
False Failure:

Creating Failure Models for Separation Logic

Callum Bannister1,2 and Peter Höfner1,2

1 Data61, CSIRO, Sydney, Australia
2 Comput. Sci. and Engineering, University of New South Wales, Sydney, Australia

Abstract. Separation logic, an extension of Floyd-Hoare logic, finds
countless applications in areas of program verification, but does not allow
forward reasoning in the setting of total or generalised correctness. To
support forward reasoning, separation logic needs to be equiped with a
failure element. We present several ways on how to add such an element.
We show that none of the ‘obvious’ extensions preserve all the algebraic
properties desired. We develop more complicated models, satisfying the
desired properties, and discuss their use for forward reasoning.

1 Introduction

Some of the most prominent methods for formal reasoning about the correctness
of programs are Floyd-Hoare logic [13,14], Dijkstra’s weakest-precondition cal-
culus [10], and strongest postconditions [13]. The usefulness and importance of
these approaches are undeniable and they have been used in the area of formal
verification countless times.

However, a shortcoming of techniques based on Hoare logic is that they lack
expressiveness for shared mutable data structures, such as structures where up-
datable fields can be referenced from more than one point. To overcome this
deficiency, Reynolds, O’Hearn and others developed separation logic [27,30]. It
extends Hoare logic by separating conjunctions, and adds assertions to express
separation between memory regions, which allows for local reasoning by splitting
memory into two halves: the part the program interacts with, and the part which
remains untouched, called the frame. Later, O’Hearn extended this language to
concurrent programs that work on shared mutable data structures [26].

It is known that sets of assertions, in combination with separating conjunc-
tion form a quantale [8]. Quantales [24,31], sometimes called standard Kleene
algebras [6], or the more general concept of semirings have been used to derive
algebraic characterisations for Hoare logic [19,22] and the wp-calculus of Dijk-
stra [23]. In the quantale of assertions all operations of separation logic, such
as separating conjunction and separating implication are related via Galois con-
nections and dualities [8,1]. Many useful theorems about separation logic follow
‘for free’ from the underlying algebraic theory.

Separation logic has been used for reasoning in weakest-precondition style [10],
which proceeds backwards from a given postcondition and a given program by
determining the weakest precondition [1]. It has also been used in the setting of

2 Callum Bannister and Peter Höfner

forward reasoning, using strongest postconditions. However, in the latter setting
only partial correctness can be considered, as separation logic does not contain
formulae corresponding to the failed execution of programs. Both forward and
backward reasoning in separation logic heavily rely on the Galois connections
and dualities mentioned above.

In this paper we discuss how to extend the assertion quantale of separation
logic to handle failed executions, bearing the application of forward reasoning in
mind. The created models should maintain as much of the algebraic structure as
possible, which would allow us to reuse knowledge from the original separation
logic and from the algebraic meta-theory. We show that all simple models fail to
satisfy all algebraic properties we hope for: some lose associativity of separating
conjunction, while others maintain associativity but do not relate the operators
via Galois connections. As our search for a good model is systematic, we conclude
that there cannot be a simple, but powerful model for separation logic, which
features failure and has ‘nice’ algebraic properties at the same time. Our final
models, inspired by the construction of integers from natural numbers, achieve
the desired properties. The cost is splitting separating implication from its dual.
Although this looks like an acceptable trade-off, we conclude that the new model
is not suitable for forward reasoning either as it leads to undesirable behaviour.

2 Algebraic Separation Logic

Assertions are a crucial ingredient in separation logic. They describe states con-
sisting of a store and a heap, roughly corresponding to the state of local variables
and dynamically-allocated objects. They are used as predicates to describe the
contents of heaps and stores, and as pre- or postconditions of programs, as in
Hoare logic. The semantics of the assertion language is given by the relation
s, h |= p of satisfaction.3 Informally, s, h |= p holds if the state (s, h) satis-
fies the assertion p. A state (s, h) contains a store s : V ⇀ Values – a partial
function from the set V of all variables into a set of Values4 – and a heap
h : Addr ⇀ Values, which maps an arbitrary set of (heap) addresses to values.
An assertion p is called valid (or pure) iff p holds in every state and p is satisfiable
if there exists a state (s, h) that satisfies p.

We denote the set of all heaps by Heaps, and the set of all states by States.
The semantics of assertions is defined inductively as follows (e.g. [30]).

s, h |= b ⇔df bs = true

s, h |= ¬p ⇔df s, h 6|= p
s, h |= p ∨ q ⇔df s, h |= p or s, h |= q
s, h |= ∀v. p ⇔df ∀x ∈ Values : {(v, x)} | s, h |= p
s, h |= emp ⇔df h = ∅
s, h |= e1 7→ e2 ⇔df h = {(es1 , e

s
2)}

s, h |= p ∗ q ⇔df ∃h1, h2 ∈ Heaps. dom(h1) ∩ dom(h2) = ∅ and
h = h1 ∪ h2 and s, h1 |= p and s, h2 |= q

3 We introduce its syntax implicitly; see e.g. [30] for an explicit definition.
4 Often one assumes Values = ZZ .

Creating Failure Models for Separation Logic 3

Here, b is a Boolean, and e1 and e2 are arbitrary expressions; p, q are assertions.
The semantics es of an expression e with regards to a store s is straightfor-
ward. The domain of a relation modelling a partial function R is defined by
dom(R) =df {x : ∃y. (x, y) ∈ R}, and the update function | is defined by
f | g =df f ∪ {(x, y) : (x, y) ∈ g ∧ x 6∈ dom(f)}.

The first four clauses do not make any assumptions about the heap and are
well known. The fifth clause defines the assertion emp, which ensures that the
heap h is empty and does not contain any addressable cell. The assertion e1 7→ e2
characterises the heap of a state to contain exactly one cell at address es1 and
value es2. More complex heaps are built using separating conjunction ∗; it is a
connective that ensures properties on disjoint regions of the underlying heap.

To create a denotational model one lifts the satisfaction-based semantics to
a set-based one: [[p]] =df {(s, h) : s, h |= p} .

In particular, [[false]] = ∅. This definition offers a set-based semantics [8].

[[¬p]] = {(s, h) : s, h 6|= p} = [[p]]
[[p ∨ q]] = [[p]] ∪ [[q]]
[[∀v. p]] =

⋂
x∈Values {(s, h) : ((v, x) | s, h) ∈ [[p]]}

[[emp]] = {(s, h) : h = ∅}
[[e1 7→ e2]] = {(s, h) : h = {(es1, e

s
2)}}

[[p ∗ q]] = [[p]] ∪∗ [[q]] ,
with P ∪∗ Q =df {(s, h ∪ h′) : (s, h) ∈ P ∧ (s, h′) ∈ Q

∧ dom(h) ∩ dom(h′) = ∅}

Here, denotes set complementation with respect to the carrier set States. It
has been shown that set union in combination with set complementation and
lifted separating conjunction forms a useful algebraic structure.

A quantale [24,31] is a structure (S,≤, 0, ·, 1) where (S,≤) is a complete lat-
tice and (S, ·, 1) is a monoid where multiplication is completely disjunctive, i.e.,

a · (
⊔
T) =

⊔
{a · x : x ∈ T } and (

⊔
T) · a =

⊔
{x · a : x ∈ T } ,

for T ⊆ S and
⊔

denoting the supremum operator. The least element is 0.
The supremum of two elements a, b is denoted by a ⊔ b, and relates to the

order by a ⊔ b = b ⇔ a ≤ b. The definition implies that · is a full annihilator

(strict), i.e., that 0 · a = 0 and a · 0 = 0 for all a ∈ S. The notion of a quantale
is equivalent to that of a standard Kleene algebra [6].

A quantale is commutative if a ·b = b ·a, for all a, b ∈ S; it is called Boolean if
the underlying lattice is distributive and complemented, hence a Boolean algebra.

Classical examples are the algebra of Booleans BA = (IB,⇒, false,∧, true),
and binary relations RELX = (P(X×X),⊆, ∅, ; , I), where ; denotes sequential
composition, and I = {(x, x) : x ∈ X} is the identity relation.

We now relate sets of assertions of separation logic to algebra.

Theorem 1. [8] The structure AS=df (P(States),⊆, [[false]],∪∗ , [[emp]]) of separa-
tion logic assertions is a commutative and Boolean quantale with P ⊔Q = P ∪Q.

In its early days separation logic was based on intuitionistic logic [29]. Hence
the underlying algebra, called BI algebra, was based on Heyting algebras, rather

4 Callum Bannister and Peter Höfner

than Boolean algebras [28]. Ishtiaq and O’Hearn expanded BI algebras to cap-
ture the Boolean nature of contemporary separation logic [17]. Their approach,
called Boolean BI algebra, does not require an underlying order. A more detailed
comparison between these approaches is given in [7]. As we require an ordering
for our verification technique – see below – we work in the setting of quantales.

Separation logic features three additional operators: separating implication
(e.g. [30]), septraction [32], and separating coimplication [1].

s, h |= p→∗ q ⇔df ∀h1 ∈ Heaps : (dom(h1) ∩ dom(h) = ∅ and s, h1 |= p)
implies s, h1 ∪ h |= q

s, h |= p −� q ⇔df ∃h1 ∈ Heaps : dom(h1) ∩ dom(h) = ∅ and
s, h1 |= p and s, h ∪ h1 |= q

s, h |= p ∗ q ⇔df ∀h1, h2 ∈ Heaps : (dom(h1) ∩ dom(h2) = ∅ and
h = h1 ∪ h2 and s, h1 |= p) implies s, h2 |= q

A state (s, h) satisfies the separating implication p→∗ q if h ensures that when-
ever it is extended with a disjoint heap h1 satisfying p then the combined heap
h ∪ h1 satisfies q. Septraction (−�) denotes an existential version of separating
implication, which quantifies over all subheaps h1; it expresses that the heap
can be extended with a state satisfying p, so that the extended state satisfies q.
Separating coimplication (∗) states that whenever there is a subheap h1 sat-
isfying p then the remaining heap satisfies q. It is straightforward to lift these
operations to the algebra AS.

Algebraically these operators are related. In a quantale, the left residual a\b
and the right residual a/b exist [2] and are defined by the Galois connections

x ≤ a\b ⇔df a · x ≤ b and x ≤ a/b ⇔df x · b ≤ a .

The element a\b is a pseudo-inverse of multiplication and the greatest solution of
the inequality a ·x ≤ b. Hence a\b can also be defined as

⊔
{x : a ·x ≤ b}. In case

the underlying quantale is commutative both residuals coincide, i.e., a\b = b/a.
In a Boolean quantale, the left detachment a⌋b and the right detachment a⌊b are
defined based on residuals.

a⌋b =df a\b and a⌊b =df a/b

In BA residuals coincide with implication, and detachments with conjunction. In

RELX , R\S = R̆ ;S and R⌋S = R̆ ;S, where˘denotes the converse of a relation.

Theorem 2. [8] In the algebra of assertions AS, separating implication is the
residual of separating conjunction; septraction coincides with the detachment.

[[p→∗ q]] = [[p]]\[[q]] = [[q]]/[[p]] and [[p −� q]] = [[p]]⌋[[q]] = [[q]]⌊[[p]]

The algebraic theory of quantales is well established, and implies plenty of prop-
erties for separation logic. Examples are monotonicity properties of the opera-
tors, modus ponens, as well as the following exchange law.

a · b ≤ c ⇔ a⌋c ≤ b

[[p]] ∪∗ [[q]] ⊆ [[r]] ⇔ [[p −� r]] ⊆ [[q]]
(p ∗ ¬q ⇒ ¬r) ⇔ (p −� r ⇒ q)

Creating Failure Models for Separation Logic 5

a · b a\b (a/b)

a→ b (a← b) a⌋b (a⌊b)

dual

Galois

dual

Galois

Fig. 1. Relationship between operators of quantales

The first equivalence shows the law in the general setting of Boolean quantales,
the second one in AS, and the last one the corresponding law in separation logic. It
is standard that in algebraic settings the order coincides with implication. In this
paper we use these representations interchangeably, depending on the current
situation. Many more properties about quantales can be found in the literature;
many useful properties about residuals and detachments are summarised in [21].

The exchange law implies another Galois connection based on detachments:

b ≤ a→ c ⇔ a⌋b ≤ c ,

where a→ c =df a · c. As for residuals and detachments, a symmetric operator
exists: a← c =df a · c. In sum, any Boolean quantale features four operators
(and their symmetric ones), which are related via dualities and Galois connec-
tions; Figure 1 summarises the situation.

Theorem 3. [1] In AS, separating coimplication is upper adjoint of septraction.

[[p ∗ q]] = [[p]]→[[q]] = [[p]] ∪∗ [[q]] and [[q]] ⊆ [[p ∗ r]] ⇔ [[p −� q]] ⊆ [[r]]

3 Forward and Backward Reasoning in Separation Logic

The Galois connections are extremely useful when reasoning forwards and back-
wards in separation logic [1]. Since we aim at an extension of forward reasoning,
including the possibility of failure, we briefly explain the method in this section.

Forward reasoning [13] proceeds forwards from a given precondition P and a
given program m by calculating the strongest postcondition sp(P,m) such that
{{P}}m {{sp(P,m)}} is a valid Hoare triple. Backward reasoning [10] proceeds the
other way round and determines the weakest precondition wp(m,Q), for a given
program m and postcondition Q.

Although backward reasoning is more common when it comes to verification
efforts, there are several applications where forward reasoning is more conve-
nient, such as for programs where the precondition is ‘trivial’, and the post-
condition either too complex or unknown. Both reasoning techniques are well
established for Hoare logic, and calculational reasoning is feasible. For example,
the strongest postcondition for sp(P,m1;m2) for a sequential program equals
sp(sp(P,m1),m2).

Using separation logic in the context of forward and backward reasoning yield
the problem commonly known as frame calculation. In separation logic any given

6 Callum Bannister and Peter Höfner

specification {{P}}m {{Q}}, can be extended to {{P ∗ R}}m {{Q ∗ R}}, where R is a
frame – a region of the memory that remains untouched during execution of m.
Forward reasoning starts with a given precondition X , which then needs to be
split into the actual precondition P and a frame R. That means for given X
and P one has to find a frame R such that X = P ∗ R. In large projects, frame
calculations are usually challenging since X can be arbitrarily complex.

For forward reasoning the Galois connection between septraction and sepa-
rating coimplication comes to aid.

∀R. {{P ∗R}}m {{Q ∗ R}} ⇔ ∀X. {{X}}m {{Q ∗ (P −�X)}}

The right hand side has the advantage that it works for arbitrary precondi-
tions X and does not require an explicit calculation of the frame. Intuitively, it
states that the postcondition is given by X , pulling out the precondition P and
replacing it by Q. We note that septraction plays a crucial role here.

Specifications {{P ∗ R}}m {{Q ∗ R}} can almost always be rewritten into
{{P ∗R}}m {{Q ∗ R}}, especially if P is precise – preciseness ensures the exis-
tence of a unique subheap, i.e., p 7→ v. A similar equivalence that can be used
for backward reasoning exists, and is based on the Galois connection between
∗ and →∗. Both techniques have been implemented in the theorem prover Is-
abelle/HOL [25] and are ready to be used for verification tasks. [1]

4 Simple Models for Separation Logic

While backward reasoning works for both partial and total correctness, forward
reasoning is more useful in the setting of partial correctness, where termination
has to be proved separately. In total correctness, the existence of a postcondition
implies termination, and therefore, it is not guaranteed that forward reasoning
can proceed from a given precondition, limiting its application. We target gen-
eral correctness [18], where the postcondition can handle both termination and
nontermination. This is in contrast to partial correctness, where failure coincides
with false, and total correctness where failure is unrepresentable.

We extend the assertion language by some notion of failure. We explore
different ways to add failure to separation logic in this and the next section.

Ideally we can develop a failure model maintaining the algebraic relationships
between the operators depicted in Figure 1. In this section we present a series
of models, all lacking at least one algebraic property. As our development is
systematic, we conclude that no simple failure model exists.

A Single Failure Element

We start by extending our model by a single element ⊥ indicating failure. Within
separation logic that means we are looking at the set P(States)∪ {⊥}; or in the
abstract algebraic setting at S ∪ {⊥} as underlying set.

Two choices need to be made: extend multiplication, and integrate ⊥ into
the lattice of elements.

Creating Failure Models for Separation Logic 7

Model I: Near-annihilation and largest element. It seems reasonable to assume
that failure cannot be erased by any non-zero element (in AS by any assertion
different to [[false]]), i.e., a · ⊥ = ⊥ · a = ⊥, for all a ∈ (S ∪ {⊥}) − {0}. The
interaction between ⊥ and 0 ([[false]] in AS) needs to be decided independently.
Let us assume that zero cancels out failure: 0 · ⊥ = ⊥ · 0 = 0. Moreover, let ⊥
be the largest element in the underlying lattice: a ≤ ⊥, for all a.

If there are elements that cancel each other, i.e., ∃a, b∈S. a · b = 0 , we have

(a · b) · ⊥ = 0 · ⊥ = 0 and a · (b · ⊥) = a · ⊥ = ⊥ .

Therefore either multiplication is not associative, and hence the underlying mul-
tiplicative structure (S ∪ {⊥}, ·, 1) is not even a monoid, or the algebra col-
lapses: ⊥= 0 ≤ a ≤ ⊥. Separation logic features cancellative elements such as
(p 7→ v) ∗ (p 7→ v) = false, where p 7→ v characterises a pointer p pointing to
value v. Hence separating conjunction cannot be associative if a failure element
with the above properties is present. N

Loosing associativity is not a priori bad (e.g. [11,9]), and we can still use
models without associativity for reasoning in separation logic. We discuss this
in Section 6. However, many useful properties are lost. For example the law
(a · b)⌋c = a⌋(b⌋c), which holds in commutative quantales, does not hold without
associativity. In separation logic this translates to (p ∗ q) −� r = p −� (q −� r)
and states that a heap can be ‘removed’ by removing subheaps consecutively.

Model II: Near-annihilation and least element. When using the same set up as
in Model I, but forcing ⊥ to be the least element, i.e., ⊥ ≤ a, the problem with
associativity stays, but the algebra does not collapse any longer when associa-
tivity is enforced – one does not have ⊥ ≤ a ≤ ⊥. However, we get ⊥= 0 when
assuming associativity and the existence of elements that cancel each other. N

Model III: Full annihilation and largest element. Since near-annihilation of
failure (⊥ · a = a · ⊥ = ⊥ for a 6= 0) yields problems with associativity, we now
focus on situations where failure is a (full) annihilator: a · ⊥ = ⊥ · a = ⊥, for
all a ∈ S ∪ {⊥}. As a consequence, 0 does not fully annihilate any longer, as we
only have a · 0 = 0 · a = 0 for a 6= ⊥. For this model we assume that ⊥ is the
largest element. While the resulting algebra is still a complete lattice5, it does
not form a quantale as multiplication is only positively distributive, i.e.,

T 6= ∅ ⇒ (a · (
⊔
T) =

⊔
{a · x : x ∈ T } and (

⊔
T) · a =

⊔
{x · a : x ∈ T }) .

For T = ∅ we have ⊥ ·
⊔
∅ = ⊥ · 0 = ⊥ and

⊔
{a · x : x ∈ ∅} =

⊔
∅ = 0.

While one could still define residuals as suprema, the Galois connections between
multiplication and residuals do not hold any longer. Since these connections are
crucial for backward reasoning (see Section 3), this model is of no use for us. N

Model IV: Full annihilation and least element. Our final model featuring a sin-
gle failure element defines failure as least element of the lattice and as full anni-
hilator. By straightforward calculations it can be shown that this algebra forms
indeed a quantale. In particular, multiplication is associative and completely

5 We omit straightforward proofs; most of them are available online (see Section 6).

8 Callum Bannister and Peter Höfner

distributive. Therefore this model is the first one which features an associative
multiplication and establishes Galois connections. N

However, it is impossible to extend a Boolean quantale (S,≤, 0, ·, 1) to a
Boolean quantale (S ∪ {⊥},⊑,⊥, ◦, 1) in this setting, if ⊥ 6∈ S: as Boolean alge-
bras have size 2n (for n ∈ IN) and 2n+1 is not a power of 2, no complementation
can be defined on the extended structure.

While this model is still a fine failure model for separation logic (without
complementation), which can probably be used in many circumstances, it is not
suitable for forward reasoning. As we want to use it in combination with reason-
ing in Hoare logic, we have to maintain fundamental aspects of this logic such,
as the weakening rule

{{P}}m {{Q}} Q ≤ Q′

{{P}}m {{Q′}}
.

As mentioned above, ≤ coincides with logical implication and hence Q ≤ Q′ de-
scribes the fact that the precondition Q′ is weaker than Q. This rule in combina-
tion with the fact that ⊥ is the least element yields false conclusions. Assume the
program set ptr p v, which assigns value v to pointer p. If the heap does not con-
tain the pointer, for example when the heap is empty, then the program fails. We
would like to have the Hoare triple {{emp}} set ptr p v {{⊥}} to be valid. Using the
weakening rule we can replace the postcondition by any other, as ⊥ is the least
element. Using the weakening rule conclude that {{emp}} set ptr p v {{q 7→ 7}}
or {{emp}} set ptr p v {{true}} hold. Both are invalid Hoare triples under general
correctness.

Therefore, in a setting where separation logic is used for forward or backward
reasoning the element representing false (∅ = [[false]] in AS) needs to be the least
element of any order to be used with Hoare logic.

The above four models conclude our failure models for separation logic fea-
turing a single failure element; other models are not useful as it is not realistic
that non-zero elements (proper heaps in AS) cancel out failure. It also does not
seem plausible to have the failure element sitting at some place in the lattice
that is not at the bottom or the top.

Sets of Failure and Non-Failure Elements

We have shown that a failure element cannot be the least element w.r.t. the
order underlying Hoare logic. Moreover, failure should be an annihilator in case
elements exist that cancel each other out – otherwise associativity is lost.

Since a single failure yields severe shortcomings we now look at models based
on subsets of States′ = States ∪ {⊥}. The intuition behind these models is that
failure does not forget about the heap setting, but combines failure with possible
heaps. It can be seen as introducing a flag indicating whether a calculation has
failed or not; since there is only one flag, any calculation that may fail will have
the failure flag set (non-failure executions may exist). This setting allows more
flexibility when it comes to defining multiplication.

For the following two models we use the following separating conjunction.

P ∗1 Q =df ((P − {⊥}) ∪∗ (Q− {⊥})) ∪ ((P ∪Q) ∩ {⊥})

Creating Failure Models for Separation Logic 9

The first part calculates ‘classical’ separating conjunction on the non-failure
parts of P and Q, and the second part adds the failure element in case either
P or Q contains a failure. Using distributivity of ∩ over ∪, and introducing the
shorthands P⊥ for P ∩ {⊥} and P -⊥ for P − {⊥}, the equation becomes

P ∗1 Q = (P -⊥ ∪∗ Q -⊥) ∪ P⊥ ∪ Q⊥ .

It is easy to see that ∗1 is associative and commutative. Moreover, it is straight-
forward to prove that the set {⊥} is an annihilator w.r.t. ∗1, i.e., P ∗1 {⊥} = {⊥}.

Model V: Full annihilation with subset order. One of the first models that comes
into mind when creating a failure model for separation logic is the structure
(P(States∪ {⊥}),⊆, ∅, ∗1, [[emp]]). Clearly, (P(States∪ {⊥}),⊆, ∅) is a complete,
distributed and complemented lattice. Moreover, (P(States ∪ {⊥}), ∗1, [[emp]]) is
a monoid. Similar to Model III this algebra is only positively distributive. As
before, residuals can be defined via the supremum operator, but do not establish
the desired Galois connections. N

Model VI: Full annihilation with more sophisticated order. To turn Model V
into a quantale we define a more sophisticated order.

P ⊑ Q ⇔df P -⊥ ⊆ Q -⊥ ∧ Q⊥ ⊆ P⊥

⇔ P -⊥ ⊆ Q -⊥ ∧ (⊥ ∈ Q ⇒ ⊥ ∈ P)

States

States′

(P ∪{⊥})'

P ' P ∪{⊥}

P

∅

{⊥}
Fig. 2. Another order

This order, illustrated in Figure 2, is the
subset-order on non-failure elements. It
classifies a set containing ⊥ worse than
the same set without failure.

The structure (P(States′),⊑, {⊥}) is a
complete lattice, the supremum operator
coincides with P [] Q =df (P -⊥ ∪Q -⊥) ∪
(Q⊥ ∩ P⊥), which is associative and com-
mutative. The structure (P(States′),⊑,
{⊥}, ∗1, [[emp]]) forms a Boolean commu-
tative quantale when using set-theoretic
complementation over States′, denoted
by '. In particular (P ∪ {⊥})' = P , with is complementation of States.

Since the largest element does not contain the failure element, this model
suffers from the same problems as Model IV, and cannot be used in combination
with forward reasoning. However, it is a decent extension of algebraic separation
logic, and features all the desired algebraic properties. In particular, we can
define the other three operators via Galois connections and duals. As this is an
extension of separation logic, we use the symbols from separation logic rather
than their algebraic counterparts (e.g. −� rather than ⌋).

P →∗1 Q = (P -⊥ →∗ Q -⊥) ∪ ((P ')⊥ ∩Q⊥)

P ∗1 Q = (P -⊥
 ∗ Q -⊥) ∪ ((P ')⊥ ∩ Q⊥)

P −�1 Q = (P -⊥ −� Q -⊥) ∪ P⊥ ∪Q⊥

10 Callum Bannister and Peter Höfner

All these operations have the advantage that they are built based on the original
operations of separation logic. In particular, the new and the original definitions
behave identical on the non-failure elements (heaps). The second component
defines the effect if either P or Q contain the error element. N

The above model, as well as all forthcoming ones, can be lifted to a more
abstract level, based on a quantale S = (P(S),⊆, ∅, ·, 1). As our motivation
stems from separation logic, we stick with models based on AS.

Although the model cannot be used for forward reasoning, it is useful to show
another important shortcoming: septraction as defined in Model VI cannot yield
failure: P −�1 Q contains an error only if either P orQ contains a failure element.

Consider the program delete ptr p. It clears the allocated memory pointed
to by p, and should fail if p does not exist. Since we would like to work with
Hoare triples of the form

{{X}} delete ptr p {{p 7→ −�? X}}

we require that −�? can fail, even in the setting of non-failed X , where −�? is
an extension of −�. More concretely, the modified septraction should imply

p 7→ −�? emp = ⊥ ,

written as a formula of separation logic. A possible solution would be to modify
∗1 or −�1 by generating a failure whenever separation logic would lead to false.

P ∗2 Q = F(P -⊥ ∗ Q -⊥) ∪ P⊥ ∪Q⊥ ,

P −�2 Q = F(P -⊥ −� Q -⊥) ∪ P⊥ ∪Q⊥ ,

where function F is defined as F(X) =df {⊥} if X = ∅ and F(X) =df X other-
wise. Both ∗2 and −�2 can be used to create failure models. However, the only
useful orderings we found for these algebras are either the subset-order or orders
closely related to ⊑ of Model VI. As a consequence either multiplication is only
positively distributive, or the set {⊥} is the least element. As discussed, either
setting is not ideal for forward reasoning.

As a side remark it is worth mentioning that in the commutative Boolean
quantale (P(States′),⊑, {⊥}, ∗2, [[emp]]) the operator −�2 is not the detachment,
despite the symmetric definition.

Failure Flags for Every Single Heap

We turn to the finest sets of models, featuring a failure flag for every heap.
In separation logic a heap would be of type (Addr ⇀ Values) × IB, where the
Boolean flag indicates (non)failure: true indicates non-failure, and false failure.

In the set-theoretic setting where we consider sets of states, we model failure
flags by pairs of sets. The first set lists all heaps stemming from non-failure
calculations, and the second one lists all failed heaps: an element of the form
(P, ∅) indicates non-failure calculations.

Since we distinguish failed from non-failed heaps we do not need a sepa-
rate failure element. Moreover, since the algebra is now built on P(States) ×
P(States), we can use standard algebraic constructions to create further models.

Creating Failure Models for Separation Logic 11

Model VII: Cross-Product with component-wise multiplication. We consider the
structure (P(States)×P(States),⊑, (∅, ∅), ◦, ([[emp]], [[emp]])), where ⊑ and ◦ are
the component-wise lifted order ⊆ and multiplication ∪∗, e.g.

(P1, P2) ◦ (Q1, Q2) =df (P1 ∪∗ Q1, P2 ∪∗ Q2) .

Clearly, this model forms a Boolean commutative quantale, which is a proper
extension of separation logic. However, since failed and non-failed heaps are
kept separate, the derived operation of septraction (detachment) cannot produce
failure heaps out of non-failure ones; a similar behaviour as Model VI. Using the
same example as above, adapted to the model at hand, we get

([[p 7→]], ∅) −�3 ([[emp]], ∅) = (∅, ∅) ,

where −�3 is the component-wise lifted septraction. N

In general, there are multiple product constructions to create new algebras.
The most common constructions, such as Model VII, form quantales again,
which can be proved in an algebraic setting, e.g. by using general results from
universal algebra.

However, all of these constructions keep the components more or less sep-
arate. Hence these models, although decent failure extensions, suffer the same
shortcoming as Model VII. Some of those models, e.g. one that is identical to
Model VII except that the order is given by ⊆ × ⊇, yield problems already dis-
cussed earlier – here, the problem occurring in reasoning in Hoare-logic style.

5 More Sophisticated Models

Since simple extensions do not work we consider two sophisticated models in
this section. Instead of considering flags, we now split every heap into a set of
actual configuration, and one of ‘failed’ configurations. Formally a heap is of type
Heaps2 =df (Addr⇀Values)×(Addr⇀Values). The extended heap (p 7→ v, q 7→)
states that a pointer p exists, pointing to value v, and that a pointer q is re-
quired, but does not exist. This idea is inspired by the construction of integers
from natural numbers (e.g. [5]). Both models build on this idea of ‘negative’
heaps; the base set is States2 =df P(Stores × Heaps2). Instead of adding ele-
ments and operations on top of AS we change the underlying logic of AS.

As before the forthcoming models can be lifted to an abstract level, based on
a quantale (P(S),⊆, ∅, ·, 1), but we stay within the setting of separation logic.

We aim at a failure model that allows non-failure elements to create failure,
when used with septraction. Hence we have to develop operators that combine
both parts of the pair of the underlying set of elements.

We define a new unary operator that eliminates those parts of a heap that are
present and missing at the same time; again this is similar to the construction
on top of natural numbers. Intuitively such heaps cannot exist:

∗ : Heaps2 → Heaps2
(h1, h2)

∗ =df (h1|dom(h2)
, h2|dom(h1)

) ,

12 Callum Bannister and Peter Höfner

where the heaps are restricted to those parts that do not occur in both. This
operator is lifted to States2 by P ∗ =df {(s, h∗) : (s, h) ∈ P}, where h ∈ Heaps2
is an extended heap.

Model VIII: Septraction based on heap reduction. The first model of this section
modifies AS to take heap reduction ∗ into account: in detail we consider the
structure (P(States2),⊆, ∅,∪∗ 1, [[emp′]]), where [[emp′]] =df {(s, ∅, ∅)} and ∪∗1 is an
adapted version of ∪∗:

P ∪∗ 1 Q =df {(s, h1 ∪ h′
1, h2 ∪ h′

2) : (s, h1, h2) ∈ P ∗ ∧ (s, h′
1, h

′
2) ∈ Q∗

∧ dom(h1) ∩ dom(h′
1) = dom(h2) ∩ dom(h′

2) = ∅} .

The structure forms a commutative quantale, with (P(States2),⊆, ∅) being a
complete and distributive lattice. Therefore the residuals of ∪∗1 exist, denoted by
→∗4. We further define a new complementation operator ∼ by ∼P =df P ∗. The
idea of this negation is based on the negation of non-classical relevance logics

(also called relevant logics) [20,12], where ∗ is related to the logic’s ‘Routley
Star’. We introduce separating coimplication and septraction as

P ∗4 Q =df ∼(P ∗4 ∼Q) and P −�4 Q =df ∼(P →∗4 ∼Q) .

Lifting the satisfaction-based semantics to a set-based one by [[p]] =df {(s, h1, h2) :
s, h1, h2 |= p}, and using the shorthand [[h1, h2]] for {(s, h1, h2)}, we can derive
useful laws such as

[[p 7→ v, ∅]] −�4 [[∅, ∅]] = [[∅, p 7→ v]] and [[p 7→ v, ∅]] −�4 [[p 7→ v, ∅]] ⊇ [[emp′]] .

Both properties are desired and fit the intuition of septraction involving fail-
ure. The first property states that pulling out a resource (p 7→ v) from the
empty heap yields a negative heap; the second property states that one can
pull out a resource if it exists. However, we can derive inequalities such as
[[q 7→ , q 7→]] ⊆ [[p 7→ v, ∅]] −�4 [[p 7→ v, ∅]], which seems to be weird: why
should a statement that deletes a pointer p from a heap that only consists of p
talk about another pointer q? Applying the operator ∗ would remove such heap
elements, but the current model has another severe disadvantage: ∗4 and −�4

do not form a Galois connection. This is not a surprise because ∼ is not a proper
complement, e.g. ∼(∼P) 6= P . N

Using standard set complementation turns (P(States2),⊆, ∅) into a comple-
mented lattice and the above structure into a Boolean quantale. However, it
would not solve any of the problems mentioned before as it is similar to the
original algebra AS, featuring two instead of one heap; but not interpreting the
second heap as a negative one.

A similar model with the same problems as Model VIII is based on failure
flags for every single heap (see Section 4): it considers the structure

(P(States)×P(States),⊆ ×⊆, (∅, ∅),∪∗2, ([[emp]], [[emp]])) ,

with (P1, P2) ∪∗ 2 (Q1, Q2) =df (P1 ∪∗ P2, Q1 ∪∗ Q2), and heap restriction operator
(P1, P2)

∗ =df (P1 − P2, P2 − P1).

Creating Failure Models for Separation Logic 13

Model IX: Septraction based on heap reduction under adapted heap addition.

As in Model VIII we consider the structure (P(States2),⊆, ∅,∪∗2, [[emp′]]), but
this time we define multiplication as

P ∪∗ 2 Q =df {(s, h∗ ∪ h′∗) : (s, h) ∈ P ∧ (s, h′) ∈ Q ∧ dom(h) ∩ dom(h′) = ∅} ,

where ∪, ∩ and dom are defined component-wise on Heaps2. As we changed the
underlying heap addition, which now uses heap reduction ∗, we are not required
to use a non-standard complement any longer. It is straightforward to show that
this structure is indeed a commutative Boolean quantale; the proof is similar to
the one of AS. As a consequence, residuals, detachments and duals exist; their
characterisation is similar to the one of AS, presented in Section 2. At the level
of septraction and separating coimplication they read as follows

s, h |= p −�5 q ⇔ ∃h1 ∈ Heaps2 : dom(h∗1) ∩ dom(h∗) = ∅ and
s, h1 |= p and s, h ∪ h1 |= q

s, h |= p ∗5 q ⇔ ∀h1, h2 ∈ Heaps : (dom(h∗1) ∩ dom(h∗2) = ∅ and
h = h1 ∪ h2 and s, h1 |= p) implies s, h2 |= q .

A big advantage of this model is that all the definitions are ‘identical’ to the
ones of AS; even the logical formulas are identical. Moreover, it satisfies many
useful properties such as

[[p 7→ v, ∅]] −�5 [[p 7→ v, ∅]] = [[emp′]] and [[p 7→ v, ∅]] −�5 [[emp′]] ⊆ [[∅, p 7→ v]]

The first equation states that a subheap that exists can actually be pulled out;
the second that pulling out a non-existing heap does indeed yield a failure –
represented by its appearance in the second component.

As Galois connections are available we can use this model for forward rea-
soning (see Section 3). The connectives are related to Bi-Intuitionistic Boolean
Bunched Implications (BiBBI) [4,3], which is a fragment of linear logic. Although
the theories are slightly different, the proof theory developed for BiBBI should
be usable for our model.

The model comes very close to the one we are looking for. However, it does
not satisfy all the properties we desire. For example, we have

[[p 7→ v, ∅]] −�5 [[∅, p 7→ v]] = ∅ = [[false]] .

This law states that pulling out a heap, which does not exist and which is already
part of the negative heap, leads to the empty heap in both components. That
means a non-existent heap cannot be pulled out twice. N

Clearly, the equation mentioned at the end of Model IX is not the intended
behaviour we would expect from a model that can be used for forward reasoning
in separation logic. The reason is that we use separating conjunction in both
parts of the extended heap, on the ‘positive’ heap as well on the ‘negative’ heap.
We suspect that relaxing the ‘negative’ heap structure could help. Rather than
using a partial function Addr⇀Values one could use multisets. By doing so, we
hope to achieve the following behaviour

(p 7→ v, ∅) −�? (∅, p 7→ v) = (∅, {p 7→ v, p 7→ v}) ,

14 Callum Bannister and Peter Höfner

written in separation-logical style and stating that the resource p 7→ v is already
missing twice. When using a multiset as negative heap, however, it is not possible
to use set-theoretic complementation as negation. Part of our future work is to
figure out all the details, e.g. how to integrate the heap reduction operator ∗.

6 Discussion and Conclusion

In this paper we have reported on our quest of extending separation logic in a way
that it can be used for forward reasoning in non-partial contexts; in particular in
the setting of total and general correctness. To support forward reasoning there,
separation logic needs to be equipped with failure element(s). The problem with
creating such a model is that we want it to be natural and intuitive when it
comes to septraction, but at the same time we want to maintain the algebraic
properties of the original separation logic.

In this paper we have focussed on the algebraic structure of separation logic,
namely on quantales. We have developed a series of models that could poten-
tially be used as failure models. It turns out that all extensions that we thought
of being useful either loose algebraic properties such as dualities, Galois connec-
tions and/or associativity; or we cannot use the developed models for forward
reasoning as the weakening rule of Hoare logic would not be valid any longer.

Although these models could be seen as negative results, we have decided to
publish all the models nevertheless: (a) as we have shown that simple models
cannot be used for extending separation logic, we want to share the experience
to prevent other researchers from creating ‘simple’ models; (b) we want to give
a justification why the models we are looking at at the moment are complicated;
and (c) we suspect that the developed models can also be used in other settings,
such as Concurrent Kleene Algebra [15] or hybrid system analysis [16].

To present as many models as possible, we have decided to skip all the proofs
as most of them are lengthy and boring, but not hard. Some of the proofs such
as the proof that Model VI forms a commutative Boolean quantale have been
mechanised in the interactive theorem prover Isabelle/HOL; these proofs can be
found at http://hoefner-online.de/ramics18/.

We have mentioned in Section 3 that backward and forward reasoning for
separation logic – the latter only for partial correctness – is supported by Is-
abelle/HOL. Although we have not found the perfect model yet, we have inte-
grated some of the presented models in our Isabelle framework. In particular
Model VIII, Model IX, as well as a similar (non-associative) one, which we have
not listed. By doing so, we have figured out that the loss of associativity is not
too bad. Non-associativity makes automation slightly more complicated, but cer-
tainly not impossible, as associativity still holds when no non-failure elements are
involved. When performing forward reasoning, a single failed conjunct already
indicates a problem of a program; hence a quick search for a failure element over
a derived formula indicates failure. A link to our Isabelle framework can also be
found at the above-mentioned webpage.

http://hoefner-online.de/ramics18/

Creating Failure Models for Separation Logic 15

For future work we obviously will continue our search for an ideal model for
our framework. If we prove that none exist, we will have to decide on which
tradeoff suits our setting the most.

Acknowledgement. We are grateful to Gerwin Klein and Bernhard Möller for
fruitful discussions and inspiring ideas. We also thank the anonymous referees
for their valuable feedback.

References

1. Bannister, C., Höfner, P., Klein, G.: Backwards and forwards with separation logic.
In: Avigad, J., Mahboubi, A. (eds.) Interactive Theorem Proving (ITP’18). Lecture
Notes in Computer Science, vol. 10895, pp. 68–87. Springer (2018)

2. Birkhoff, G.: Lattice Theory, Colloquium Publications, vol. XXV. Annals of Math-
ematics Studies, 3rd edn. (1967)

3. Brotherston, J., Calcagno, C.: Classical BI: its semantics and proof theory. Logical
Methods in Computer Science 6(3) (2010)

4. Brotherston, J., Villard, J.: Sub-classical boolean bunched logics and the meaning
of par. In: Kreutzer, S. (ed.) Computer Science Logic (CSL ’15). Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol. 41, pp. 325–342. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik (2015)

5. Campbell, H.E.: The Structure of Arithmetic. Appleton-Century-Crofts (1970)
6. Conway, J.H.: Regular Algebra and Finite Machines. Chapman & Hall (1971)
7. Dang, H.H.: Algebraic Calculi for Separation Logic. Ph.D. thesis, University of

Augsburg, Germany (2014)
8. Dang, H.H., Höfner, P., Möller, B.: Algebraic separation logic. Journal of Logic

and Algebraic Programming 80(6), 221–247 (2011)
9. Desharnais, J., Möller, B.: Non-associative Kleene algebra and temporal logics.

In: Höfner, P., Pous, D., Struth, G. (eds.) Relational and Algebraic Methods in
Computer Science (RAMiCS’17). Lecture Notes in Computer Science, vol. 10226,
pp. 93–108. Springer (2017)

10. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall (1976)
11. Dongol, B., Hayes, I.J., Struth, G.: Relational convolution, generalised modalities

and incidence algebras. arXiv: abs/1702.04603 (2017)
12. Dunn, J.: Star and perp. Philosophical Perspectives 7, 331–357 (1993)
13. Floyd, R.W.: Assigning meanings to programs. Mathematical aspects of computer

science 19, 19–32 (1967)
14. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications

of the ACM 12, 576–580 (1969)
15. Hoare, T., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra and its

foundations. Journal of Logic and Algebraic Programming 80(6), 266–296 (2011)
16. Höfner, P., , Möller, B.: An algebra of hybrid systems. Journal of Logic and Alge-

braic Programming 78, 74–97 (2009)
17. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data struc-

tures. SIGPLAN Notices 36, 14–26 (2001)
18. Jacobs, D., Gries, D.: General correctness: A unification of partial and total cor-

rectness. Acta Inf. 22(1), 67–83 (1985)
19. Kozen, D.: On Hoare logic and Kleene algebra with tests. ACM Transactions on

Computational Logic 1(1), 60–76 (2000)

16 Callum Bannister and Peter Höfner

20. Mares, E.: Relevance logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Phi-
losophy. Metaphysics Research Lab, Stanford University, spring 2014 edn. (2014)

21. Möller, B.: Residuals and detachments. Tech. Rep. 2005-20, Institut für Informatik,
Universität Augsburg (2005)

22. Möller, B., Struth, G.: Algebras of modal operators and partial correctness. The-
oretical Computer Science 351(2), 221–239 (2006)

23. Möller, B., Struth, G.: WP is WLP. In: MacCaull, W., Winter, M., Düntsch, I.
(eds.) Relational Methods in Computer Science (RelMiCS ’06). Lecture Notes in
Computer Science, vol. 3929, pp. 200–211. Springer (2006)

24. Mulvey, C.: &. Rendiconti del Circolo Matematico di Palermo 12(2), 99–104 (1986)
25. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for

Higher-Order Logic, Lecture Notes in Computer Science, vol. 2283. Springer (2002)
26. O’Hearn, P.: Resources, concurrency, and local reasoning. Theoretical Computer

Science 375, 271–307 (2007)
27. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that

alter data structures. In: Fribourg, L. (ed.) Computer Science Logic (CSL ’01).
Lecture Notes in Computer Science, vol. 2142, pp. 1–19. Springer (2001)

28. Pym, D.: The Semantics and Proof Theory of the Logic of Bunched Implications.
Kluwer Academic Publishers (2002)

29. Reynolds, J.C.: Intuitionistic reasoning about shared mutable data structure. In:
Davies, J., Roscoe, B., Woodcock, J. (eds.) Millennial Perspectives in Computer
Science. pp. 303–321. Palgrave (2000)

30. Reynolds, J.C.: An introduction to separation logic. In: Broy, M., Sitou, W., Hoare,
T. (eds.) Engineering Methods and Tools for Software Safety and Security, NATO
Science for Peace and Security Series - D: Information and Communication Secu-
rity, vol. 22, pp. 285–310. IOS Press (2009)

31. Rosenthal, K.: Quantales and their applications. Pitman Research Notes in Math-
ematics Series 234 (1990)

32. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic. In:
Caires, L., Vasconcelos, V.T. (eds.) Conference on Concurrency Theory (CONCUR
’07). Lecture Notes in Computer Science, vol. 4703, pp. 256–271. Springer (2007)

	False Failure:Creating Failure Models for Separation Logic

