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Institut für Informatik, Christian-Albrechts-Universität zu Kiel, Germany

Department of Mathematics and Computer Science, Kagoshima University, Japan

Department of Computer Science and Software Engineering, University of Canterbury, New Zealand

Data61, CSIRO and Computer Science and Engineering, University of New South Wales, Australia

Abstract. Binary relations are one of the standard ways to encode, characterise and
reason about graphs. Relation algebras provide equational axioms for a large fragment of
the calculus of binary relations. Although relations are standard tools in many areas of
mathematics and computing, researchers usually fall back to point-wise reasoning when it
comes to arguments about paths in a graph. We present a purely algebraic way to specify
different kinds of paths in relation algebras. We study the relationship between paths with
a designated root vertex and paths without such a vertex. Since we stay in first-order logic
this development helps with mechanising proofs. To demonstrate the applicability of the
algebraic framework we verify the correctness of three basic graph algorithms. All results
of this paper are formally verified using Isabelle/HOL.

1. Introduction

Paths are a fundamental concept in graph theory and its applications. Many textbooks
define a path in a directed graph to be a sequence of vertices such that successive vertices
in the sequence are connected by an edge of the graph; for example, see [29, 16, 3]. A
simple path is one whose vertices are distinct; a cycle is one whose first and last vertices are
identical. There are variations in terminology, but definitions of paths are mostly based on
sequences.

An alternative approach is to define a path as a subgraph of edges that is connected
such that every vertex has at most one incoming edge and at most one outgoing edge; this
is considered, for example, in [60, 21]. The aim of the present paper is to derive a theory of
paths in directed graphs based on this alternative definition and to show how it can be used
to verify the correctness of graph algorithms.

The main motivation for using subgraphs instead of sequences is that the former allow
us to reason about paths as special kinds of graphs using the well-established framework of
relation algebra. Specifically, the edge set E of a directed graph is a subset of the Cartesian
product A×A, where A is the set of vertices, and therefore E is a (homogeneous) relation on
the set A. Hence both paths and graphs correspond to relations, and relational concepts and
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methods can be used to work with them in a unified setting. We are particularly interested
in exploiting the algebraic structure of relations, in order to concisely express properties of
graphs and reason about graphs using equational, calculational proofs. Such proofs can be
easily mechanised and formally verified using automated theorem provers and interactive
proof assistants [32, 11, 8, 23, 1, 52].

Relation algebras have been proposed by De Morgan, Peirce, Schröder and Tarski to
express a rich fragment of first-order logic algebraically without using variables and quantifiers
[59]; recent textbooks are [30, 40]. Besides for logical foundations, relational methods have
been used for program analysis [20, 26], refinement [61], databases [50], preference modelling
[55, 44], algorithm development [24, 2, 4, 27] and many other applications; for example, see
[18, 19, 58, 54, 45, 43].

Relations and relation algebras have been used for a wide range of topics in graph theory
[56, 12, 6, 53, 9, 25]. By defining paths as subgraphs, we can reuse the well-developed theory
of relation algebras and reason about paths without resorting to variables and quantifiers.

The present paper studies paths using relation-algebraic means. Its contributions are:

– Equational characterisations of various classes of paths including cycles, finite paths,
one-sided and two-sided infinite paths in Sections 3–5. An overview of the classification is
shown in Figure 1 and discussed below.

– Relation-algebraic specifications and correctness proofs of a number of basic graph algo-
rithms that rely on paths in Section 6.

– Relation-algebraic characterisations of paths with designated roots and their equivalence
to paths without roots in Section 7.

All concepts, theorems and algorithms described in this paper have been implemented in
Isabelle/HOL [49]. All results have been formally verified in this system making heavy use
of its integrated automated theorem provers and SMT solvers [51, 14]. We omit the proofs,
which can be found in the theory files under preparation for the Archive of Formal Proofs
and currently available at http://www.csse.canterbury.ac.nz/walter.guttmann/algebra/.

Figure 1 shows the classes of paths discussed in this paper:

À Finite paths, which have both a start vertex and an end vertex, and finitely many edges.
Á One-sided infinite paths that have an end vertex but no start vertex.
Â One-sided infinite paths that have a start vertex but no end vertex.
Ã Two-sided infinite paths, which have neither a start vertex nor an end vertex, but infinitely

many edges.
Ä Cycles, which have neither a start vertex nor an end vertex, and at least one but finitely

many edges.
Å The empty path, which has neither a start vertex nor an end vertex, and no edges.

We refer to unions of these disjoint classes by listing the associated labels; for example, [ÀÂ]
are the paths that have a start vertex. The left circle of Figure 1 contains the paths without
a start vertex [ÁÃÄÅ] and the right circle those without an end vertex [ÂÃÄÅ].

2. Relation Algebras

In this section we give basic definitions, operations and properties of relations. Their
structure is captured abstractly by relation algebras, which let us characterise important
properties of relations in a compact way using equations. We explain how to represent edges,
vertices and sets of vertices of a graph as relations. To describe reachability in graphs, we

http://www.csse.canterbury.ac.nz/walter.guttmann/algebra/
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Figure 1: Six disjoint classes of paths

recall first-order axioms for the Kleene star operation. Finally, we discuss tool support for
mechanising the presented concepts.

2.1. Relations. A (concrete) binary relation R on a set A is a subset of the Cartesian
product A×A, that is, a set of ordered pairs of elements of A. Using the language of graph
theory, A is the set of vertices of the graph and R is the set of directed edges. Binary
relations can also be understood as Boolean matrices with rows and columns indexed by A,
which corresponds to the adjacency matrix representation of graphs.

Since relations are sets, the union R ∪ S, intersection R ∩ S and complement R of
relations R and S can be taken such that the set of all binary relations on A forms a Boolean
algebra. The composition R ; S of two relations R and S is the set of all pairs (a, c) ∈ A×A
such that (a, b) ∈ R and (b, c) ∈ S for some b ∈ A. The converse or transpose RT of a
relation R is the set of all pairs (a, b) with (b, a) ∈ R. The identity relation I on A is the set
of all pairs (a, a) with a ∈ A.

The structure (2A×A,∪, ;, , T, I) is called the concrete relation algebra of all binary
relations over A. To discuss the algebraic structure of relations in a more abstract way,
binary relations are replaced by arbitrary elements of a carrier set B, operations on B are
introduced and they are axiomatised by equations as follows.
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An (abstract) relation algebra is a structure (B,∪, ;, , T, I) satisfying the axioms [59, 40]

(R ∪ S) ∪ T = R ∪ (S ∪ T ) R ∪ S = S ∪R R = R ∪ S ∪R ∪ S

(R ; S) ; T = R ; (S ; T ) (R ∪ S) ; T = R ; T ∪ S ; T R ; I = R

RTT
= R (R ∪ S)T = RT ∪ ST (R ; S)T = ST ; RT

RT ; R ; S ∪ S = S

The first line contains Huntington’s axioms for Boolean algebras [34, 33]. The join operation

is denoted by ∪, based on which the meet can be defined as R ∩ S = R ∪ S. Since every
relation algebra is a Boolean algebra, the set B is partially ordered by R ⊆ S ⇔ R ∪ S = S
with greatest element L = R∪R and least element O = R∩R. In the graph model, O is the
empty graph and L is the complete graph. The axioms in the second line give properties of
composition ;. It follows that every relation algebra is a semiring with the two operations ∪
and ;. The axioms in the last two lines specify the operation of converse. We assume that
composition has higher precedence than join and meet and that complement and converse
have higher precedence than composition.

It follows that the operations ∪, ∩, ; and T are ⊆-isotone and is ⊆-antitone. As further
examples, we discuss two properties which hold in relation algebras:

R ⊆ R ; RT ; R (2.1)

R ∩ I = RT ∩ I (2.2)

We interpret these properties in the graph model. Inequality (2.1) holds because any edge
(a, b) ∈ R in the graph can be traversed backwards in RT, since (b, a) ∈ RT, so the edge
(a, b) is also contained in the composition R ;RT ;R by going forward, backward and forward
again from a via b and a to b. Equality (2.2) contains an intersection with the identity
relation on both sides; it therefore considers only loops in the graph, that is, edges, from a
vertex to itself. It states that such edges are not changed if a graph is transposed, that is, if
all its edges are reversed.

Many further properties of relation algebras can be found in textbooks such as [56, 40, 53].

2.2. Relational Properties. Compact equational characterisations of special classes of
relations can be given in relation algebras. We use the following properties of functions and
orders.

A relation R is univalent if RT ; R ⊆ I and total if I ⊆ R ; RT. A relation R is injective
if RT is univalent, surjective if RT is total and bijective if R is injective and surjective. A
relation R is irreflexive if R ⊆ I and symmetric if R = RT.

For concrete relations, the equivalence of these relation-algebraic specifications and the
common logical specifications can be easily derived. For example, R ⊆ A×A is univalent if
and only if for each a ∈ A there is at most one b ∈ A such that (a, b) ∈ R. If R is interpreted
as the edge set of a directed graph with vertex set A, this means that the out-degree of
every vertex is at most 1. Similarly, R is total if and only if the out-degree of every vertex is
at least 1. Conversely, injective and surjective state the same requirements for the in-degree
of vertices instead of their out-degree. Irreflexivity specifies that a graph contains no loops.
Symmetric relations are sometimes used to represent undirected graphs by containing both
(a, b) and (b, a) if there is an edge between a and b.
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A relation R is surjective if and only if L ; R = L. As another consequence of the above
properties, we present the following result about injective and surjective relations. For this,
and following results, we assume that variables range over a given relation algebra.

Lemma 2.1. If P is surjective and R is injective, P ⊆ Q ; R implies R ⊆ QT ; P . These
two inequalities are equivalent if P and R are bijective.

2.3. Vectors, Points and Atoms. We now discuss three particular properties that are
useful to represent sets of elements as relations. A relation v is a vector if v = v ; L. A point
is a bijective vector. A relation x is an atom if both x ; L and xT ; L are points; see [56].

In the matrix model, a vector corresponds to a row-constant matrix. That is, v ⊆ A×A
is a vector if and only if for every a ∈ A, the pair (a, b) is in v either for all b ∈ A or for
none. Such a relation is used to model the subset of elements of A that are related by v to
all elements of A. In the graph model, this can be used to represent sets of vertices.

A point is a vector that is additionally injective and surjective. In the graph model,
this means that the in-degree of every vertex is exactly 1, so the adjacency matrix contains
exactly one row with 1-entries. This means that a point represents a set that contains
exactly one element. Such singleton sets obviously correspond to elements of A and can
therefore be used to represent individual vertices of graphs.

An atom is a relation consisting of a single pair. Specifically, if R is an atom and
(a, b) ∈ R, then R ; L is the point representing the element a, and similarly RT ; L represents
the element b. Hence an atom corresponds to a single edge in a graph.

The composition R ; L is a vector for any relation R. More generally, the composition
R ; v of a relation R and a vector v is again a vector. It represents the set of vertices from
which there are transitions under R into the set represented by v. In the graph model this
amounts to the predecessors of the vertices in the set represented by v. Similarly, RT ; v is
the set of successors of the vertices in the set represented by v.

The following result gives an example of a property of vectors.

Lemma 2.2. For vectors v, w, we have v ;wT = v∩wT. In particular R ;L ;S = R ;L∩L ;S
for all relations R, S.

We will use two further properties of relations. The first one is the Tarski rule:

R 6= O⇔ L ; R ; L = L

It can be interpreted as follows. If R ⊆ A×A is not empty, it contains a pair (a, b) for some
a, b ∈ A. Then the vector R ; L represents a set that contains a; in particular, R ; L contains
a point. Hence L ; R ; L is the universal relation since points are surjective and composition
is ⊆-isotone. The backward implication of the Tarski rule is equivalent to O 6= L, which
holds if and only if the set of vertices of a graph is not empty.

Using the Tarski rule it can be shown that a relation p is a point if and only if p is a
vector, p is injective and p 6= O.

The second property of relations we use is the point axiom. It states that for each R 6= O
there are points p and q such that p ; qT ⊆ R. Again, by the assumption there are a, b ∈ A
such that (a, b) ∈ R. Then points p and q can be chosen so as to represent the vertices a and
b, respectively. By Lemma 2.2 we have p ; qT = p∩ qT, whence this expression intersects row
a and column b of the matrix to yield the entry (a, b). In particular, it follows that p ; qT is
an atom. To summarise, the point axiom states that every non-empty graph contains an
edge, which is obvious in the graph model but an independent property in relation algebras.
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2.4. Reflexive Transitive Closure. To describe reachability in graphs we expand relation
algebras with an operation for the reflexive transitive closure. A Kleene relation algebra is
a structure (M,∪, ;, , T, ∗, I) such that (M,∪, ;, , T, I) is a relation algebra and the Kleene
star operation ∗ satisfies the following axioms:

I ∪R ; R∗ ⊆ R∗ S ∪R ; Q ⊆ Q⇒ R∗ ; S ⊆ Q

I ∪R∗ ; R ⊆ R∗ S ∪Q ; R ⊆ Q⇒ S ; R∗ ⊆ Q

Relation algebras with transitive closure have been studied, for example, in [46]; Kleene
algebras have been studied in [15]; the axioms above were proposed in [37].

The operation ∗ models reflexive transitive closure, from which the transitive closure
is easily obtained by R+ = R ; R∗. Hence an edge (a, b) is in R∗ if and only if there is a
path from vertex a to vertex b in the graph R, and a similar statement holds for R+ and
non-empty paths. A relation R is acyclic if R+ is irreflexive, that is, there is no non-empty
path from a vertex to itself.

For example, we obtain the following consequences:

R∗ ∪ S∗ = R+ ∪ S∗ (2.3)

RT∗
= R∗T (2.4)

In the remainder of this paper we work in Kleene relation algebras that satisfy the
Tarski rule and the point axiom. We note, however, that many of the following results do
not require the Tarski rule and/or the point axiom but hold in more general structures, as
can be seen in our Isabelle/HOL implementation.

2.5. Mechanisation. As shown above, relation algebras facilitate compact equational
specifications of relational properties and support first-order axioms for reachability, which
is a key notion for dealing with paths. All relation-algebraic statements can be expressed in
logic, but doing so would introduce complex expressions with nested quantifiers. Relation
algebras often yield simpler, more modular and more concise specifications and proofs.

As a consequence, statements given in relation algebras can easily be tackled by auto-
mated and interactive theorem provers.

Off-the-shelf automated theorem provers such as E [57] and Prover9 [41] are performing
well when proving statements containing relational expressions [32, 17]. There are also
special-purpose first-order proof systems for relation algebras; for example, see [39, 38].
These systems, however, usually fail when proving complex properties of relation algebras
since the state space becomes too large. To overcome this deficiency, interactive proof
assistants such as Coq [13] and Isabelle/HOL [49] can be used. Both systems have been
successfully used in the context of relation algebras [52, 1]. Key differences are that Coq
has a more expressive type system whereas Isabelle/HOL has better automation support, in
particular, using the Sledgehammer tool [42, 51], which integrates resolution-based first-order
automatic theorem provers and SMT solvers to discharge goals arising in interactive proofs.
Since we work in a one-sorted (homogeneous) setting we have implemented all results of this
paper in Isabelle/HOL. Proofs are omitted and can be found in the accompanying Isabelle
theories. To improve readability, most of our proofs are written in Isabelle/Isar (Intelligible
Semi-Automated Reasoning) [62].
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3. Paths

In this section we start our endeavour to characterise classes of paths. One of the preconditions
of a path between two points is that the points are connected.

Definition 3.1. A relation R is connected if R ; L ; R ⊆ R∗ ∪RT∗
.

The expression R ; L ; R is equivalent to R ; L ∩ L ; R by Lemma 2.2 and describes all
pairs (a, b) such that vertex a has an outgoing edge in R and vertex b has an incoming edge
in R. The inequality requires that there must be a path from a to b in R or a path from b to
a in R. Hence the definition states that any vertex with a successor in R must be connected
by a path to any vertex with a predecessor in R either by going forwards (R∗) or backwards

(RT∗
).
Connected relations do not characterise paths since they allow, for instance, the following

graphs:

We additionally have to prevent paths from forking into several successors and from merging
several predecessors.

Definition 3.2. A relation R is a path if R is injective, univalent and connected.

Paths in this sense encompass all classes shown in Figure 1 [ÀÁÂÃÄÅ], and nothing
else. In particular, a path can be finite, one-sided infinite, two-sided infinite, a cycle or even
the empty relation. In the remainder of the paper we will look at each class separately.

Theorem 3.3. R is connected if and only if RT is connected. R is a path if and only if RT

is a path.

The following theorem shows equivalent formalisations of connectivity. Statement (1) is
the property given in Definition 3.1.

Theorem 3.4. For a univalent and injective relation R, the following properties are equiva-
lent:
(1) R ; L ; R ⊆ R∗ ∪RT∗

(2) R ; L ; RT ⊆ R∗ ∪RT∗

(3) RT ; L ; R ⊆ R∗ ∪RT∗

(4) RT ; L ; RT ⊆ R∗ ∪RT∗

(5) R+ ; L ; R+ ⊆ R∗ ∪RT∗

(6) R+ ; L ; RT+ ⊆ R∗ ∪RT∗

(7) RT+
; L ; R+ ⊆ R∗ ∪RT∗

(8) RT+
; L ; RT+ ⊆ R∗ ∪RT∗

4. Start Points and End Points

Many paths have special vertices, namely a start point (root) and an end point (sink). A
start point is a vertex without predecessor, and an end point is a vertex without successor.
This is captured by the following definition.

Definition 4.1. The start points of a relation R are given by start(R) = R ; L ∩RT ; L and
its end points are given by end(R) = RT ; L ∩R ; L.
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As above, R ; L describes all vertices having a successor, and RT ; L those vertices with a

predecessor. Hence, R ; L ∩RT ; L characterises the vertices with at least one successor and
no predecessors, which are just the start points of a path.

Immediate consequences are start(R) = end(RT) and R ; start(R) = RT ; end(R) = O.
Of course, not every path has such distinguished elements. In Figure 1, the classes [ÀÂ]
comprise the paths with start points. Similarly, classes [ÀÁ] are the paths with end points.
A cycle or a two-sided infinite path has neither start points nor end points, in which case
start(R) = end(R) = O. The following result shows that every path has at most one start
point and at most one end point.

Theorem 4.2. Let R be a path. Then start(R) and end(R) are injective.

It follows that start points and end points are almost points in the relation-algebraic
sense. The only exception is the empty relation as the following result states.

Corollary 4.3. Let R be a path. Then start(R) = O or start(R) is a point and, similarly,
end(R) = O or end(R) is a point.

The following consequences characterise the existence of start and end points by
(in)equalities. We also give the corresponding classes in Figure 1.

Corollary 4.4. Let R be a path. Then

(1) start(R) 6= O if and only if L = L ; R ; R ; L [ÀÂ].
(2) start(R) = O if and only if R ; L ⊆ RT ; L [ÁÃÄÅ].
(3) end(R) 6= O if and only if L = L ; R ; R ; L [ÀÁ].
(4) end(R) = O if and only if RT ; L ⊆ R ; L [ÂÃÄÅ].
(5) start(R) 6= O and end(R) 6= O if and only if L = L ; R ; R ; L ∩ L ; R ; R ; L [À].
(6) start(R) = end(R) = O if and only if R ; L = RT ; L [ÃÄÅ].

It follows that a path has a start point if and only if the converse path has an end point.
The simplest kind of path that has both a start point and an end point is a single edge.

It can be constructed from two (relational) points as shown by the following result.

Lemma 4.5. Let p and q be points. Then p ; qT is a path. If p 6= q, then start(p ; qT) = p
and end(p ; qT) = q.

The start point of the constructed edge is the vertex represented by the point p; its end
point is the one represented by q. If p and q coincide, start(p ; qT) = end(p ; qT) = O since
the result is a loop.

A path with no start point and no end point [ÃÄÅ] need not be infinite; it can also be
the empty relation or a cycle. We will elaborate on this distinction in Section 5.

Sometimes we wish to include the empty relation in our reasoning. If a path has either
a start point or is empty, we call it backward terminating [ÀÂÅ]. Symmetrically, we call a
path forward terminating if it has end points or is empty [ÀÁÅ]. If a path is both forward
terminating and backward terminating, we call it terminating [ÀÅ]. The following result
shows how to express each of these properties as an inequality.

Theorem 4.6. Let R be a path. Then the following properties are equivalent and each
characterises backward termination.

(1) L = L ; R ; R ; L ∨R = O
(2) R ⊆ L ; R ; R ; L
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(3) R ⊆ L ; R ; R∗

(4) R ⊆ RT∗
; RT ; L

Moreover, each of the following properties is equivalent to forward termination.

(5) L = L ; R ; R ; L ∨R = O
(6) R ⊆ L ; R ; R ; L
(7) R ⊆ R∗ ; R ; L

(8) R ⊆ L ; RT ; RT∗

Finally, each of the following properties is equivalent to termination.

(9) L = L ; R ; R ; L ∩ L ; R ; R ; L ∨R = O
(10) R ⊆ L ; R ; R ; L ∩ L ; R ; R ; L
(11) R ⊆ L ; R ; R∗ ∩R∗ ; R ; L

(12) R ⊆ RT∗
; RT ; L ∩ L ; RT ; RT∗

It follows that a path is backward terminating if and only if its converse is forward
terminating. Moreover a path is terminating if and only if its converse is terminating.

If the end point of a path R and the start point of a path S coincide, the paths can be
concatenated. It has to be guaranteed, however, that the two paths do not cross each other.
The condition used in the following result allows that the start point of R and the end point
of S coincide, if they exist, but requires all other vertices of R and S to be distinct.

Theorem 4.7. Let R be a forward terminating path and let S be a backward terminating
path with end(R) = start(S) and R ; L ∩ (RT ; L ∪ S ; L) ∩ ST ; L = O. Then R ∪ S is a path.
Moreover, start(R ∪ S) ⊆ start(R) and end(R ∪ S) ⊆ end(S).

If additionally start(R) = end(S) are non-empty and hence points, path concatenation
creates a cycle. As a consequence we only obtain inequalities in the second part of the
previous theorem. By strengthening its assumption to R ; L ∩ ST ; L = O we can exclude the
creation of a cycle. This means that R and S only meet at the end point of R and the start
point of S.

Lemma 4.8. The strengthened assumption R ;L∩ST ;L = O is equivalent to the conjunction
of the assumption R ;L∩(RT ;L∪S ;L)∩ST ;L = O of Theorem 4.7 and start(R)∩end(S) = O.

Under this assumption, it is possible to determine the start and end points of the
composed path R ∪ S according to the following result.

Theorem 4.9. Let R be a forward terminating path and let S be a backward terminating
path such that end(R) = start(S) and R ; L ∩ ST ; L = O. Then start(R ∪ S) = start(R) and
end(R ∪ S) = end(S).

Rather than looking at path concatenation, one can also consider path restriction. Given
a path R and an arbitrary point p, we construct a path with start point p by following the
edges of R.

Theorem 4.10. Let p be a point and let R be a path. Then RT∗
; p∩R is a path. Moreover,

start(RT∗
; p ∩R) ⊆ p, and end(RT∗

; p ∩R) ⊆ end(R).

The second statement shows that either p is the start point of the path, or there is
no start point at all, which means that the new path is a cycle or empty. The expression
RT∗

; p represents the set of predecessors of the point p under the relation RT∗
, which are
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the successors of p under R∗, which is the set of vertices reachable from p by a path in R.
Intersecting with R keeps the edges of R that start in such a vertex.

The additional assumption p ⊆ R ; L assures that the point lies on the path R and has
at least one successor. In that case start(RT∗

; p ∩R) = p, and end(RT∗
; p ∩R) = end(R).

5. Cycles

By Corollary 4.4 a path R has no start point and no end point if and only if R ; L = RT ; L.
In this section we distinguish three kinds of paths that satisfy this property: the empty path,
cycles and two-sided infinite paths. A cycle is obtained by assuming a strong connectivity
requirement, given in the following definition.

Definition 5.1. A path R is a cycle if R∗ = RT∗
.

Cycles in this sense encompass classes [ÄÅ] of Figure 1. An immediate consequence is
that a relation is a cycle if and only if its converse is a cycle.

The additional property R∗ = RT∗
specifies that if a vertex b is reachable from a vertex

a in R, also a is reachable from b. In this case, a and b belong to the same strongly connected
component of R. The following result gives equivalent ways to express this property and

some consequences. For example, R ⊆ RT+
states that for every edge (a, b) ∈ R vertex b is

reachable from vertex a by a non-empty path backwards in R.

Theorem 5.2. The following properties are equivalent:
(1) R∗ = RT∗

(2) R+ = RT+
(3) RT ⊆ R∗

(4) RT ⊆ R+
(5) R ⊆ RT∗

(6) R ⊆ RT+
(7) R∗ ; RT ⊆ R+

(8) RT ; R∗ ⊆ R+

Each of them implies the following properties:
(9) R ; L = RT ; L

(10) R ; RT ⊆ R+

(11) RT ; R ⊆ R+

(12) R ; RT ; R∗ ⊆ R+

(13) R∗ ; RT ; R ⊆ R+
(14) R∗ ; R ; RT ⊆ R+

(15) RT ; R ; R∗ ⊆ R+

If R is univalent, each of (10), (12) and (14) is equivalent to property (1). If R is injective,
each of (11), (13) and (15) is equivalent to property (1).

Theorem 5.2 remains valid if any of the inequalities in (7), (8), (12)–(15) are replaced
with equalities.

As witnessed by the identity relation I, the property R∗ = RT∗
alone does not imply

that the relation R contains just one strongly connected component. This results from the
combination with the connectivity requirement given in Definition 3.1. The following result
expresses the combination of these two properties as a single (in)equality.

Theorem 5.3. The following properties are equivalent:
(1) R is connected and R∗ = RT∗

(2) RT ; L ; RT ⊆ R∗

(3) RT ; L ; RT ⊆ R+

(4) RT ; L ; RT = R+

(5) RT ; L ; R = R+

(6) R ; L ; RT = R+

They imply each of the following properties:

(7) RT ; L ; R ⊆ R+

(8) R ; L ; RT ⊆ R+

(9) R ; L ; R ⊆ R ; R+

(10) R ; L ; R ⊆ R+
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(a)

R ; L ; R ⊆ R+

(b)

RT ; L ; R ⊆ R+

(c)

R ; L ; RT ⊆ R+

(d)

RT ; L ; RT ⊆ R+

Figure 2: R is strongly connected in (b)–(d), but not strongly connected in (a)

If R is injective, property (7) is equivalent to property (1). If R is univalent, property (8) is
equivalent to property (1). If R is both injective and univalent, property (9) is equivalent to
property (1).

Furthermore, property (9) of Theorem 5.3 is equivalent to the corresponding equality
R ;L ;R = R ;R+ and property (10) is equivalent to the corresponding equality R ;L ;R = R+.

In [53], a relation R is called a simple circuit if it is univalent, injective and satisfies
property (6) of the previous theorem and the condition R ; R ⊆ I. By the previous theorem,
this is equivalent to R being a cycle except for the additional condition that R ;R is irreflexive.
The latter states that no two vertices are mutually connected by an edge; this excludes
cycles of length 2. The condition also implies that R is irreflexive, which excludes cycles of
length 1, that is, loops. When undirected graphs are represented as symmetric relations,
cycles of length 2 cannot be distinguished from edges and loops are typically not considered
(simple graphs). For directed graphs, however, we wish to include cycles of length 1 or 2 in
our reasoning, so we do not require the additional condition.

Note that properties (3), (7), (8) and (10) of Theorem 5.3 have identical right-hand
sides and similar left-hand sides. Despite this, property (10) is weaker than the others in the
following sense, which is illustrated in Figure 2. It shows, for each of the four properties, a
pair of edges of R as solid lines. We know that these edges exist by considering the left-hand
sides of the four properties; the edges may be identical or have the same source vertex or
target vertex. Dashed lines indicate non-empty paths whose existence follows by applying
the respective property to these edges. We know that these paths are not empty because
the right-hand side of each property is R+. From this, the existence of (possibly empty)
paths indicated by dotted lines follows if R is univalent (c) or injective (b) or both (a).
The existing paths in (b)–(d) allow us to show that the two edges are in the same strongly
connected component of R thereby creating a cycle. This does not work in (a) even if R
is both injective and univalent. However, with the stronger assumption R ; L ; R ⊆ R ; R+,
which is property (9) of the previous theorem, the dashed paths in (a) would have length 2
or more. Hence the dotted paths in (a) would be non-empty (and therefore the two edges
would be different), so the argument of (b) or (c) could be applied to show that the edges
belong to a cycle.

Sometimes we wish to include cycles in reasoning about paths with start or end points.
A path is backward finite if it is a cycle or backward terminating [ÀÂÄÅ]. A path is forward
finite if it is a cycle or forward terminating [ÀÁÄÅ]. A path is finite if it is a cycle or
terminating [ÀÄÅ]. The following result shows how to express each of these properties as
an inequality.
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Theorem 5.4. Let R be a relation. Then the following properties are equivalent and, if R
is a path, characterise backward finiteness.

(1) R∗ = RT∗ ∨R ⊆ L ; R ; R ; L

(2) R ⊆ L ; R ; R ; L ∪RT∗

Moreover, the following properties are equivalent and, if R is a path, characterise forward
finiteness.

(3) R∗ = RT∗ ∨R ⊆ L ; R ; R ; L

(4) R ⊆ L ; R ; R ; L ∪RT∗

Finally, the following properties are equivalent and, if R is a path, characterise finiteness.

(5) R∗ = RT∗ ∨R ⊆ L ; R ; R ; L ∩ L ; R ; R ; L

(6) R ⊆ (L ; R ; R ; L ∩ L ; R ; R ; L) ∪RT∗

It follows that a path is backward finite if and only if its converse is forward finite.
Moreover a path is finite if and only if its converse is finite.

We conclude this section with a number of useful facts about cycles. The first result
shows that any terminating path can be extended to a cycle by connecting its end point
with its start point.

Theorem 5.5. Let R be a terminating path. Then R ∪ end(R) ; start(R)T is a cycle.

Conversely, the next result shows that any non-empty cycle becomes a terminating path
if an edge is removed.

Theorem 5.6. Let R be a cycle and let s, e be points with e ; sT ⊆ R. Then R ∩ e ; sT is

a terminating path with start(R ∩ e ; sT) ⊆ s and end(R ∩ e ; sT) ⊆ e. If s 6= e, the last two
inequalities can be strengthened to equalities.

The final result of this section shows how to join two paths with suitable start and end
points to a cycle. It uses the assumption of Theorem 4.7 to require that the two paths do
not overlap.

Theorem 5.7. Let R,S be terminating paths with start(R) = end(S) and start(S) = end(R).
Then R ∪ S is a cycle if R ; L ∩ (RT ; L ∪ S ; L) ∩ ST ; L = O.

6. Application: Verifying the Correctness of Graph Algorithms

Using the relation-algebraic characterisations of different kinds of paths derived in the
previous sections, we now verify the correctness of three basic graph algorithms. Previous
work has shown that relation-algebraic reasoning can be applied for program transformation
and verification in general and in the context of graph algorithms; for example, see [24, 2, 4,
11, 8, 27]. The aim of this section is to show that our theory of paths integrates well with
such arguments.

Our correctness proofs use the well-known assertion-based program verification technique
based on Hoare logic [31]. The algorithms are expressed as while-programs with variables
whose values are elements of a relation algebra. Correctness of the algorithms is stated by
preconditions and postconditions, which are relation-algebraic formulas. The first task in
proving the correctness of a while-program is to provide for each while-loop an invariant that
holds throughout the execution of the loop; invariants are again relation-algebraic formulas.
We then need to prove that each loop invariant
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(1) is established from the precondition before the while-loop,
(2) is maintained by each iteration of the while-loop, and
(3) implies the required postcondition after the while-loop.

This proves partial correctness of the program: if it starts in a state satisfying the precondition
and terminates, the postcondition will hold in the final state. We do not prove termination
of the algorithms in this paper; for example, see [56, 22, 28] how relation-algebraic methods
can be used for this.

For all our examples, we briefly describe the algorithm itself, and present the pre- and
postconditions as well as the loop invariants. The verification conditions listed above are
automatically generated from this information by Isabelle/HOL’s Hoare logic library [47, 48].
The proofs of these obligations use relation-algebraic reasoning similar to the proofs of other
results in this paper; they can be found in the Isabelle/HOL theory files.

6.1. Construction of a Path. Our first example is a Greedy algorithm that constructs
a path from a vertex x to a different vertex y of a directed acyclic graph D. We assume
that a path between these vertices exists and, moreover, conditions that ensure the Greedy
algorithm will find one without searching. See [6, 7] for relational implementations of
depth-first search and breadth-first search.

We use the predicate point(p) to specify that the relation p is a point in the relation-
algebraic sense as defined in Section 2.3.

The algorithm maintains a relation W , which is the path that is constructed backwards
from y towards x. As soon as W forms a path from x to y the algorithm terminates with
result W (Line 10 in Algorithm 1). The algorithm works as follows: first, it chooses a
predecessor p of y (Line 2) and initialises W to be the edge from p to y, which is a path
(Line 3). As long as the start point q of W is different from x (Line 5), the algorithm chooses
a predecessor p of q (Line 6) and extends the relation W by the edge from p to q (Line 7).

For the selection of predecessors we use an operation choosePoint(v) that (determinis-
tically) chooses a point contained in a non-empty vector v. The existence of such a point
follows from the point axiom. To reason about the operation choosePoint, we assume it
satisfies the following axioms:

choosePoint(v) ⊆ v v 6= O⇒ point(choosePoint(v))

The inequality states that the chosen relation is contained in v, and the implication states
that the chosen relation is a point. Note that there may be several different implementations
of a deterministic operation satisfying these axioms; any one works fine since our reasoning
only uses the properties stated by or following from the axioms.

Using choosePoint we can formally describe the construction of a path in Algorithm 1.
We show correctness of Algorithm 1 if the input satisfies the following preconditions,

whose conjunction is denoted by Pre(D,x, y):

D+ ⊆ I point(x) point(y) x 6= y D∗ ; y ⊆ DT∗
; x

The first inequality states that D is acyclic. The following three conditions specify that x
and y are distinct vertices. The last inequality uses two vectors: D∗ ;y contains the transitive
predecessors of y, which are the vertices from which y is reachable, and DT∗

; x contains
the transitive successors of x, which are the vertices reachable from x. The inequality
expresses that every transitive predecessor of y is a transitive successor of x, which implies
that there is a path from x to y. Moreover, it follows that there is a path from x to any
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Algorithm 1 Constructing a path

1 input D,x, y
2 p← choosePoint(D ; y)
3 W ← p ; yT

4 q ← p
5 while q 6= x do
6 p← choosePoint(D ; q)
7 W ←W ∪ p ; qT

8 q ← p
9 end

10 output W

transitive predecessor of y, which is the reason why the above Greedy algorithm works
without searching.

The postcondition Post(D,x, y,W ) of the algorithm is the conjunction of the following
relation-algebraic formulas:

W ⊆ D termPath(W ) x = start(W ) y = end(W )

The first condition guarantees that the output W of Algorithm 1 is contained in the graph
D. The second condition states that W is a terminating path as defined in Section 4. The
remaining two conditions ensure that the constructed path starts in x and ends in y.

The loop invariant Inv(D,x, y,W, q) used to prove partial correctness of Algorithm 1 is
as follows:

D+ ⊆ I point(x) point(q) D∗ ; q ⊆ DT∗
; x

W ⊆ D termPath(W ) q = start(W ) y = end(W )

point(y) q ⊆WT∗
; L

The first line shows that the invariant contains most of Pre(D,x, q), since the precondition
is not only necessary for establishing the loop invariant but also to maintain it. Moreover,
the invariant contains Post(D, q, y,W ) as shown in the second line. The last condition of
the invariant ensures that W does not become a cycle.

From this invariant, Post(D,x, y,W ) immediately follows using the negated loop condi-
tion q = x, which holds after the while-loop terminates.

6.2. Topological Sorting. In our second example we look at topological sorting: given
a directed acyclic graph, the problem is to construct a linear order of its vertices that
contains x before y for each edge (x, y) of the graph. If the input graph models dependencies
between tasks, the output is a linear schedule of the tasks that respects all dependencies.
We represent the linear order of vertices as a path, in which the sequence of vertices gives
the schedule.

A simple algorithm based on [35] for finding a topological sort W works as follows. It
first picks a vertex without a predecessor (Line 3 in Algorithm 2), which exists since the
input R is acyclic. This vertex is marked (Line 4) and used as the start point of the path to
be constructed. As long as there are unmarked vertices (Line 5), the algorithm picks one
that does not have an unmarked predecessor (Line 6). As before, such a vertex exists since
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any subgraph of R is acyclic, too. The edge from the current end point q of W to the chosen
vertex is then added to the path (Line 7). The selected vertex is marked (Line 9).

The relational program given in Algorithm 2 implements this procedure. It represents
the set of marked vertices as the vector v; a vertex is marked if and only if the corresponding
(relational) point is contained in v. Hence v contains the unmarked vertices, and the condition
v 6= L in Line 5 checks if there is still an unmarked vertex.

Algorithm 2 Topological sorting

1 input R
2 W ← O
3 q ← choosePoint(min(R, L))
4 v ← q
5 while v 6= L do
6 p← choosePoint(min(R, v))
7 W ←W ∪ q ; pT

8 q ← p
9 v ← v ∪ p

10 end
11 output W

To find vertices without unmarked predecessors, Algorithm 2 uses the operation

min(S,w) = w ∩ ST ; w, where S is a relation and w is a vector [56]. It yields the S-
minimal elements of the set represented by w. Hence min(R, L) in Line 3 gives the vertices
without predecessors in the whole graph, and min(R, v) in Line 6 gives the unmarked vertices
without any unmarked predecessors. As in Algorithm 1, we use the choosePoint operation
to select one of these vertices.

Algorithm 2 works if R is acyclic and finite; otherwise one of the choosePoint-operations
in Lines 3 and 6 would fail. To avoid this kind of failure and to ensure that there is no infinite
descending chain of unmarked vertices, we require that the input relation R is well-founded
(also called regressively finite). In relation algebras this is expressed by

w ⊆ RT ; w ⇒ w = O

for all vectors w [56]. This property is the only precondition Pre(R) of the algorithm.
We now consider the postcondition. The relation W stores the constructed topological

sort as a terminating path with a start point and an end point. To express that W preserves
the dependencies in R we use the condition R ⊆W+, that is, there must be a path in W
from the source x to the target y of every edge (x, y) ∈ R. Finally, the path W has to contain
all vertices of R. If R has two or more vertices this can be specified as (W ∪WT) ; L = L,
where the left-hand side is the vector of all points in W . Alternative expressions for this
vector are WT ; L ∪ start(W ) and W ; L ∪ end(W ). If R contains only a single vertex, W is
the empty path, so this specification does not work. We can either add a precondition I 6= L
stating that R has at least two vertices or modify the condition by replacing L with I ; L to
handle this special case. Using the latter option, we obtain the postcondition Post(R,W ) as
the conjunction of the following formulas:

R ⊆W+ termPath(W ) (W ∪WT) ; L = I ; L
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The loop invariant that allows us to prove partial correctness with respect to the
precondition Pre(R) and the postcondition Post(R,W ) is the conjunction of the following
formulas:

Pre(R) R ∩ v ; vT ⊆W+ termPath(W )

point(q) q ⊆ v W = O ∨ q = end(W )

v = v ; L W ; L = v ∩ q R ; v ⊆ v

The first line contains the precondition, which is maintained trivially since R never changes,
and the first two parts of the postcondition; note that the formula R ∩ v ; vT ⊆ W+ is a
generalisation of R ⊆ W+ that restricts R to the subgraph induced by the set of marked
vertices. The remaining properties (second and third lines) are auxiliary properties necessary
to maintain the first three formulas of the loop invariant and to ensure the postcondition
(W ∪WT) ; L = I ; L. The second line characterises the relation q as a marked vertex, which
is the end point of W except when W is empty at the beginning of Algorithm 2. The third
line characterises the relation v as the set of vertices of W and ensures that all predecessors
of these marked vertices are marked, too.

6.3. Construction of a Non-empty Cycle. Our last application is a correctness proof of
an algorithm that constructs a non-empty cycle for a given directed graph R. As precondition
Pre(R) we assume that R is not acyclic, that is, it contains at least one cycle:

R+ ∩ I 6= O

This is the only condition needed for input R.
Algorithm 3 shows the relational program. It starts by picking two points, using the

operation choosePoint again. The first point y is selected in Line 2 as a vertex lying on an
arbitrary cycle of R. The existence of such a point is guaranteed by Pre(R). The second
point x is selected in Line 3 as a direct successor of y (since x ⊆ RT ; y) that is also a
transitive predecessor of y (since x ⊆ R∗ ; y). These conditions ensure that x and y lie on a
cycle of R. Lines 4 and 5 cover the case that the chosen points are identical. This means
that the edge y ;xT = x ;xT is a loop and hence a cycle in R, so the algorithm can terminate.

If x and y do not coincide, the algorithm progresses in three steps. Lines 7–13 construct
a directed tree D ⊆ R with root x in which y is a leaf. Lines 14–21 select a path W in D
that connects x with y. This path W together with the edge from y to x gives the required
cycle in Line 22.

In the first step, the directed tree D is constructed as follows. Line 7 initialises the
relation D as the empty tree. The while-loop maintains the vector v that contains all vertices
of the tree. At the start of the loop, v contains only the point x which is the root of D;
see Line 8. As long as the vertex y has not been reached, which is checked in Line 9, the
algorithm chooses an edge e of R that goes from a vertex in v to a vertex outside v in Line
10. The edge is added to the tree in Line 11 and its end point is added to v in Line 12.

An edge is a relation consisting of a single pair and can therefore be represented by
an atom. We use the predicate atom(a) to specify that the relation a is an atom in the
relation-algebraic sense as defined in Section 2.3. Similarly to points, we use an operation
chooseAtom(x) that (deterministically) chooses an atom contained in a non-empty relation
x. To reason about the operation chooseAtom, we assume it satisfies the following axioms:

chooseAtom(x) ⊆ x x 6= O⇒ atom(chooseAtom(x))
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Since the while-loop adds edges leaving the set v and since it is known that y is reachable
from x, the vertex y will eventually be included in v, so D will contain a path from x to y.

By construction, D is acyclic and satisfies D∗ ; y ⊆ DT∗
; x. As a consequence we can

use Algorithm 1 to determine a path from x to y; Lines 14–21 of Algorithm 3 are identical
to Lines 2–9 of Algorithm 1. When the second while-loop of Algorithm 3 terminates, W
contains a terminating path from x to y. Line 22 adds to this path the edge from y to x to
obtain a cycle C. By the choice of x and y in Lines 2 and 3 this edge is contained in R.

Algorithm 3 Constructing a cycle

1 input R
2 y ← choosePoint((R+ ∩ I) ; L)
3 x← choosePoint(R∗ ; y ∩RT ; y)
4 if x = y then
5 C ← y ; xT

6 else
7 D ← O
8 v ← x
9 while ¬(y ⊆ v) do

10 e← chooseAtom(v ; vT ∩R)
11 D ← D ∪ e
12 v ← v ∪ eT ; L
13 end
14 p← choosePoint(D ; y)
15 W ← p ; yT

16 q ← p
17 while q 6= x do
18 p← choosePoint(D ; q)
19 W ←W ∪ p ; qT

20 q ← p
21 end
22 C ←W ∪ y ; xT

23 end
24 output C

We now discuss the postcondition of Algorithm 3. It constructs a non-empty cycle C
that is also a subgraph of R. These conditions immediately translate into the following
formulas, whose conjunction is the postcondition Post(R,C):

C 6= O cycle(C) C ⊆ R

Here the condition cycle(C) specifies that C is a cycle as defined in Section 5.
We conclude this section by discussing the invariant used to prove partial correctness of

Algorithm 3 with respect to Pre(R) and Post(R,C). As before, Isabelle/HOL’s Hoare logic
tactic splits the correctness proof into a number of verification conditions. For example, the
if-statement is split into two goals, one for each case. For the case x = y the postcondition
is easy to establish since the loop on this vertex is immediately available.
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The case x 6= y requires more effort. To reuse Algorithm 1 we have to show that its
precondition Pre(D,x, y) holds, which is the conjunction of the following formulas:

D+ ⊆ I point(x) point(y) x 6= y D∗ ; y ⊆ DT∗
; x

To establish these conditions we use the conjunction of the following formulas as the invariant
for the first while-loop in Lines 9–13:

point(x) point(y) x 6= y y ⊆ RT∗
; x y ; xT ⊆ R

D ⊆ R D+ ⊆ I D ; DT ⊆ I D ⊆ v ; vT v = v ; L

x ; vT ⊆ D∗ D ; x = O v = x ∪DT ; L

The first line lists simple conditions that follow immediately from the selection of x and y in
Lines 2 and 3 of Algorithm 3. These properties are needed later and have to be maintained
throughout the entire proof, which is not difficult since R, x and y are not modified in Lines
4–23.

The first three inequalities of the second line state that D is an injective acyclic subgraph
of R, that is, a forest in R. The remaining two conditions in this line state that v is a vector
and that D contains only edges between vertices in the set represented by v.

The first two conditions in the third line specify that x is the root of D, that is, that all
vertices in v are reachable from x in D and that x has no predecessors. This implies that D
is a tree with root x. Finally, v = x ∪DT ; L states that v contains x and the target vertices
of all edges in D.

These invariants imply that D∗ ;y ⊆ DT∗
;x holds after the first while-loop, so we can use

Algorithm 1 afterwards. By the correctness of Algorithm 1 we know that its postcondition
Post(D,x, y,W ) holds after the second while-loop of Algorithm 3:

W ⊆ D termPath(W ) x = start(W ) y = end(W )

Theorem 5.5 then implies that C as constructed in Line 22 is a cycle. The remaining two
postconditions of Algorithm 3, that is, C 6= O and C ⊆ R are easy to prove using x 6= y and
W ⊆ D and D ⊆ R.

7. Paths with Roots

In the previous sections a path was described by a relation only; in Section 4 we have
discussed conditions under which paths have a start point and/or an end point. In this
section we describe paths together with a designated root. A root is a vertex of the graph
represented by a (relational) point. Our main results are equivalences between the definitions
of paths with and without roots. Most of these equivalences only hold if the point axiom is
assumed.

We represent a path with root by a pair of relations (R, p) such that R is injective and
univalent and p is a point. The relation R will satisfy further conditions depending on the
kind of path that is represented.
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7.1. Paths. We start with a result that characterises all paths [ÀÁÂÃÄÅ]. The condition

p ; R ⊆ R∗ ∪ RT∗
states that any end vertex of an edge in R must be reachable from the

vertex p by going forward in R or by going backward in R.

Theorem 7.1. Let R be an injective and univalent relation. Then R is a path if and only
if there exists a point p such that p ; R ⊆ R∗ ∪RT∗

.

If the path is not empty, we can guarantee that the vertex p of the previous theorem is
contained in the path. This is stated by the additional condition p ⊆ (R ∪ RT) ; L of the
following characterisation [ÀÁÂÃÄ].

Corollary 7.2. Let R be an injective and univalent relation. Then R is a non-empty path
if and only if there exists a point p such that p ; R ⊆ R∗ ∪RT∗

and p ⊆ (R ∪RT) ; L.

The following theorem shows that a path R is acyclic if p has no predecessors in R.

Theorem 7.3. Let R be an injective and univalent relation and let p be a point such that
p ; R ⊆ R∗ ∪RT∗

and R ; p = O. Then R is acyclic.

7.2. Backward Finite Paths. The following result characterises backward finite paths
[ÀÂÄÅ]. The condition p ; R ⊆ R+ states that any end vertex of an edge in R must be
reachable from the vertex p by a non-empty path in R. It implies the previous condition
p ; R ⊆ R∗ ∪RT∗

since R+ ⊆ R∗ ⊆ R∗ ∪RT∗
.

Theorem 7.4. Let R be an injective and univalent relation. Then R is a backward finite
path if and only if there exists a point p such that p ; R ⊆ R+.

For a point p, the condition p ; R ⊆ R+ is equivalent to each of RT ; L ⊆ RT+
; p and

RT ; L = RT+
; p.

Again, if the path is not empty, we obtain that it contains p, which can now be stated
as p ⊆ R ; L in the following characterisation [ÀÂÄ].

Corollary 7.5. Let R be an injective and univalent relation. Then R is a non-empty
backward finite path if and only if there exists a point p such that p ; R ⊆ R+ and p ⊆ R ; L.

For backward finite paths, Theorem 7.3 can be extended to an equivalence as the
following result shows.

Theorem 7.6. Let R be an injective and univalent relation and let p be a point such that
p ; R ⊆ R+. Then R ; p = O if and only if R is acyclic.

7.3. Cycles. The following result characterises non-empty cycles [Ä]. The additional condi-
tion p ⊆ RT ; L states that p is the end vertex of an edge in R. For a point p it is equivalent
to R ; p 6= O.

Theorem 7.7. Let R be an injective and univalent relation. Then R is a non-empty cycle
if and only if there exists a point p such that p ; R ⊆ R+ and p ⊆ RT ; L.
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In this case any point q on the cycle – that is, satisfying q ⊆ R∗ ;p – can take the place of
p in the previous theorem – that is, satisfies q ;R ⊆ R+ and q ⊆ RT ; L. Moreover, p ⊆ R∗ ; q

and q ⊆ R+ ; q = R∗ ; q = R∗ ; p = R ; L follow. Finally, also p ; RT ⊆ RT+
and p ⊆ R ; L

hold, so the previous theorem dualises to the converse cycle. The condition q ⊆ R∗ ; p to
make all of this happen for non-empty cycles can equivalently be stated as each of p ⊆ R∗ ; q
or R ; q 6= O or RT ; q 6= O or q ⊆ R ; L or q ⊆ RT ; L.

Moreover, it follows that if R and S are non-empty cycles such that R ⊆ S then R = S.
Another consequence is that the two conditions of the previous theorem can be combined
into one inequality if also the empty cycle is allowed [ÄÅ].

Corollary 7.8. Let R be an injective and univalent relation. Then R is a cycle if and only
if there exists a point p such that p ; R ⊆ R+ ∩RT ; L.

7.4. Backward Terminating Paths. The following result characterises backward ter-
minating paths [ÀÂÅ]. The additional condition R ; p = O states that vertex p has no
predecessors in R.

Theorem 7.9. Let R be an injective and univalent relation. Then R is a backward termi-
nating path if and only if there exists a point p such that p ; R ⊆ R+ and R ; p = O.

If the relation is not empty, it follows that the root p of the previous theorem is the
start point of R [ÀÂ].

Corollary 7.10. Let R be an injective and univalent relation. Then R is a non-empty
backward terminating path if and only if start(R) is a point such that start(R) ; R ⊆ R+.

7.5. Terminating Paths. For characterising terminating paths we additionally need an
end point [ÀÅ]. The condition p ⊆ R∗ ; q states that vertex q is reachable from vertex p in
R. The condition RT ; q = O states that vertex q has no successors in R.

Theorem 7.11. Let R be an injective and univalent relation. Then R is a terminating path
if and only if there exist points p, q such that p ; R ⊆ R+ and p ⊆ R∗ ; q and RT ; q = O.

In this case it follows that R ; p = O. Moreover, also q ⊆ RT∗
; p and q ; RT ⊆ RT+

follow, so the previous theorem dualises by swapping p and q and taking the converse of R.
Finally, R = O if and only if p = q.

If the relation is not empty, the point q of the previous theorem is the end point of R
[À].

Corollary 7.12. Let R be an injective and univalent relation. Then R is a non-empty
terminating path if and only if start(R) and end(R) are points such that start(R) ; R ⊆ R+

and start(R) ⊆ R∗ ; end(R).



RELATIONAL CHARACTERISATIONS OF PATHS 21

8. Conclusion

We have shown how relation algebras can be used to compactly specify and reason about
different kinds of paths in graphs, including applications for algorithm verification. Proofs
of results use equational reasoning instead of point-wise arguments with quantified variables.
This style of reasoning strongly benefits from support by automated and interactive theorem
provers.

In this paper we have developed a fundamental theory of paths. There are several
directions of extension. First, relation algebras can be extended to deal with cardinalities of
relations [36, 10, 5]; for a path this would simply be the number of edges it contains. This
facilitates, for example, proofs about the complexity of graph algorithms. Second, different
combinations of the defining properties of paths and other properties yield different classes
of graphs. For example, an injective acyclic relation represents a forest; adding connectivity
yields trees. We expect that a number of results are common to the classes and can be
derived from fewer properties making them more widely applicable. Third, relation algebras
can be generalised to structures that can represent weighted graphs [27]. Using the results
of this paper in such a setting would allow us to reason, for example, about shortest-path
algorithms.
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[10] R. Berghammer, P. Höfner, and I. Stucke. Cardinality of relations and relational approximation algorithms.
Journal of Logical and Algebraic Methods in Programming, 85:269–286, 2016.

[11] R. Berghammer and G. Struth. On automated program construction and verification. In C. Bolduc,
J. Desharnais, and B. Ktari, editors, Mathematics of Program Construction (MPC 2010), volume 6120
of Lecture Notes in Computer Science, pages 22–41. Springer, 2010.

[12] R. Berghammer, B. von Karger, and A. Wolf. Relation-algebraic derivation of spanning tree algorithms.
In J. Jeuring, editor, Mathematics of Program Construction, volume 1422 of Lecture Notes in Computer
Science, pages 23–43. Springer, 1998.
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