities, backgrounds and cultures does create a number of challenges,
but it also creates the required structure to tackle and solve research grand
challenges, while producing systems, tools and frameworks that the world can use
and deploy, and while building a community of users, partners and contributors.
And this is what is needed to achieve the dream of shifting the whole world’s
mentality towards accepting verified software as the norm.

Acknowledgements. The author would like to thank Gerwin Klein and Carroll Mor-
gan for their feedback on drafts of this paper.

References

1. Hoare, C.A.R.: An axiomatic basis for computer programming. CACM 12, 576–580
(1969)

2. Hoare, C.A.R.: Viewpoint - retrospective: an axiomatic basis for computer program-
ming. CACM 52(10), 30–32 (2009)

3. Klein, G., et al.: seL4: Formal verification of an operating-system kernel. CACM
53(6), 107–115 (2010)



Successes in Deployed Verified Software (and Insights on Key Social Factors) 17

4. Klein, G., Andronick, J., Kuz, I., Murray, T., Heiser, G., Fernandez, M.: Formally
verified software in the real world. CACM 61, 68–77 (2018)

5. Klein, G., et al.: seL4: Formal verification of an OS kernel. In: SOSP, pp. 207–220.
ACM, Big Sky, October 2009

6. Murray, T., et al.: seL4: from general purpose to a proof of information flow enforce-
ment. In: 2013 IEEE Symposium on Security and Privacy, pp. 415–429. IEEE, San
Francisco, May 2013

7. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

8. Sewell, T., Myreen, M., Klein, G.: Translation validation for a verified OS kernel.
In: PLDI, pp. 471–481. ACM, Seattle, June 2013

9. Sewell, T., Winwood, S., Gammie, P., Murray, T., Andronick, J., Klein, G.: seL4
enforces integrity. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.)
ITP 2011. LNCS, vol. 6898, pp. 325–340. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-22863-6 24


