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Conventional computer engineering relies on test-and-debug development processes, with the behavior of
common interfaces described (at best) with prose specification documents. But prose specifications cannot
be used in test-and-debug development in any automated way, and prose is a poor medium for expressing
complex (and loose) specifications.

The TCP/IP protocols and Sockets API are a good example of this: they play a vital role in modern com-
munication and computation, and interoperability between implementations is essential. But what exactly
they are is surprisingly obscure: their original development focused on “rough consensus and running code,”
augmented by prose RFC specifications that do not precisely define what it means for an implementation to
be correct. Ultimately, the actual standard is the de facto one of the common implementations, including, for
example, the 15 000 to 20 000 lines of the BSD implementation—optimized and multithreaded C code, time
dependent, with asynchronous event handlers, intertwined with the operating system, and security critical.

This article reports on work done in the Netsem project to develop lightweight mathematically rigorous
techniques that can be applied to such systems: to specify their behavior precisely (but loosely enough
to permit the required implementation variation) and to test whether these specifications and the im-
plementations correspond with specifications that are executable as test oracles. We developed post hoc
specifications of TCP, UDP, and the Sockets API, both of the service that they provide to applications (in
terms of TCP bidirectional stream connections) and of the internal operation of the protocol (in terms of
TCP segments and UDP datagrams), together with a testable abstraction function relating the two. These
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specifications are rigorous, detailed, readable, with broad coverage, and rather accurate. Working within
a general-purpose proof assistant (HOL4), we developed language idioms (within higher-order logic) in
which to write the specifications: operational semantics with nondeterminism, time, system calls, monadic
relational programming, and so forth. We followed an experimental semantics approach, validating the
specifications against several thousand traces captured from three implementations (FreeBSD, Linux, and
WinXP). Many differences between these were identified, as were a number of bugs. Validation was done
using a special-purpose symbolic model checker programmed above HOL4.

Having demonstrated that our logic-based engineering techniques suffice for handling real-world proto-
cols, we argue that similar techniques could be applied to future critical software infrastructure at design time,
leading to cleaner designs and (via specification-based testing) more robust and predictable implementations.
In cases where specification looseness can be controlled, this should be possible with lightweight techniques,
without the need for a general-purpose proof assistant, at relatively little cost.

CCS Concepts: • Networks→ Protocol correctness; Network protocol design; Transport protocols; • The-

ory of computation→ Logic and verification; Automated reasoning; Higher order logic; Semantics and

reasoning; • Software and its engineering;
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1 INTRODUCTION

We begin by recalling normal industry development practice, to explain the fundamental problem
that we address. We highlight some of its difficulties and we focus on the concept of specifica-
tions that are executable as test oracles (Section 1.2) and on the concept of the de facto standards
(Section 1.3), using the TCP/IP network protocols and Sockets API as an example (Section 1.4). We
then introduce our work in the NetSem project to develop specifications for TCP, UDP, and the
Sockets API (Section 1.5) and explain two of the main technical challenges involved (Section 1.6
and Section 1.7). We conclude the introduction by summarizing some non-goals and limitations
(Section 1.8), the project history (Section 1.9), and the structure of the remainder of the article
(Section 1.10).

1.1 Standard Industry Practice

At present, the overwhelming majority of our computing infrastructure is built with a testing-
based development process. The only way that we normally have to assess whether implemen-
tation code will behave satisfactorily is to execute it on a collection of concrete test cases and
examine the outcomes. This leads to the standard test-and-debug development cycle, in which
code is written, it is executed on tests, the outcomes are assessed, and the code is rewritten ac-
cordingly. For each test, the allowed outcomes are typically defined manually, either as a check
within the test itself or as data on the side.

Computer engineering relies also on the division of labor that is enabled by common interfaces,
allowing systems to be composed of parts built by different teams and different organizations.
These interfaces include major pan-industry abstractions, such as the processor architectures,
programming languages, established libraries, network protocols, filesystem APIs, and so forth,
together with many internal interfaces specific to particular systems. They are typically described
with specification documents that combine a reasonably precise definition of the interface syntax
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(variously the processor opcodes, programming language syntax, protocol wire format, API types,
etc.) with some informal prose description of the intended interface behavior.

Ideally this triumvirate, of code, tests, and specification document, would all be in sync: the
defined allowed test outcomes would be correct with respect to the specification document intent;
the tests would have good coverage, both of the code and of the specification document; and the
code would pass all the tests. That would provide some confidence (though obviously not certainty)
that the code and specification document are consistent, exploiting the redundancy between the
three different descriptions to detect errors. One also would hope that a specification document is
sufficiently clear and complete to serve as a good description, for both implementers and clients
of an interface, of what an implementation must do and what a client can rely on.

However, the normal specification-document reliance on prose to describe behavior makes both
of these ideals hard to attain. Prose has one obvious advantage: specification documents are used to
communicate between human beings, and prose makes them superficially accessible. But a prose
document cannot be used in that test-and-debug development cycle in any direct, automated way.
Instead, one has to manually curate the intended outcomes for each test, defining them and rea-
soning informally to check that they capture the intent of the prose specification. One also has
to manually reason about specification coverage. Prose fails also in that it is intrinsically a poor
medium for expressing the subtle and complex behavior of real systems: with no automated check-
ing or testing of specification documents, their prose descriptions are almost inevitably ambiguous
and incomplete, and often in some way inconsistent or simply incomprehensible. It is all too easy
to add a paragraph to a prose specification without considering all of its implications. Contrasting
prose specification documents with tests, the former cover rich behavioral properties, intended to
be readable, subject to ambiguity, and not directly testable, while the latter are effectively single-
point specifications, not intended to be readable, tolerably precise, but directly testable.

Industry has learned how to get by in this fashion well enough to thrive economically, but the
aggregate cost of dealing with the resulting bugs, behavioral oddities, version differences, and se-
curity flaws is high. Meanwhile, after 50+ years of research on formal specification and verification,
we have reached the point where a few pieces of nontrivial software that have been designed with
verification in mind can be proved correct, but proving functional correctness of substantial bod-
ies of existing “real world” software is still well out of reach. In fact, even stating such correctness
properties has been out of reach: for that we would need mathematically rigorous specifications
in place of the conventional prose.

1.2 Specifications That Are Executable as Test Oracles

Our work develops a middle way between current industry practice and the academic dream of
widespread full-correctness proofs: we show that it is feasible and useful to build rigorous spec-
ifications of a key piece of systems software in such a way that one can test the correspondence
between implementation and specification, and one can state and test some important correctness
properties, all this despite the many challenges such code embodies.

We do this by focusing on the simple concept of specifications that are executable as a test
oracle: artifacts that can be used, given a behavior that might be exhibited by the system, to
compute whether or not that behavior is allowed. They need not be decidable in general, so
long as they terminate with a yes-or-no answer for the behaviors of sufficient tests. Having
an executable-as-test-oracle specification radically simplifies the construction of test suites:
given such a specification, one can make tests by some automatic process, e.g., systematically
or randomly enumerating test stimuli, without needing a manually written check or manually
curated set of allowed results for each test. Instead, one can simply use the test oracle to assess
whether the observed behavior obtained by running each test is allowed.
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The concept of a specification that is executable as a test oracle is surely not new, but we believe
it to be underappreciated and underemphasized, both in industry and in the research literature. It
should not be confused with the notion of a specification that is executable in a more conventional
sense: one that can itself serve as a (perhaps slow) implementation, and which can (perhaps pseu-
dorandomly) exhibit any allowed behavior—in other words, a specification that is executable as a
semantically complete implementation. For a tight specification of a deterministic system, the two
notions are very similar, but many scenarios involve loose specifications and/or implementation
nondeterminism, where they can be very different.

A specification that is executable as a test oracle could take many forms. At one extreme, it might
be a program in a conventional programming language that takes a representation of a system
behavior (perhaps a trace) as input, and whose execution checks whether it has some desired
properties. At the other, it might be a mathematically rigorous formal specification, equipped with
whatever execution mechanism is needed to let one compute whether representations of system
behavior are admitted or not. Much previous work on formal specification has had the primary
aim of supporting correctness proofs; for that, mathematical rigor is essential. Supporting testing
via executability as a test oracle is a quite different goal; mathematical rigor is desirable for such
specifications to eliminate ambiguity and imprecision within the specification, but it is not in
general essential. In some cases one has both goals, of course.

Irrespective of whether it is expressed mathematically or in a conventional programming lan-
guage, a specification written to be executable as a test oracle should also serve as a readable
document, to serve the original purpose of specification documents, of enabling communication
and discussion between humans about the intended behavior. It should be structured to be as clear
as possible, which may be in tension with the demands of executability and of rigor, and it should
be annotated with explanatory prose and presented in a human form.

1.3 De Facto Standards

Another kind of specification, particularly important for systems in which individual components
evolve over time, is that of the de facto standards. There are broadly two kinds: the de facto stan-
dard implicitly defined by the existing component implementations, as the envelope of all their
behaviors, and the de facto standard implicitly defined by the deployed systems that have to in-
teroperate with them, as the conjunction of the assumptions made on their behavior by all the
existing clients. When writing new software above a particular interface, what really matters (in
the short term) is the former: the envelope of all behavior exhibited by the existing implementa-
tions that it has to interoperate with. Dually, when writing a new implementation of a particular
established interface, what matters is the latter: the assumptions about the interface behavior that
the deployed clients implicitly rely on; if the new implementation violates one of those assump-
tions, the deployed clients will fail.

Both of these are hard to investigate with conventional methods, which offer no way to describe
an envelope of allowed behavior except either (1) the outcomes of all tests from some test suite, or
(2) a prose specification document. But a specification that is executable as a test oracle gives a way
to experimentally investigate the behavior of existing implementations, by iteratively generating
tests, checking whether the observed behavior is allowed by the specification, and refining the
specification to provide a better approximation. In this way, one can develop post hoc specifications
for existing systems that capture good approximations to the behavior of the existing component
implementations.

A specification that is executable as a semantically complete implementation would permit the
conventional testing of higher-level components above the specification with respect to the full
range of allowed behavior, rather than with respect to the reduced range typical of particular
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implementations; it would thereby let one investigate the second kind of de facto standard: the
aggregate of all assumptions about the interface made by clients of the interface.

1.4 The TCP/IP Network Protocols and Sockets API

The TCP/IP network protocols provide a good example of all this and are the technical focus of
our work in this article. TCP provides a reliable byte-stream communication abstraction between
pairs of endpoints that underlies the World Wide Web, email, and many other services; the com-
panion UDP protocol provides an unreliable datagram service, often used for streaming media; and
both are implemented above IP, the Internet Protocol. This is among the most widely used soft-
ware infrastructure on the planet: there are TCP/IP protocol endpoint implementations running
on almost all machines, implemented by many different vendors. They should interoperate with
each other, but there is no prospect of exhaustively testing all combinations or of synchronizing
any updates. By and large the deployed Internet, which is an assembly of all these endpoints and
the interconnecting routers, works remarkably well. However, when one looks closely at what the
TCP/IP protocols are—how they are defined, what the behavior of those endpoint implementations
is (or should be), and in what sense they interoperate correctly—the situation is very unclear.

There are specification documents: RFCs that focus on the on-the-wire protocols, and the POSIX
standard for the Sockets API used by applications to interact with the protocols. An RFC is a Re-
quest for Comments in a series now published by the Internet Engineering Task Force (IETF); some
RFCs are adopted as IETF Internet Standards. RFCs and POSIX are prose documents: they typically
describe the formats of wire messages and the C-language types of API calls precisely, but they
are, almost inevitably, ambiguous and incomplete descriptions of the protocol and API behavior.
Specifications in this area have to be loose, to accommodate implementation variation (e.g., in tim-
ing or choice of sequence numbers, window sizes, or, within some bounds, retransmission policy),
but, as we shall see, that does not mean that they have to be vague or imprecise.

Then there is the code. For each of the many implementations of TCP/IP and the Sockets API, the
code implicitly does define some precise behavior (modulo the status of the underlying program-
ming language), but there are many differences between them, some intentional and some not.
In practice, the common implementations together form a de facto standard: any implementation
must interoperate reasonably well with all of them, though historically the BSD implementations
have a special status: various protocol features were first developed there, and they are sometimes
used as a reference [109]. Moreover, each implementation is in itself a complex body of code. They
are typically written in C, intertwined with an operating system. For example, the BSD implemen-
tation is around 20,000 lines of C. They are multithreaded, dealing with asynchronous events on the
network interface, concurrent Sockets API calls, and the expiry of various timers. At present, there
does not exist a formal semantics for the fragment of C that is used, despite much work over the
years [11, 33, 56, 69, 76, 80], let alone proof techniques that have been shown to scale to this kind of
problem. There is a rough layer structure (Sockets/TCP/IP/network-interface) but much coupling
between the layers, with “fast path” optimizations for the common cases, indirection via function
pointers, and many historical artifacts. Moreover, the deployed base makes it almost impossible
to change many aspects of the observable implementation behavior, on the wire or Sockets API
interface (there is still active experimentation with new congestion control algorithms, however).

Developers, both of protocol stacks and of applications above them, thus have to deal with a
very complex world. TCP has long been recognized as hard to implement correctly, as described in
RFC2525 and [84], and in fact there has been no precise sense in which an implementation can be
considered “correct” or not. Application writers using the Sockets API have to be aware of a host
of behavioral subtleties and implementation differences, in addition to the intrinsic difficulties
of concurrency, partial failure, and malicious attack. It it clearly possible to write pragmatically
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Fig. 1. Our single-endpoint protocol-level specification.

satisfactory protocol stacks, and distributed libraries and applications above them, but the cost
and level of expertise needed are high.

1.5 Our Specifications

In the light of the above, we set out to investigate whether and how one can do better, taking
a mathematically rigorous approach to the behavior of such real-world systems. We address the
specific problem of the unclear de facto standard for TCP/IP, developing specifications of TCP/IP
behavior that are executable as test oracles. This is important in itself, but by doing so—tackling
a particularly gnarly real-world abstraction, with all of its difficulties—we can also draw lessons
from the experience for the general problem: how one can improve on conventional development
processes based on prose specification documents, both to clarify similar legacy abstractions and
in the development of future clean-slate abstractions.

1.5.1 A Protocol-Level Specification of the De Facto Standard. We first develop a specification
for a TCP or UDP endpoint, as observed in terms of individual TCP and UDP messages on the
wire, at its Sockets API interface, and at an existing debug interface. This is illustrated in Figure 1.
We structured this specification and built checking tools to make the specification be executable
as a test oracle. This let us develop it with an experimental semantics approach, to capture a good
approximation of the de facto standard:

• We produced an initial draft specification based on the existing prose documents, the BSD
and Linux source code, and ad hoc tests.

• In parallel, we instrumented a test network containing machines running multiple imple-
mentations and wrote tests to drive those, generating several thousand real-world traces
chosen to cover a wide range of their behavior. We used three implementations that were
current when the project began: FreeBSD 4.6, Linux 2.4.20-8, and Windows XP SP1. As we
discuss later, validation of TCP dynamics focused on the first of those, while for UDP and
the Sockets API we used all three.

• We ensured that the specification admitted those traces by running a special-purpose
symbolic model checker. When we found that some particular real-world behavior was
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not admitted by the specification, we either amended the latter or classified it as an
implementation bug. Those bugs, and the many differences between the three implementa-
tions that we found, show that this is a very discriminating testing process.

• We iterated this process, improving our tools, understanding, and specification, until the
specification captured a good approximation to the observed behavior.

The resulting specification is fully mathematically rigorous: it is expressed in higher-order logic,
in a mechanized proof assistant, HOL4 [44, 48], that type-checks the specification. We thereby
avoid the ambiguity of prose specifications.

One might be concerned that this rigor comes at the cost of accessibility. Our HOL4 definitions
are essentially standard typed discrete mathematics, using numbers, lists, sets, finite maps, logi-
cal connectives, quantifiers, and user-defined record types, functions, and relations. This language
should be familiar to anyone with previous discrete-mathematics experience. For others (perhaps
the majority of developers), and to explain the meaning of the specification more directly, we also
documented it extensively, with side-by-side English prose and mathematical definitions. Auto-
mated typesetting tools let us present the two in a readable form, which also helped us keep them
in sync. At a larger scale, we structured the specification to be as clear as possible, picking out
logically distinct parts of the behavior into distinct definitions.

HOL4 supports higher-order logic as its definition language. In general, the more sophisticated
the language, the more challenging automated reasoning becomes, so one should ask whether this
expressiveness was required or whether simpler tools would have sufficed. Higher-order types
are used in our specification: there are some third-order types.1 The highest order at which we
quantify is order 1, e.g., at the host type.

The resulting document remains large and complex by the standards of most formal models
(386pp typeset, 25,800 lines of HOL source, of which two-thirds are comments), but that seems
to be inescapable. Most work on formal models either makes significant idealizations, e.g., when
defining a “core calculus” for some programming language, or concerns a clean-slate design. In
contrast, here we aim to capture TCP as it actually is, without idealization, in the observable be-
havior of some of the deployed implementations. We are not trying to distill some simple “Platonic
essence” of TCP. Indeed, it is not clear that it has one in any useful sense. The protocol has many
aspects: connection setup and teardown, sliding-window flow control, congestion control, protec-
tion against wrapped sequence numbers (PAWS), round-trip-time estimation, protection against
certain denial-of-service attacks, and so forth. These are intertwined in subtle ways, with little
modular structure. Programmers writing TCP/IP stacks and systems on top of TCP need to un-
derstand it at an intuitive level, but crucially also need to understand the warts and wrinkles of
its actual implementations. Not all aspects are important in all circumstances, but all are impor-
tant in some. Our specification is thus detailed, with almost all important aspects of the real-world
communications at the level of individual TCP segments and UDP datagrams, with timing, and
with congestion control (it abstracts from routing and other IP internals). And it has broad scope
or coverage, dealing with the behavior of a host for arbitrary incoming messages and Sockets API
call sequences, not just some well-behaved usage—one of our goals was to characterize the failure
semantics under network loss, duplication and reordering, API errors, and malicious attack. It also
covers the failure semantics due to resource limits, though this was not well validated.

Note that this is a post hoc specification. Traditionally one thinks of testing an implementa-
tion against a pre-existing specification. Here, faced with the entrenched de facto standard of the
deployed implementations, the best that can be done is to identify what the envelope of their

1We define the order of an HOL type by order(tycon) = 0, order(t → t′) = order(t �→ t′) = max(order(t) + 1, order(t′)),
and order((t, t′, . . .)tyop) = max(order(t), order(t′), . . .).
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Fig. 2. Our end-to-end service-level specification.

behavior is—hence our post hoc experimental semantics approach, developing a specification in
part by checking it against implementations. However, the checker technology that we develop is
symmetric: it could equally well be used to test future implementations against our now-existing
protocol-level specification.

Our work also differs from most research on formal models in that our specification is intended
principally to support testing and human communication, rather than mechanized proof (except
proofs involved in our model checking). In principle, the specification should be usable for more
general proof, but the scale makes that a challenging prospect, and it was not one of our goals. We
have not attempted to prove that any implementation meets the specification, or that the protocol
of the specification is correct. We did prove some sanity properties of an early version of the
specification.

1.5.2 A Service-Level Specification and Validated Abstraction Function. We continue by devel-
oping a more abstract service-level specification, illustrated in Figure 2. This abstracts from the
details of the individual messages sent on the wire, instead characterizing the reliable-stream ser-
vice that two TCP endpoints combine to provide for applications running above their respective
Sockets APIs. This is similarly rigorous, detailed, and with broad coverage. It has much simpler
wire behavior than the protocol-level specification, as one would hope, but still has to expose some
aspects of TCP connection setup and teardown, and the complexities of the Sockets API remain
largely unchanged.

In principle, this gives a meaningful criterion for correctness of the TCP protocol: one would
like a proof that two instances of the protocol-level endpoint specification, composed with a model
of the network, do implement the service-level specification. But, as mentioned above, the scale of
the specifications make that proof a challenging prospect. Instead, we develop a pragmatic testing-
based alternative that lets one establish some confidence with much less effort, experimentally test-
ing an abstraction function. We defined, in HOL4, an abstraction function that takes a pair of states
of the protocol-level model (one for each end of a TCP connection), together with an abstract model
of the state of the intervening IP network (the TCP segments in flight), and constructs a state of the
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end-to-end service-level model. This function is what one would use as the invariant of a protocol
correctness proof. We then built a checker that, given an experimental protocol-level trace for the
two endpoints, checks whether there is a corresponding trace of the service-level specification,
with the abstraction function mapping protocol-level states onto service-level states at each step.

We now introduce two of the main technical challenges that arise in developing these two
specifications: handling specification looseness and relating specification and implementation.

1.6 Technical Challenge: Specification Looseness

A key issue in this work is the need for the specification to be loose while remaining executable
as a test oracle and precise enough to be unambiguous. In a deterministic setting, with a tight
specification and no implementation runtime determinism, one can build a specification that is
executable as a test oracle by simply writing a reference implementation (perhaps in a conventional
programming language or as a pure functional program), using it as an oracle by checking that the
observed behavior from running tests on a production implementation is identical to the behavior
obtained from running them on the reference implementation. The two notions, of specifications
that are executable as a test oracle and specifications that are executable as a semantically complete
implementation, here collapse into one.

In most contexts, however, specification looseness is essential, to accommodate allowed vari-
ations in behavior between different implementations, and to accommodate per-implementation
runtime nondeterminism. For TCP, some interimplementation variation is intended to be allowed
by the prose specification documents, and some has arisen over time. Then there is a great deal
of intra-implementation runtime nondeterminism, arising from OS scheduling, timers, explicitly
randomized choices, and so on. Repeatedly running a test case on a single implementation can
produce many significantly different traces of observed Sockets API and wire behavior.

This means that checking conformance cannot be done by simply running the specification and
an implementation in lock-step and comparing the results; our specification must be quite different
from a “reference implementation” for TCP in a more or less conventional programming language,
which would exhibit just some behaviors of the many possible (several of these exist, including
the BSD C code and those by Biagioni in Standard ML [16], by Castelluccia et al. in Esterel [28],
and by Kohler et al. in Prolac [55]).

Instead, to define an envelope of behavior that includes such variation, we express our protocol-
level specification in a relational style, as a labeled transition system (LTS). This host LTS is essen-
tially a nondeterministic automaton, a ternary relation

h
l−→ h′.

Here h and h′ are values of an HOL4-type modeling a single endpoint state, abstracting from the
relevant parts of the OS and network hardware of a machine, and l is a label modeling one of
the observable events (shown in Figure 1) that the specification deals with: Sockets API calls and
returns, network messages sent and received, certain debug trace events, time passage, and internal
transitions. The host LTS is defined as an operational-semantics definition in higher-order logic,
using various idioms adapted from programming language and concurrency theory semantics,
including a relational monad structure and nondeterministic timed labeled transition systems, to
structure it as clearly as we can.

Then we have to make this executable as a test oracle. By choosing higher-order logic as the
language in which to write the specification, to let us express it as clearly as possible, we already
depart from definitions that are immediately executable. But the key difficulty is that much of the
nondeterminism, in TCP implementations and in the specification, is internal, not immediately
exposed in observable events. For example, there may be an internal nondeterministic choice,
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e.g., of some TCP sequence number or window size, which only affects the observable behavior
many steps later.

We therefore built a model checker that takes a captured trace and checks whether it is included
in the set of all traces of the specification. Rather different from conventional model-checking
(symbolic or otherwise), the states here are arbitrary higher-order logic formulae, expressing con-
straints on the underlying state of a protocol endpoint. As the checker works along a trace (possi-
bly backtracking), it uses various HOL tactics, e.g., for simplification, to symbolically evaluate the
specification. Lazy control of the search through the tree of possibilities is essential. The checker
either succeeds, in which case it has essentially proved a machine-checked theorem that that trace
is included; fails, for a trace that is not included; or terminates if one of several heuristic conditions
is satisfied. HOL is a proof assistant in the LCF style [43], and so its soundness, and the soundness
of our checker above it, depends only on the correctness of a small trusted kernel.

One of the main lessons we learn, which we return to later, is that minimizing the amount of
internal nondeterminism is highly desirable, at protocol design time and at implementation design
time. We aimed originally to support black-box testing of existing unmodified implementations:
we did not attempt to add extra instrumentation of their internals, both to avoid perturbing the
systems we were investigating and because we planned to test systems for which we did not
have source access, e.g., Windows XP. For UDP this was viable, but TCP has much more com-
plex internal behavior, with internal nondeterminism that is not directly exposed via the Sockets
API. The BSD implementation supported a TCP_DEBUG kernel option to expose the protocol state
(TCP control block records) at some program points. Including TCP_DEBUG records in our exper-
imentally captured traces let us concretize the symbolic state of the model relatively frequently,
resolving constraints and reducing the amount of backtracking. Modern implementations often
support more sophisticated tracing frameworks, e.g., DTrace [26, 68], which would simplify this.
But ideally, the protocol and API would be designed from the outset to expose all semantically sig-
nificant internal nondeterministic choices, either with trace events for the specific choices or with
trace events containing the computed corresponding specification state for any implementation
state. Given that, the executable-as-test-oracle specification of each transition could be a simple
total function, either operating on a fully concrete state and computing a finite description of the
possible next transitions (abstracted on input values), or on a triple of a current and next concrete
states and transition label, computing whether that transition is allowed. The specification could
then be written in any language of total functions, without needing the sophisticated technology
of a proof assistant, a symbolic state, or a backtracking search. In short, with careful thought at
protocol design time, much simpler methods than we use here could be used to make a suitable
specification that is executable as a test oracle.

Excessive nondeterminism can also be bad from a protocol-design point of view, leading to se-
curity vulnerabilities. For example, the LAND attack [65] involved sending a spoofed TCP SYN
segment containing the IP address of the target as its source and destination, which led to lockups
in various stacks, and blind in-window attacks [87] involved spoofing TCP RST or SYN segments
that are randomly often enough within the active window to tear down the target’s connection.
Precise specification of looseness would not in itself prevent these but might help direct the pro-
tocol designers’ attention to the possibilities.

On a separate note, there is a common misconception that a rigorous and detailed specification is
necessarily also a tight specification, overconstraining potential implementations. On the contrary,
we have gone to great lengths to ensure that our completely rigorous specifications allow a wide
range of reasonable behaviors. We argue that precisely specifying exactly the properties of other
protocol endpoints that one depends on, combined with proof or testing that those properties
suffice to ensure good end-to-end system behavior, would be preferable to an exclusive reliance
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on the “rough consensus and running code” emphasized in the early development of the Internet
protocols.

1.7 Technical Challenge: Relating Model and System

The second key issue in making a testable specification of a real system component is that of
choosing exactly what part of the real systems the specification is intended to model, and how
the two are intended to be related. For many conventional formal specifications, aimed princi-
pally at supporting proof about idealized systems, this is not an issue, as they have only a weak
relationship to implementations. Some others, such as compiler specifications, have a relatively
simple interface, e.g., as partial functions from source to target languages, and hence a relatively
straightforward notion of what is observable. In contrast, here we are specifying part of a large and
complex system: the TCP/IP stacks that we consider exist within complete operating systems; they
are not cleanly isolated components that can be exercised independently (they are also not subject
to simple unit testing, for this reason). We therefore have to carefully choose how to restrict the
scope to a manageable domain, and what system behavior is taken as observable. These choices
have to be reflected in the top-level form of the judgments of the specification, which ultimately
is a predicate on such behaviors, and in the testing infrastructure, as instrumentation that logs
the observable behavior in executions of the running system. For testing-based validation, the two
must have some exact correspondence, and this provides an important constraint: we can abstract
but cannot idealize. As we are building mathematically rigorous specifications, and the implemen-
tations are (as is typical) not mathematical artifacts, this is also the necessarily nonmathematical
boundary where we relate the formal and informal worlds.

For TCP/IP there are five main options for where to cut the system to pick out observable events.
The protocol-level specification of Figure 1 deals with events at the network interface and Sockets
API of a single machine but abstracts from the implementation details within the network stack.
For TCP the obvious wire interface events are at the level of individual TCP segments sent or re-
ceived, and this level covers the dynamics of how messages are exchanged, so we refer to this as
an endpoint specification (or sometimes as a segment-level specification). The service-level specifi-
cation of Figure 2 describes the end-to-end behavior of the network as observed by users of the
Sockets API on two different machines, abstracting from what occurs on the wire. For TCP such
a specification can model connections roughly as a pair of streams of data, together with addi-
tional data capturing the failure behaviors, connection shutdown, and so forth. We refer to this as
a service-level specification (or sometimes as a stream-level specification), characterizing the bidi-
rectional data stream service that the TCP protocol, together with the network and Sockets API,
provides to applications. A wire-interface-only endpoint specification, shown on the left of Figure 3,
would specify the legal TCP segments sent by a single host irrespective of whatever occurs at the
API. A network interior specification, shown on the right of Figure 3, would characterize the pos-
sible traffic at a point inside the IP network, of interest for network monitoring. Finally, a pure
transport-protocol specification (not shown) would define the behavior of just the TCP part of a
TCP/IP stack, with events at the Sockets API and at the OS-internal interface to IP.

All would be useful, for different purposes. We chose to begin by developing a protocol-level
endpoint specification for three main reasons. First, we considered it essential to capture the be-
havior at the Sockets API, despite the fact that the usual TCP/IP RFC specifications do not cover
the API (it is addressed to some extent in POSIX). Focusing exclusively on the wire protocol would
be reasonable if there truly were many APIs in common use, but in practice the Sockets API is also
a de facto standard, with its behavior of key interest to a large body of developers. Ambiguities,
errors, and implementation differences here are often just as important as for the wire protocol.
Second, the protocol-level specification has a straightforward model of network failure, essentially
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Fig. 3. Wire-interface endpoint and network-internal specifications.

with individual segments either being delivered correctly or not; the observable effects of network
failure in an end-to-end model are far more easily characterized as a corollary of this rather than
directly. Third, it seemed likely that automated validation would be most straightforward for an
endpoint model: by observing interactions as close to a host as possible (on the Sockets and wire
interfaces), we minimize the amount of nondeterminism in the system and maximize the amount
of information our instrumentation can capture. With our protocol-level specification in hand, we
were then in a good position to develop a service-level specification, as described in Section 4.

Then there are more detailed questions about the instrumentation that is feasible and the exact
relationship between specification and running system. We return to these later, but to give a few
examples:

• A pure transport-protocol specification would require us to instrument the OS-internal in-
terface between TCP and IP, or that between the TCP/IP stack and the network cards. Nei-
ther of those are easily accessible. Instead, the protocol-level specification has the advantage
that it requires us only to instrument the wire interface, which for ethernet wire interfaces
can be done cleanly with another network-interface observer.

• The Sockets API interface is conceptually simple to deal with at first sight, but it is a C
language interface, involving exchange of shared memory between application and OS. To
avoid having to deal with those intricacies of C semantics in our specification, we abstract
the API calls and returns into a pure value-passing model; that abstraction is computed by
our instrumentation.

• We have to consider how precisely events in different parts of the system can be times-
tamped, both to relate to the numerical values of timers in the TCP implementations and
simply to let them be totally ordered consistently with real time, to avoid unnecessary
search in our trace-checking process.

1.8 Non-goals, Non-approaches, and Limitations

The problem we address and our approach are rather different to most previous work on formal
semantics, program verification, and model checking. Several non-goals and non-approaches of
our work have already been mentioned, but for clarity we collect them here. We are not trying to:
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(1) Prove correctness of the TCP protocol. Our protocol-level and service-level specifications
let such a result be precisely stated (for the first time), and we conjecture that such a proof
would be possible, but it would be a separate multi-person-year project in mechanized
reasoning. Before embarking on it, one would also want to validate the specifications
against additional implementations, to ensure they are not overly specific to those we
tested against.

(2) Prove correctness of any particular implementation with respect to our protocol-level
specification. The scale and complexity of the specification and the existing C implemen-
tations make this an intimidating prospect, though it might be viable for clean-slate im-
plementations in semantically simpler languages.

(3) Prove correctness of application code above the specification. In principle, the specifica-
tion should support this, but again it would be a major piece of work in itself. Two prelim-
inary experiments have been done: Compton [31] verified a simple distributed algorithm,
Stenning’s protocol, above our early UDP model, and Ridge [89] conducted a verification
of a core piece of distributed infrastructure above a simplified TCP model, based on those
we describe here.

(4) Find bugs in TCP implementations. We are treating the existing implementations prin-
cipally as part of the de facto standard, and from that point of view whatever they do
is “correct.” But along the way we did find several clearly unintended behaviors, as we
discuss later.

(5) Redesign TCP. Again, we are taking the existing implementations as our principal refer-
ence, not trying to change the protocol they exhibit. We are redesigning TCP in a different
sense, of course: the specified protocol and the way it is specified.

(6) Implement TCP. Our specification is executable as a test oracle, but it is not executable in
the conventional sense, to interoperate with existing TCP implementations. It would be
interesting and useful to make it executable as a (likely very slow) implementation, by
abstracting out the places where it makes nondeterministic choices so that they can be in-
stantiated with particular strategies, and to explore how one can narrow the gap between
that and a production-quality implementation.

(7) Generate tests for TCP from the specifications. Our test cases are generated by a special-
purpose handwritten test bench. We did some coverage analysis with respect to the
protocol-level specification, but the tests are not generated from the specification.

(8) Model-check TCP (either specification or implementation). Other model-checking tech-
niques have been applied to substantial bodies of real code, notably BDD, SAT, and SMT-
based methods (in the more usual sense of “symbolic model checking”) and predicate
abstraction methods. They are generally focused on detecting runtime errors, such as
dereferencing null pointers and assertion violations. In contrast, we check conformance
with a complete specification of the system behavior, a much more elaborate functional
correctness property that would be hard to state with assertions or simple temporal log-
ics. On the other hand, those methods analyze the source code fairly directly, whereas we
consider only its behavior as manifested in the generated traces.

A TCP endpoint has a very large and complex state space, both in the implementations
and in our protocol-level specification. In the latter, the control block for each end of a TCP
connection contains fourteen 32-bit sequence numbers, several natural numbers, and 10
timers, represented with real numbers. An implementation would likely use 32-bit num-
bers instead of the specification’s unbounded natural numbers, and types at least this wide
for the timers. A rough estimate thus suggests that each connection would take 1200 bits
to model if a finite translation were attempted. Further, the specification allows for an
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arbitrary number of connections to be made, and for an arbitrary number of messages to
be in various of the host’s queues. Ignoring the data being transmitted in the packets and
their IP addresses, each TCP segment contributes another 190 bits to the size of the state.
Any finite analysis of the specification would have to dramatically constrain its possible
behaviors, and would also require a sound translation from the high-level specification to
the finite model. Both of these requirements are unpalatable.

(9) Distill some essence of TCP, in the form of an idealized model. In our early work in this
area we attempted this, defining a “UDP calculus” in the style of existing process calculi,
but it quickly became clear that the real challenge is understanding how to cope rigorously
with the scale and complexity of the real protocols, APIs, and implementations.

We return to the limitations of our work in the Discussion section (Section 12) but highlight the
main two up-front:

(1) Further validation would have been desirable, where we were limited by the available staff
resources. For UDP and the Sockets API we believe we achieved reasonable coverage for
the three implementations we considered, while for the protocol-level TCP specification
we seriously addressed only the BSD implementation, and our tests were typically rela-
tively short, not exercising some regimes of the protocol well (different congestion-control
regimes, in particular). We reached a good correspondence between specification and the
observed behavior of implementations—not a perfect one, but good enough to suggest
that only modest additional effort would have been needed to fix the remaining issues.
For the service-level specification, we were able only to do proof-of-concept validation.

(2) We did not build a turnkey protocol stack testing tool that could be used in industry or
attempt to engage with the IETF to improve their TCP specifications. Again, this was
mainly due to a lack of available resources.

1.9 Project History

This article gives a retrospective synoptic view of an extended research project, NetSem, with
conference papers in TACS 2001, SIGOPS EW 2002, ESOP 2002, SIGCOMM 2005, POPL 2006, and
FM 2008: we started around October 2000 with a simple model for UDP and Sockets [96, 97],
initially developed by Serjantov (at the start of his PhD) and Sewell. With Wansbrough and Norrish
we extended that with modeling of time and multithreaded Sockets API clients, and mechanized
it in HOL [78, 106]. We then developed the much more substantial protocol-level specification for
TCP [20, 23], by Bishop, Fairbairn, Norrish, Sewell, Smith, and Wansbrough, and finally the service-
level specification and abstraction function between the two models [90], by Ridge, Norrish, and
Sewell. For more details we refer the reader to a technical report [21] and to the annotated service-
level and protocol-level specifications [21, 22, 91]. The whole project was approximately 11 person-
years of effort.

The HOL code for both specifications is available online, as a snapshot of the original [103] and
updated by Mehnert and Norrish to a more recent version of HOL4, in a GitHub repository under
the simplified BSD license [75]. At the time of writing (2017–2018), work is underway (Section 10)
to update the specification w.r.t. changes in the FreeBSD stack over the intervening time, using
new DTrace-based instrumentation [26, 68] rather than the ad hoc instrumentation we describe
in Section 6.1 (making test generation more portable and exposing more nondeterminism to ease
checking), using traces generated both by our earlier (Section 6.2) tthee tool and the packetdrill
tool [27], and using current hardware, HOL4, and SML implementations to run trace checking
(providing significantly better performance).
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Other work made use of our UDP and TCP specifications, providing evidence that they can be
put to use. Working with our group, Compton [31] verified a simple distributed algorithm, Sten-
ning’s protocol, above our early UDP model, and Ridge [89] verified a core piece of distributed
infrastructure, involving a simplified model of TCP networking based on those we describe, a
filesystem, and concurrent OCaml code. Elsewhere, Li and Zdancewic [61–63] built a purely func-
tional Haskell TCP server implementation closely based on our TCP specification, roughly 3 to
8 × slower than the Linux kernel TCP stack. This was further developed and used by Galois as the
Haskell Network Stack (HaNS) [42], within the halvm Haskell-on-Xen project, though the code
seems now to have been rewritten.

We also applied our techniques to a new protocol as part of its design process, in collaboration
with the designers: a Media Access Control (MAC) protocol for the SWIFT experimental optically
switched network, by Dales and others [19]. We do not detail that here, but do incorporate some
of the lessons learned into our discussion.

1.10 Article Structure

We begin with background about TCP/IP and its existing specifications (Section 2). The main body
of the article is in two parts, first describing our specifications and then our checking technology
and results. In the first part, we describe our (low-level) protocol-level specification (§3), (high-
level) service-level specification (§4), and the abstraction function between them (§5). For each,
we describe the issues we had to deal with and the specification idioms we developed to do so.
We also include selected excerpts of the specifications themselves: some of the types modeling
protocol endpoint states, and a few of the transition rules. We do this principally to illustrate the
style of mathematics and the scale involved in such work, and to show those familiar with TCP
how aspects that they may be familiar with appear in this form, but it is not necessary for the
reader to follow every detail of the excerpts.

In the second part, our experimental testing infrastructure is described in §6, and the symbolic
model checking technology we developed is in §7. The results of our checking are given in §8,
including quantitative results and some selected implementation anomalies, from among the many
we found.

We also illustrate one use of the specification, abstracting its transitions to give a more accu-
rate analog of the usual TCP state diagram (§9). Section 10 describes ongoing work to update the
specification w.r.t. the changes to the FreeBSD stack over time, using new tracing and proof tools
and new tests. We conclude with related work and discussion in §11 and §12.

2 BACKGROUND: TCP/IP, THE SOCKETS API, AND THE EXISTING SPECIFICATIONS

To make this article as self-contained as possible, we start with a brief overview of the TCP/IP
protocols, the Sockets API, and the relevant standards.

2.1 The TCP/IP Protocols

IP (the Internet Protocol) allows one machine to send a message (an IP datagram) to another. Each
machine has one or more IP addresses, 32-bit values such as 64.170.98.30 for the IPv4 version
of the protocol, or 128-bit values for IPv6. The distributed domain name system (DNS) maps tex-
tual names, e.g., www.ietf.org, to such addresses. IP datagrams have their destination specified
as an IP address. They carry a payload of a sequence of bytes and contain also a source address
and various additional data. They have a maximum size of 65535 bytes, though many are smaller,
constructed to fit in a 1500-byte Ethernet frame body. IP message delivery is asynchronous and
unreliable: IP does not provide acknowledgments that datagrams are received or retransmit lost
datagrams. Message delivery is implemented by a combination of local networks, e.g., ethernets,

Journal of the ACM, Vol. 66, No. 1, Article 1. Publication date: December 2018.

http://www.ietf.org


1:16 S. Bishop et al.

and of packet forwarding between routers; these may silently drop packets if they become con-
gested. A variety of routing protocols are used to establish state in these routers, determining, for
any incoming packet, to which neighboring router or endpoint machine it should be forwarded.

UDP (the User Datagram Protocol) is a thin layer above IP that provides multiplexing. It intro-
duces a set {1, . . . , 65535} of ports at each endpoint; a UDP datagram is an IP datagram with a
payload consisting of a source port, a destination port, and a sequence of bytes. Just as for IP,
delivery is asynchronous and unreliable.

TCP (the Transmission Control Protocol) is a thicker layer above IP that provides bidirectional
byte-stream communication. It too uses a set {1, . . . , 65535} of ports. A TCP connection is typically
between an IP address and port of one machine and an IP address and port of another, allowing
data (unstructured streams of bytes) to be sent in both directions. The two endpoints exchange TCP
segments embedded in IP datagrams. The protocol deals with retransmission of lost data, reordering
of data that arrives out of sequence, flow control to prevent the end systems being swamped with
data faster than they can handle, and congestion control to limit the use of network bandwidth.
These all involve much detailed mechanism, which is exposed on the wire interface, that we cannot
summarize here—this is the heart of what our protocol-level specification has to deal with.

In addition, ICMP (the Internet Control Message Protocol) is another thin layer above IP, primarily
used for signaling error conditions to be acted on by IP, UDP, or TCP.

Many other protocols are used for specific purposes, but TCP and UDP above IP are dominant.
TCP underlies web (HTTP), file transfer (FTP), and mail protocols; UDP is often used for media
streaming; and TCP and UDP together underlie the domain name system (DNS). The first widely
available release of these protocols was in 4.2BSD, released in 1983. They are now ubiquitous, with
implementations in all the standard operating systems and in many embedded devices.

2.2 The Sockets API

Application code can interact with the TCP/IP protocol implementations via the sockets interface,
a C language API originating in 4.2BSD with calls socket(), bind(), connect(), listen(), and so
forth. The sockets interface is usually used for interaction with UDP and TCP, not for direct inter-
action with IP. A socket itself is a TCP/IP protocol stack data structure, referred to locally by a file
descriptor.

To give a sense of how the Sockets API is used, and how it interacts with the wire protocol, here
is a sequence of events that might be involved for a server and a client program to set up a TCP
connection between their two machines, and to communicate a string over it. To sidestep the C
language intricacies of the API, the calls are given in the notation of our specification, not in C.

(1) First, the server makes three Sockets API calls to establish a listening socket:
(a) socket (SOCK_STREAM): to create a TCP socket, returning its file descriptor (say

FD 8);
(b) bind (FD 8,↑ (IP 192 168 0 12),↑ (Port 3333)): to set the local IP address and port of

that socket, to one of the IP addresses of the server and a concrete value that is known
to the client code; and

(c) listen (FD 8, 3): to put the socket into LISTEN state, ready for incoming connections
on that IP address and port, with backlog (queue of pending connections) of size 3.

(2) Then the client makes the following API calls to create a socket and initiate a connection
to the server:
(a) socket (SOCK_STREAM): to create a TCP socket, returning its file descriptor (this

might also be FD 8, though referring to a client socket data structure rather than the
server socket data structure);
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(b) bind (FD 8, ∗,↑ (Port 4444)): to set the client socket port, leaving its IP address wild-
carded; and

(c) connect (FD 8, IP 192 168 0 12,↑ (Port 3333)): specifying the server’s IP address and
port, to initiate a TCP connection between the two machines.

(3) The protocol stacks on the two machines then exchange TCP datagrams in a three-
message handshake:
(a) client sends (and server receives) a TCP SYN datagram;
(b) server sends (and client receives) a TCP SYN ACK datagram; and
(c) client sends (and server receives) a TCP ACK datagram;
and the client connect() call returns.

(4) After creating its socket, the server (typically in a loop) calls accept (FD 8) to get the
next available connection. This is in the form of a freshly created server-side con-
nected socket for this endpoint of the connection; the accept() call returns its file de-
scriptor (say, FD 9) and the remote IP address and port of the other endpoint, here
(IP 192 168 0 14, Port 4444). The server’s listening socket remains available for other in-
coming connections.

(5) The server calls recv (FD 9, 6, [ ]) to read 6 bytes from its input buffer for the new con-
nection. Initially this will block, as the requested data is not available.

(6) To send data, the client calls send (FD 8, ∗, “Hello!”, [ ]), to send the string “Hello!” on the
connection. This returns as soon as the string is locally queued.

(7) The client protocol stack sends a TCP datagram containing that string, which is received
by the server and added to the input queue of its connected socket.

(8) The server recv (FD 9, 6, [ ]) call will return with the string.
(9) ...subsequent actions to close the connection

2.3 Standard Practice: Protocol and API Descriptions

The development process used for the Internet protocols was driven by implementation, exper-
iment, and interoperability testing, with informal specifications (in the form of RFCs) aiming to
capture enough of this to support further interoperable implementations. This process, summa-
rized in Clark’s “rough consensus and running code” [30], was in contrast to a more specification-
driven approach advocated elsewhere, e.g., by the ISO/ITU-T OSI effort. It is not our intention to
revisit that historical argument or to take a view on what should or could have been done at the
time. But the very success of those protocols makes it important to understand the disadvantages
and advantages of the standards that we have ended up with. We summarize those here, to set the
context for the rest of the article.

The basic IP, UDP, TCP, and ICMP protocols are described in Request for Comment (RFC) stan-
dards from 1980–1981:

User Datagram Protocol RFC 768 1980 3pp STD 6
Internet Protocol RFC 791 1981 iii+45pp STD 5
Internet Control Message Protocol RFC 792 1981 21pp STD 5
Transmission Control Protocol RFC 793 1981 iii+85pp STD 7

The sockets interface appears as part of the POSIX standard [49]. Additional information is
contained in the documentation for various implementations, in particular the Unix man pages,
and well-known texts such as those of Stevens [101, 102, 109].

From the titles of these documents the reader might gain the impression that TCP is a single
well-defined protocol. Unfortunately, that is not the case, for several different reasons:
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• As the protocol has been used ever more widely, in network environments that are radically
different from that of the initial design, various clarifications and proposals for changes to
the protocol have been made. A small sample of later RFCs in common use include:

Requirements for Internet Hosts — Communication Layers RFC 1122 1989
TCP Extensions for High Performance RFC 1323 1992
TCP Selective Acknowledgment Options RFC 2018 1996
TCP Congestion Control with Appropriate Byte Counting (ABC) RFC 3465 2003
The NewReno Modification to TCP’s Fast Recovery Algorithm RFC 3782 2004
TCP SYN Flooding Attacks and Common Mitigations RFC 4987 2007
TCP Fast Open RFC 7413 2014
A Roadmap for TCP Specification Documents RFC 7414 2015
Data Center TCP: TCP Congestion Control for Data Centers RFC 8257 2017
RACK: A Time-Based Fast Loss Detection Algorithm for TCP draft 2017

Deployment of these changes is inevitably piecemeal, depending both on the TCP/IP stack
implementers and on the deployment of new operating system versions, which—on the
scale of the Internet—cannot be synchronized.

• Implementations also diverge from the standards due to misunderstandings, disagreements,
and bugs. For example, RFC 2525 collects a number of known TCP implementation prob-
lems. The BSD implementations have often served as another reference, distinct from the
RFCs, for example, with the text [109] based on the 4.4 BSD-Lite code.

• In 2004, a TCP Maintenance and Minor Extensions (tcpm) IETF working group was started,
which since June 2015 has been working on a draft RFC [32] to “bring together all of the
IETF Standards Track changes that have been made to the basic TCP functional specification
and unify them into an update of the RFC 793 protocol specification.”

• The existence of multiple implementations with differing behavior gives rise to another
“standard,” the de facto standards we introduced in Section 1.3: in addition (or as an al-
ternative) to checking that an implementation conforms to the RFCs, one can check that
it interoperates satisfactorily with the other common implementations. The early RFC791
enshrined the doctrine that implementations should, as far as possible, interoperate even
with non-RFC-conformant implementations:

The implementation of a protocol must be robust. Each implementation must
expect to interoperate with others created by different individuals. While the
goal of this specification is to be explicit about the protocol there is the possibil-
ity of differing interpretations. In general, an implementation must be conser-
vative in its sending behavior, and liberal in its receiving behavior. That is, it
must be careful to send well-formed datagrams, but must accept any datagram
that it can interpret (e.g., not object to technical errors where the meaning is
still clear).

This focus on interoperability in the short term opens the door to “standard drift,” with
correctness implicitly defined by what other implementations accept rather than any
single concrete definition, and perhaps works against interoperability in the long term, as
it becomes unclear what one can depend on from other implementations.

There has recently been an extensive and nuanced discussion of the merits of the above
doctrine on an IETF mailing list [34, 104].

• Similarly, existing applications implicitly encode facts about the behavior of the Sock-
ets API and protocols and are used as documentation (most programmers will look for
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examples to illuminate the man pages or to use as a basis for their own code) and as a test
suite (a change is unlikely to be allowed into the OS if it breaks a significant number of ap-
plications, or a few significant ones). Yet another source is the expert community, including
comp.protocols.tcp-ip, Stack Overflow, and the Linux kernel mailing list. In practice, it
can be these that clarify or even identify bugs in the usual sources and in implementations.

• Neither the RFCs nor POSIX attempts to specify the behavior of the sockets interface in
any detail. The RFCs focus on the wire protocols (RFC793 also describes a model API for
TCP, but one that bears little resemblance to the sockets interface as it developed); POSIX
describes the C types and some superficial behavior of the API but does not go into detail
as to how the interface behavior relates to protocol events.

• Finally, the RFCs and POSIX are informal natural-language documents. Their authors were
clearly at pains to be as clear and precise as they could, but almost inevitably the level of
rigor is less than that of a mathematical specification, and there are many ambiguities and
missing details.

It might be argued that this vagueness is an important positive aspect of the specifications, per-
mitting the specifications to be loose enough to accommodate implementation variation and new
protocol innovation. In an early experimental phase, there may be some truth to this, but ultimately
it is a very unfortunate confusion: protocol specifications surely do need to be loose, for both of
those reasons, but that does not imply that they should be vague or imprecise, as we shall see.

3 PROTOCOL-LEVEL SPECIFICATION

We now describe our protocol-level specification. It is written as a mechanized higher-order logic
definition in HOL4 [44, 48], a language that is rich and expressive yet supports both internal con-
sistency checking (type checking is essential with a definition of this scale) and our automated
testing techniques. The specification is large by the standards of formal artifacts: around 9000
noncomment lines of HOL4 source, interspersed with 17000 lines of comment and whitespace;
it is typeset automatically into a 386-page document [22]. Of this, around 125 pages is preamble
defining the main types used in the model, e.g., of the representations of host states, TCP seg-
ments, and so forth, and various auxiliary functions. The remainder consists primarily of the host
transition rules, each defining the behavior of the host in a particular situation, divided roughly
into the Sockets API rules (160 pages) and the protocol rules (75 pages). This includes extensive
comments, e.g., with summaries for each Sockets call, and differences between the model API and
the three implementation APIs.

It is obviously impossible to describe all this in detail here. We first give a reasonably complete
description of the external interface of the specification (Section 3.1), to explain the scope of the
specification and relationship to actual implementations, continuing the Section 1.7 discussion.
We then describe its internal structure (Section 3.2) with just a few excerpts: some of the key types
of a host state h and three sample transition rules, to give a feel for the specification style and to
set the scene for discussion of the specification idioms we had to use (Section 3.3). We conclude
this section with an example TCP trace (Section 3.4).

Readers familiar with the Sockets API and TCP/IP should find some of the details familiar and be
able to contrast the style of our specification with their experience of RFCs and implementations.
Others, perhaps with more experience in logic and semantics, may find some of that networking
detail obscure but should be able to get a sense of what kind and scale of specification is needed
here. In contrast with typical papers about the semantics of small calculi, we cannot include or
explain all the definitions used in our excerpts. Both groups of readers may therefore want to skim
some of the details in Section 3.1 and Section 3.2, depending on their preference and background.
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By working in a general-purpose proof assistant, we have been able to choose specification
idioms almost entirely for clarity, not for their algorithmic properties; we return in Sections 6 and
7 to the experimental, algorithmic, and proof aspects of checking traces against this specification.
We tried hard to establish idioms with as little syntactic noise as possible, e.g., with few explicit
“frame conditions” concerning irrelevant quantities.

The HOL4 definition language used in the specification is essentially just typed higher-order
mathematics. It allows us to build our model quite naturally, using standard data types (pairs,
records, sets, lists, lookup tables, numbers, etc.) and defining behavior declaratively using func-
tions and relations. HOL types can be constructed from type constructors, built-in or user defined,
of natural-number arities. We make extensive use of pair types (t#t), functions (t → t), finite maps
(t �→ t), labeled records ( fld1 : t1,fld2 : t2, . . . ), options, lists, 32-bit integers, natural numbers,
real numbers, and user-defined datatypes. HOL also supports ML-style polymorphism. The spec-
ification is only intentionally polymorphic in a few places, but type inference and checking are
essential. The HOL datatype and inductive definition packages automatically prove various theo-
rems for later use; during the course of the project, we have had to improve these to handle the
large types required.

The main HOL expression syntax used is as follows. The notion for logic and sets is standard:
∧, ∨,⇒, ∀, ∃, and so forth. Records are written within angled brackets . . . . Record fields can
be accessed by dot notation h.ifds or by pattern matching. Since all variables are logical, there is
no assignment or record update per se, but we may construct a new record by copying an existing
one and providing new values for specific fields: cb′ = cb irs := seq states that the record cb′

is the same as the record cb, except that field cb′.irs has the value seq. For optional data items, ∗
denotes the absence (or a zero IP or port) and ↑ x denotes the presence of value x. Concrete lists are
written [1, 2, 3] and appending two lists is written using an infix ++. The expression f ⊕ [(x, y)]
or f ⊕ (x �→ y) denotes the finite map f updated to map x to y. Finite map lookup is written f [x].

3.1 The External Form and Scope of the Specification

3.1.1 The Top-Level Operational Semantics Judgment. The main part of the specification (mod-
eling the pink shaded region below) is the host labeled transition system, or host LTS. This describes
the possible interactions (shown with red arrows) of a single host OS: between program threads
and host via calls and returns of the Sockets API, and between host and network via message sends
and receives.
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Mathematically, the host LTS is simply a transition relation h
l−→ h′, where h and h′ are host

states, modeling the relevant parts of the OS and network hardware of a machine, and l is a label
of one of the following forms:

• msg for the host receiving a datagram msg from the network;
• msg for the host sending a datagram msg to the network;
• tid·f(arg1, . . . , arg

n
) for a Sockets API call f made by thread tid, e.g., tid·bind (fd, is1, ps1)

for a bind() call with arguments (fd, is1, ps1) for the file descriptor, IP address, and port;

• tid·v for value v being returned to thread tid by the Sockets API;
• τ for an internal transition by the host, e.g., for a datagram being taken from the host’s

input queue and processed, possibly enqueuing other datagrams for output;
• tr for a BSD TCP_DEBUG trace record; and
• d for time d ∈ R>0 passing.

In addition, there are labels for loop back messages and changes of network interface status.
The host state type is not technically an abstract type, but here we think of it as such: the labeled

transitions are intended to describe all the observable behaviors of the system, to correspond with
experimentally observed implementation behavior as exposed by our instrumentation; comparison
of observed behaviors does not need to look inside host states. We return to the host state type in
more detail in Section 3.2.

There are many careful choices embodied in the form of this definition, of exactly what aspects
of the real system to model, which events to observe, and what (rather mild) abstraction is done
to map them to events in the model. We discuss some of these in the remainder of this subsection,
detailing the protocol features we cover and the Sockets API, wire, and debug interfaces of the
specification.

3.1.2 Protocol Issues. We restrict our attention to IPv4, though there should be little difference
for IPv6. For TCP we cover roughly the protocol developments in FreeBSD 4.6-RELEASE. We in-
clude MSS options; the RFC1323 timestamp and window scaling options; PAWS; the RFC2581 and
RFC2582 New Reno congestion control algorithms; and the observable behavior of syncaches. We
do not include the RFC1644 T/TCP (though it is in this codebase), SACK, or ECN. For UDP, for
historical reasons (to simplify matters near the start of the project), we deal only with unicast
communication.

3.1.3 Network Interface Issues. The network interface events msg and msg are the transmission
and reception of UDP datagrams, ICMP datagrams, and TCP segments. We abstract from IP, omit-
ting the IP header data except for source and destination addresses, protocol, and payload length.
We also abstract from IP fragmentation, leaving our test instrumentation to perform IP reassembly.

Given these abstractions, the model covers unrestricted wire interface behavior. It describes the
effect on a host of arbitrary incoming UDP and ICMP datagrams and TCP segments, not just of
the incoming data that could be sent by a “well behaved” protocol stack. This is important, both
because “well behaved” is not well defined and because a good specification should describe host
behavior in response to malicious attack as well as to loss.

Cutting at the wire interface means that our specification models the behavior of the entire pro-
tocol stack together with the network interface hardware. Our abstraction from IP, however, means
that only very limited aspects of the lower levels need to be dealt with explicitly. For example, a
model host has single queues of input and output messages; each queue models the combination
of buffering in the protocol stack and in the network interface.
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Fig. 4. RFC IP and TCP header formats versus our TCP specification segment type.
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Figure 4 contrasts the RFC descriptions of IP and TCP headers (from Figure 4 of RFC 791 and
Figure 3 of RFC 793, respectively) with our specification’s TCP segment type. Fields in are not
represented in the specification (most are specific to IP), while fields with a
are represented in some implicit or partial fashion. Ours is a fairly precise model of a TCP segment:
we include all TCP flags and the commonly used options, but abstract from option order, IP flags,
and fragmentation. Address and port values are modeled with HOL option types to allow the zero
values to be distinguished by pattern matching; we use the NONE value, typeset ∗, to denote the
zero value, and SOME x, typeset ↑ x, for all others.

In hindsight, if doing this again, we would arrange for there to be an exact bijection between
values of the model type and the byte sequences containing real TCP segments, for hygiene. That
is not quite true for the type above, but for uninteresting reasons—for example, the type does
not record the values of padding or the order in which TCP options appear. We would moreover
express that bijection within the logic, not just in the instrumentation. It might be preferable to
support pattern matching against constant values in the prover, to avoid the meaningless ↑ 0 values
introduced by the lifting to option types.

3.1.4 Sockets Interface Issues. The Sockets API is used for a variety of protocols. Our model
covers only the TCP and UDP usage, for SOCK_STREAM and SOCK_DGRAM sockets, respectively. It
covers almost anything an application might do with such sockets, including the relevant ioctl()
and fcntl() calls and support for TCP urgent data. Just as for the wire interface, we do not impose
any restrictions on sequences of socket calls, though in reality most applications probably use the
API only in limited idioms.

The Sockets API is not independent of the rest of the operating system: it is intertwined with
the use of file descriptors, IO, threads, processes, and signals. Modeling the full behavior of all of
these would have been prohibitive, so we have had to select a manageable part that nonetheless
has broad enough coverage for the model to be useful. The model deals only with a single process
but with multiple threads, so concurrent Sockets API calls are included. We have to split calls and
returns into separate transitions to allow interleavings thereof. It deals with file descriptors, file
flags, and so forth, with both blocking and nonblocking calls, and with pselect(). The poll()
call is omitted. Signals are not modeled, except that blocking calls may nondeterministically return
EINTR.

The Sockets API is a C language interface, with much use of pointer passing, of moderately
complex C structures, of byte-order conversions, and of casts. While it is important to understand
these details for programming above the C interface, they are orthogonal to the network behavior.
Moreover, a model that is low level enough to express them would have to explicitly model at least
pointers and the application address space, adding much complexity. Accordingly, we abstract
from these details altogether, defining a pure value-passing interface. For example, in FreeBSD,
the accept() call has C type:

int accept(int s, struct sockaddr *addr, socklen_t *addrlen);

In the model, on the other hand, accept() has a pure-function type:

fd→ (fd ∗ (ip ∗ port))error,

taking an argument of type fd (a model file descriptor) and either returning a triple of type fd ∗
(ip ∗ port) or raising one of several possible errors. As part of our instrumentation, the abstraction
from the system API to the model API is embodied in an nssockC library, which has almost exactly
the same behavior as the standard calls but also calculates the abstract HOL views of each call and
return, dumping them to a log.
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The model is language-neutral, but we also have an OCaml [60] library implemented above
nssock, with types almost identical to those of the model, that allows direct programming (the
differences are minor, e.g., in using OCaml 31-bit ints rather than HOL natural-number nums as
the listen-queue-length argument to listen()). This is implemented as a wrapper above nssock,
and so can also log events. Our library is similar but not identical to that included as part of the
Unix module with the OCaml distribution.

Figure 5 gives the complete API that we support (omitting only some mappings to and from
the abstract types). Those familiar with the usual Sockets API will be able to see that it is rather
complete. We give the OCaml version mentioned above, as it is more concise and easier to read
than the HOL version, in which argument and return types of the calls are separated. It uses the
subgrammar of OCaml types:

t ::= tc defined type constructor name
unit type of the unit value ()
bool booleans
int integers
string strings
t1 * t2 pairs (v1,v2) of values of types t1 and t2
t1 ->t2 functions from t1 to t2
t option either None or Some v for a value v of type t
t list lists of values of type t

The type of error codes consists roughly of all the possible Unix errors. Not all those are used in
the body of the specification; those that are are described in the “Errors” section of each socket
call. The type of signals includes all the signals known to POSIX, Linux, and BSD. The specifica-
tion does not model signal behavior in detail (it treats them very nondeterministically), but they
occur as an argument to pselect() so must be defined here. File descriptors, IP addresses, ports,
and so forth are abstract types in the OCaml interface, preventing accidental misuse. There are
various coercions (which we do not give here) to construct values of these types. For interface
identifiers (ifid), the specification supposes the existence of a loop-back identifier and numbered
ethernet identifiers. Any particular host may or may not have an interface with each identifier, of
course. The sockets interface involves various flags, for files, sockets, and messages. Both the HOL
and OCaml interfaces define them as new types, preventing misuse (though of course this also
makes the specification insensitive to such misuse). The OCaml interface indicates error returns
to socket calls by an exception, while the HOL4 interface returns error values explicitly. Finally, we
emphasize that the figure gives just the types of the socket calls; defining their programmer-visible
behavior, in the context of a network and other endpoints, is the point of our whole specification.

3.1.5 The TCP Control Block and TCP_DEBUG Interface Issues. A key part of the BSD TCP im-
plementation, probably similar in most other implementations, is the TCP Control Block (TCBCP):
a structure containing many of the quantities associated with an endpoint of a TCP connection,
including its timers, sequence numbers, reassembly segment queue, and so forth. Many of these
are quantities used in the RFCs to describe the intended dynamic behavior of the protocol. The
BSD implementation we used supported a TCP_DEBUG kernel option to record snapshots of this
data to a ring buffer and let it be read out.

In our specification, connections have a similar structure, though with pure values rather than
C data structures: a 44-field HOL record type (not shown). We exploit the TCP_DEBUG option to
add trace records, giving the values of these fields whenever possible. During trace checking, this
lets us ground the symbolic state of the model earlier than would otherwise be possible, which is
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Fig. 5. The Sockets API of the specification (OCaml version).
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good for efficiency and for early and discriminating detection of mismatches between model and
experimental trace.

This is complicated by the fact that TCP_DEBUG adds trace records at somewhat arbitrary pro-
gram points in the code: there are not enough to fully ground the state, and at some points some
of the fields of the record are not meaningful. As mentioned in Section 1.6, with due design-time
care and modest implementation effort, one could have the protocol designed-in instrumentation
calculate the whole abstract host state at each interesting point.

3.2 The Internal Structure of the Specification

3.2.1 Internal Structure: Statics (Host States and Types). Host states h are simply values of a
certain carefully designed HOL record type:

host = arch : arch; (∗ OS version ∗)
privs : bool; (∗ whether process has privilege ∗)
ifds : ifid �→ ifd; (∗ network interfaces ∗)
rttab : routing_table; (∗ routing table ∗)
ts : tid �→ hostThreadState timed; (∗ host view of each thread state ∗)
files : fid �→ file; (∗ open file descriptions ∗)
socks : sid �→ socket; (∗ sockets ∗)
listen : sid list; (∗ list of listening sockets ∗)
bound : sid list; (∗ bound sockets in order ∗)
iq : msg list timed; (∗ input queue ∗)
oq : msg list timed; (∗ output queue ∗)
bndlm : bandlim_state; (∗ bandlimiting ∗)
ticks : ticker; (∗ kernel timer ∗)
fds : fd �→ fid (∗ process file descriptors ∗)

These fields abstract to differing extents from the C representations of actual implementations.
Some are quite abstract, with just enough information for the rest of the semantics. For example:

• ifds is a finite map from a type ifid of network interface identifiers to a type ifd of inter-
face descriptors, which just contain the IP addresses, netmask, and up/down status of the
interface.

• privs, files, and fds are a minimal representation of the host process’s privileges and file
descriptor state.

This information was added during specification development as needed, when it became clear
that some aspect of the protocol or Sockets API behavior depended on it.

The ts field ties the host semantics to that of the threads making Sockets API calls on the host.
It holds a lookup table from thread IDs tid to the OS view of thread states (running, blocked in a
system call, or ready to be returned a value).

The low-level network interface is modeled with input iq and output queues oq that are just
lists of IP messages (either a tcpSegment, as in Figure 4; an icmpDatagram; or a udpDatagram).
These lists abstract from all the messages queued in the OS or network interface hardware. These,
and various other components, are annotated with time information: for any type t , t timed is a
type of t values together with elapsed duration and min and max time values. For example, the
iq timer is used to model the delay between receipt of the IP datagrams and their processing, and
the thread state timers are used to model scheduling delays. There is also state (bandlim_state) for
per-host bandwidth limiting, which applies across all its connections.
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The information about sockets (the endpoints and potential endpoints of TCP connections and
of UDP communications) has to be represented in more detail, as this is intimately involved in the
protocol behavior. The socks, listen, and bound fields use the type socket, shown below; this and
the types of its components are closer to (a pure value representation of) the C types found in a
typical OS implementation.

The socks field of a host h contains a finite map from socket identifiers to sockets. Each socket

has internal structure as below, some of which is protocol dependent: e.g., flags, local and remote
IP addresses and ports, pending error, TCP state, send and receive queues, and TCP control block
(cb) variables.

socket = fid : fid option; (∗ associated open file description if any ∗)
sf : sockflags; (∗ socket flags ∗)
is1 : ip option; (∗ local IP address if any ∗)
ps1 : port option; (∗ local port if any ∗)
is2 : ip option; (∗ remote IP address if any ∗)
ps2 : port option; (∗ remote port if any ∗)
es : error option; (∗ pending error if any ∗)
cantsndmore : bool; (∗ output stream ends at end of send queue ∗)
cantrcvmore : bool; (∗ input stream ends at end of receive queue ∗)
pr : protocol_info (∗ protocol−specific information ∗)

For a TCP socket, the protocol-specific information is as below:

tcp_socket = st : tcpstate; (∗ LISTEN,ESTABLISHED,TIME_WAIT, etc. ∗)
cb : tcpcb; (∗ the TCP control block ∗)
lis : socket_listen option; (∗ data for listening socket ∗)
sndq : byte list; (∗ send queue ∗)
sndurp : num option; (∗ send urgent pointer ∗)
rcvq : byte list; (∗ receive queue ∗)
rcvurp : num option; (∗ receive urgent pointer ∗)
iobc : iobc (∗ out−of−band data and status ∗)

Here the TCP control block, cb (not shown), is the record of sequence numbers, timers, and so
forth mentioned in Section 3.1.5. Much of the dynamics of the TCP protocol is specified using
these, and many have a close relationship to quantities in the RFC specifications.

3.2.2 Internal Structure: Dynamics (Host Transition Rules). The host LTS is defined in an oper-

ational semantics style as the least relation h
l−→ h′ satisfying certain rules. These rules form the

bulk of the specification: some 148 rules for the socket calls (5 to 10 for each interesting call), and
some 46 rules for message send/receive and for internal behavior.

The definition is almost entirely flat, in two senses. First, most rules have no transition premises,
the only exceptions being rules for time passage (the definition is factored into two relations, one
without time passage and one with). Second, there is no information hiding, parallel composition
structure, or synchronization within a host; each rule can refer to any part of the host state as
needed. Each transition rule is abstractly of the form

� P ⇒ h
l→h′,
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Fig. 6. Sample protocol-level specification transition rule: bind_5.

where P is a condition (on the free variables of h, l , and h′) under which host state h can make
a transition labeled l to host state h′. The condition is usually written below the transition. Each
rule has a name, e.g., bind_5, deliver_in_1, the protocol for which they are relevant (TCP, UDP, or
both), and various categories (e.g., FAST or BLOCK).

We now give three sample rules, from the 194 that express the dynamic behavior of the specifi-
cation. bind_5 is one of the simplest Sockets API rules, to let the reader get started, and to illustrate
a failure case; send_3 is a more typical nonfailure Sockets API rule that shows how we deal with
blocking calls and with data manipulation; and deliver_in_1 is a wire-interface rule, of intermediate
complexity, showing how an incoming segment is processed. In the next subsection (Section 3.3),
we discuss some of the specification idioms used in these and other rules.

3.2.3 Sample Protocol-Level Transition Rule: bind_5. The bind_5 rule, one of the simplest, is
shown in Figure 6. This is one of seven rules for the Sockets API call bind(). It deals with the case
where a thread tid calls bind (fd, is1, ps1) to set the IP address and port of a socket referenced by
the file descriptor fd that already has its local port bound; the error EINVAL will be returned to
the thread.

The Description and Variations are documentation annotation, rather than part of the rule
definition; the former gives an overview of the rule, detailed enough for informal use and checked
(manually) against the mathematics, while the latter highlights any differences between imple-
mentations that the rule captures.
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The rule itself consists of a transition from one host state via a transition with a bind label to
another, subject to the side condition below. In the host state before the transition, on the first
line, the thread state map ts maps thread id tid to (Run)d , indicating that the thread is running
(in particular, it is not currently engaged in a socket call). In the host state after the transition,
on the third line, that thread is mapped to (Ret (FAIL EINVAL))sched_timer, indicating that within
time sched_timer the failure EINVAL should be returned to the thread (all returns are handled by
a single rule return_1, which generates labels tid·v).

The side condition is a conjunction of five clauses. The first three ensure (line 1) that the
file descriptor fd is in the host’s file descriptor map h.fds, (line 2) that fid is the file identi-
fier for this file descriptor, and (line 3) that this fid is mapped by the host’s files map h.files to
File (FT_Socket (sid),ff ), i.e., to a socket identifier sid and file flags ff . The fourth (line 4) simply
picks out the socket structure sock associated with the socket id sid. The fifth (lines 5 to 8) says
that the local port of the socket with that sid is not equal to the wildcard ∗, i.e., that this socket
has already got its local port bound, or that some BSD-specific corner-case condition holds.

3.2.4 Sample Protocol-Level Transition Rule: send_3. A slightly more complex rule is send_3, in
Figure 7. This rule describes a host with a blocked thread attempting to send data to a socket. The
thread becomes unblocked and transfers the data to the socket’s send queue. The send call then
returns to the user.

As before, the transition appears at the top:

h . . .
τ→ h . . . ,

where the thread pointed to by tid and the socket pointed to by sid are unpacked from the original
and final hosts, along with the send queue sndq for the socket. Host fields that are modified in
the transition are . The initial host has thread tid in state Send2, blocking while
attempting to send str to sndq. After the transition, tid is in state Ret (OK . . .), about to return
to the user with str ′′, the data that has not been sent, here constrained to be the empty string. In
contrast to bind_5, this rule is a purely internal transition of the model, with a τ label; it does not
involve any Sockets API or wire events.

The bulk of the rule is the condition (a predicate) guarding the transition, specifying when the
rule applies and what relationship holds between the input and output states. The condition is
simply a conjunction of clauses, with no temporal ordering. The rule only applies if (line 1) the
state of the socket, st, is either ESTABLISHED or CLOSE_WAIT. Then, (lines 2 to 5) provided
send_queue_space is large enough, (line 6 and the final host state) str is appended to the sndq in
the final host. Lastly, (line 7) the urgent pointer sndurp′ is set appropriately.

3.2.5 Sample Protocol-Level Transition Rule: deliver_in_1. A more interesting rule, deliver_in_1,
for connection establishment, is shown in Figure 8 (eliding a few details of the TCP protocol
TIME_WAIT handling for space). This rule models the behavior of the system on processing an in-
coming TCP SYN datagram addressed to a listening socket. It is of intermediate complexity: many
rules are rather simpler than this, a few more substantial.

The transition h . . .
τ→ h . . . appears at the top: the input and output queues are unpacked

from the original and final hosts, along with the listening socket pointed to by sid and the newly
created socket pointed to by sid ′.

As before, the bulk of the rule, below the line, is the condition (a predicate) guarding the transi-
tion, specifying when the rule applies and what relationship holds between the input and output
states. The condition is simply a conjunction of clauses, with no temporal ordering.
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Fig. 7. Sample protocol-level specification transition rule: send_3.

Notice first that the rule applies only when dequeuing of the topmost message on the input
queue iq (as defined by predicate dequeue_iq) results in a TCP segment TCP seg, leaving remain-
ing input queue iq′. The rule then (block 1) unpacks and constrains the fields of seg by pattern
matching: seg.is1 must be nonzero (hence ↑) and is bound to variable i2; similarly for i1, p2, p1;
fields seg.seq and seg.ack are bound to seq and ack (cast to the type of foreign and local sequence
number, respectively); field seg.URG is ignored (along with FIN and PSH ), and so we existentially
bind it; of the other TCP flags, ACK is false, RST is false, SYN is true, and so on.

After (blocks 2 to 4) some validity checks and determining the matching socket, the predicate
computes values required to generate the response segment and to update the host state. For in-
stance, (block 9) the host nondeterministically may or may not wish to do timestamping (here the
nondeterminism models the unknown setting of a configuration parameter). Timestamping will
be performed if the incoming segment also contains a timestamping request. Several other local
values are specified nondeterministically: (block 8) the advertised MSS may be anywhere between
1 and 65495, (block 11) the initial sequence number is chosen arbitrarily, (block 12) the initial win-
dow is anywhere between 0 and the maximum allowed bounded by the size of the receive buffer,
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Fig. 8. Sample protocol-level specification transition rule: deliver_in_1.
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and so on. Buffer sizes are computed (block 10) based on the (nondeterministic) local and (received)
remote MSS, the existing buffer sizes, whether the connection is within the local subnet or not,
and the TCP options in use. The algorithm used differs between implementations and is specified
in the auxiliary function calculate_buf_sizes (definition not shown).

Finally, (block 16) the internal TCP control block cb′ for the new socket is created, based on the
listening socket’s cb. Timers are restarted, sequence numbers are stored, TCP’s sliding window and
congestion window are initialized, negotiated connection parameters are saved, and timestamping
information is logged. An auxiliary function make_syn_ack_segment constructs (block 17 to 18)
an appropriate response segment using parameters stored in cb′; if the resulting segment cannot be
queued (due to an interface buffer being full or for some other reason), then certain of the updates
to cb′ are rolled back.

Some non-common-case behavior is visible in this rule: (1) in the BSD implementation it is
possible for a listening socket to have a peer address specified, and we permit this (block 4) when
checking the socket is correctly formed, and (2) (block 1 pattern) URG or FIN may be set on an
initial SYN, though this is ignored by all implementations we consider.

3.3 Specification Idioms

Having seen those examples, we now discuss more generally the specification idioms that we used,
to capture the range of behavior required while maintaining a readable specification.

3.3.1 Nondeterminacy and Relational Specification. For the specification to actually include all
the behavior even of a single implementation, it must be highly nondeterministic, e.g., to admit the
pseudorandom choice of initial sequence numbers that we saw in blocks 8, 11, and 12 of Figure 8,
the variations due to varying OS scheduling of multiple threads and interrupts, and variations in
the rates of timers.

This nondeterminism leads us to use relational idioms (expressed in the higher-order logic of
HOL) throughout much of the specification. In places we can use auxiliary functions, but often we
need auxiliary relations, or functions that return relations. Nondeterminism is sometimes implicit
(e.g., where several different error rules are applicable) and sometimes explicit (e.g., where an
unconstrained or partially constrained variable is introduced).

As discussed in Section 1.6, if runtime nondeterministic choices were promptly announced in
some form, we could instead have phrased the specification as a pure function that takes an ob-
served (non-τ ) transition and determines whether or not it is allowed. That might be easier to work
with as an executable test oracle, but it would be oriented specifically toward checking—and in any
case, the current implementations and RFC/POSIX specifications do not announce those choices.

Nondeterminism is also used to model some differences between implementations (e.g., uncon-
straining the protocol options chosen at connection establishment time). Other implementation
differences are modeled by explicitly parameterizing the behavior by an implementation version
(e.g., as in the last conjunct of bind_5 in Figure 6, which is BSD specific). This explicitness lets us
identify and test differences more sharply.

Often it is useful to think of a part of a rule predicate P as being a “guard,” which is a sufficient
condition for the rule to be applicable, and the remainder as a constraint, which should always be
satisfiable, on the final state h. This distinction is not formalized, however.

3.3.2 Imperative Updates and the Relational Monad. In the C code of the implementations, the
early parts of segment processing can have side effects on the host data structures, especially
on the TCP control block, before the outcome of processing is determined. Disentangling this
imperative behavior into a clear declarative specification is nontrivial. Our most complicated rule,
deliver_in_3, calculates the host’s response to an incoming segment after a connection has been
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established. This rule makes use of a relational monad structure to expose certain intermediate
states (as few as possible). Relations in this monad have (curried) types of the form

t → t#t ′#bool→ bool,

where t is the state being manipulated (e.g., a pair of a socket and a host’s band-limiter state), t ′

is the result type (e.g., a list of segments to be sent in reply to a segment being processed), and
the boolean in the second tuple argument is a flag indicating whether or not execution should
continue. There is a binding combinator andThen, a unit cont (which does nothing and continues),
and a zero stop (which does nothing and stops), and various other operations to manipulate the
state. It should be a theorem that andThen is associative, and so forth, though we have not checked
this within HOL.

For deliver_in_3 we expose four intermediate states: after initial processing (PAWS, etc.), after
processing the segment’s acknowledgment number and congestion control, after extraction of
reassembled data, and after possibly changing the socket’s TCP connection state. The full rule,
describing the state changes between each of these points, is around 17 heavily commented pages.

3.3.3 Time and Urgency. It is essential to model time passage explicitly: much TCP behavior is
driven by timers and timeouts, and distributed applications generally depend on timeouts in order
to cope with asynchronous communication and failure. Our model bounds the time behavior of
certain operations: for example, a failing bind call in bind_5 will return after a scheduling delay
of at most dschedmax (the sched_timer of the tid thread state in the final host state is defined
to be upper_timer dschedmax), while a call to pselect with no file descriptors specified and a
timeout of 30 seconds will return at some point in the interval [30, 30 + dschedmax] seconds. Some
operations have both a lower and upper bound; some must happen immediately; and some have an
upper bound but may occur arbitrarily quickly. For some of these requirements time is essential,
and for others time conditions are simpler and more tractable than the corresponding fairness
conditions [64, Section 2.2.2].

Time passage is modeled by transitions labeled d ∈ R>0 interleaved with other transitions,
which are regarded as instantaneous. This models global time, which passes uniformly for all parts
of the system (although it cannot be accurately observed internally by any of them). States are de-
fined as urgent if there is a discrete action that we want to occur immediately. This is modeled
by prohibiting time passage steps d from (or through) an urgent state. We have carefully arranged
the model to avoid pathological time stops by ensuring a local receptiveness property holds: the
model can always perform input transitions for any label one might reasonably expect it to.

The model is constructed to satisfy the two time axioms of [64, Section 2.1]. Time is additive:

if h1
d→ h2 and h2

d′→ h3, then h1
d+d′→ h3; and time passage has a trajectory: roughly, if h1

d→ h2, then
there exists a function w on [0, d] such that w (0) = h1, w (d) = h2, and for all intermediate points

t, h1
t→w (t) and w (t)

d−t→ h2. These axioms ensure that time passage behaves as one might expect.
The timing properties of the host are specified using a small collection of timers, each with a

particular behavior. A single transition rule epsilon_1 (shown below) models time passage, say
of duration dur , by evolving each timer in the model state forward by dur . If any timer cannot
progress this far, or the initial model state is marked as urgent for another reason, then the rule
guard is false and the time passage transition is disallowed. Note that, by construction, the model
state may only become urgent at the expiry of a timer or after a non-time-passage transition. This
guarantees correctness of the rule. The timers ensure that the specification models the behavior
of real systems with (boundedly) inaccurate clocks: the rate of a host’s “ticker” is constrained only
to be within certain bounds of unity.
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Description Allow time to pass for dur seconds, updating the internal timers of host h by
duration dur to become host state h′. This is only enabled if the host state h is not urgent, i.e., if no
τ transition of an urgent rule can fire (such transitions represent actions that are held to happen
instantaneously, and which must “fire” before any time elapses, e.g., the expiry of a pselect()
timeout, plus a scheduling delay). Notice that, apart from when a timer becomes zero, a host state
never becomes urgent due merely to time passage. This means we need only test for urgency at
the beginning of the time interval, not throughout it.

Many timed process algebras enforce a maximal progress property [111], requiring that any
action (such as a CCS synchronization) must be performed immediately when it becomes enabled.
We found this too inflexible for our purposes; we wish to specify the behavior of, e.g., the OS
scheduler only very loosely, and so it must be possible to nondeterministically delay an enabled
action, but we did not want to introduce many nondeterministic choices of delays. Our calculus
therefore does not have maximal progress; instead, we ensure timeliness properties by means of
timers and urgency. Our reasoning using the model so far involves only finite trace properties, so
we do not need to impose Zeno conditions.

3.3.4 Partitioning the Behavior. The partition of the system behavior into particular rules is an
important aspect of the specification. We have tried to make it as clear as possible: each rule deals
with a conceptually different behavior, separating (for example) the error cases from the non-error
cases. This means there is some repetition of clauses between rules. For example, many rules have
a predicate clause that checks that a file descriptor is legitimate. For substantial aspects of behavior,
on the other hand, we try to ensure they are localized to one place in the specification. For example,
calls such as accept() might have a successful return either immediately or from a blocked state.
The final outcome is similar in both, and so we have a single rule (accept_1) that deals with both
cases. Another rule (accept_2) deals with entering the blocked states, and several others with the
various error cases. The various accept rules are summarized below for illustration.

accept_1 tcp: succeed Return new connection; either immediately or from a
blocked state.

accept_2 tcp: block Block waiting for connection.
accept_3 tcp: fail Fail with EAGAIN: no pending connections and

nonblocking semantics set.
accept_4 tcp: fail Fail with ECONNABORTED: the listening socket has

cantsndmore set or has become CLOSED. Returns
either immediately or from a blocked state.

accept_5 tcp: fail Fail with EINVAL: socket not in LISTEN state.
accept_6 tcp: fail Fail with EMFILE: out of file descriptors.
accept_7 udp: fail Fail with EOPNOTSUPP or EINVAL: accept() called

on a UDP socket.
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3.3.5 Relationship between Code and Specification Structure. In writing the specification, we
have examined the implementation source code closely, but the two have very different structures.
The code is in C, typically with a rough layer structure (but tight coupling between some layers). It
has accreted changes over the years, giving a tangled control flow in some parts, and is optimized
for fast-path performance. For the specification, however, clarity is the prime concern. Individual
rules correspond very roughly to execution paths through implementation code.

Each rule is as far as possible declarative, defining a relation between outputs and inputs. In
some cases we have been forced to introduce extra structure to mirror oddities in the implementa-
tions, e.g., intermediate state variables to record side effects that subsidiary functions have before
a segment is dropped, and clauses to model the fact that the BSD fast-path optimization is not pre-
cisely equivalent to the slow path. In developing the specification, we did careful manual unfolding
of some of the C control flow to identify such issues; sound refactoring or partial evaluation tools
for C would have been very useful at that point.

3.3.6 Framing. The host state is complex, but most rules need refer only to a small part of it
and permit an even smaller part to differ between the initial and final state of a transition. In
designing the host state type and the rules, it is important to ensure that explicit frame conditions
are usually not needed, to avoid overwhelming visual noise. To do so, we use a combination of
pattern matching (in the h and h′) and of projection and update operations for records and finite
maps; the latter are pure functional operations, not imperative updates.

The overall host state structure roughly follows that of the system state: as we saw in Section
3.2.1, hosts have collections of socket data structures, message input and output queues, and so
forth; sockets have local and remote IP addresses and ports and so forth; TCP sockets have a TCP
control block and so on. The details vary significantly, however, with our structures arranged for
clarity rather than performance—as we are specifying only the externally observable behavior,
we can choose the internal state structure freely. For example, TCP send and receive queues are
modeled by byte lists rather than the complex BSD mbuf structures, and we can subdivide the state
so that commonly accessed components are together and near the root.

3.3.7 Concurrency, Blocking Calls, and Atomicity. In the implementations, the host state may be
modified by multiple threads making concurrent Sockets API calls (possibly for the same socket),
and by OS interrupt handler code prompted by timers or incoming messages. Sockets API calls can
be fast or slow, the latter potentially blocking for arbitrarily long. The imperative C code modifies
state as it executes. Fortunately most of the network protocol code in the implementations we
examined is guarded by a coarse-grained lock, so the specification need not consider all possible
interleavings. Fast calls are typically modeled by two atomic transitions, one for the call, in which
all state change happens (as in bind_5), and one for the return of the result. Slow calls typically
involve three transitions, one for the call (leaving the host thread record in a special blocked state),
one in which the call is unblocked (e.g., a τ transition when new data is processed), and one for
the return of the result. Applying a degree of fuzziness to times and deadlines suffices to let this
correspond to the real executions.

More recent FreeBSD implementations have replaced the coarse-grained lock by fine-grained
locking. Whether the abstraction of the specification is still sound with respect to that has not
been investigated.

3.3.8 Presentation and Automated Typesetting. We aimed to make the specification as readable
as possible, to make it usable as a reference document. The mathematical structure discussed above
is important for that, but document presentation also makes a big difference, at many scales:
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• local typesetting of expressions;
• structured presentation of transition rules, as seen in Figures 6 and 7;
• structured presentation of the family of rules for each Sockets API call, such as those for

accept above, and each aspect of the wire protocol, with an introductory preamble (not
shown here) for each; and

• large-scale organization of the document.

We paid attention to all of these, building an automated typesetting system, HOLDoc, that takes
the HOL source, including annotations for structure and exposition, and outputs LaTeX. This
gives a production-quality result without the errors and workflow cost that manual transcrip-
tion would introduce. The parts of the specification quoted in this document are taken directly
or lightly hand-edited from this. The automatically produced polished document was also invalu-
able during development of the specification, to help keep track of all the details. The HOL source
is used to determine the various different kinds of identifiers (types, constructors, auxiliary def-
initions, and quantified or lambda-bound variables), which are set in appropriate fonts. The tool
does not do a full HOL parse, however, so identifiers used at more than one kind are occasion-
ally set wrongly. Importantly, it preserves source-file indentation and (one flavor of) comment,
to give easy control of the resulting layout. It has custom support for the top-level structure of
the specification, but most of its functionality is general; it has been used for other HOL work
and for typesetting unrelated and non-HOL papers. Committing enough effort to do such en-
gineering work to a sufficiently robust standard was essential to make the project as a whole
successful.

3.4 Example Trace

Figure 9 shows an extract from a captured trace with the observed labels for Sockets API calls
and returns and TCP segment sends and receives. It is annotated on the left with the sequence of
rules connect_1, epsilon_1, . . . used to match this trace when it was checked. Note the time passage
transitions (rule epsilon_1) and the various internal (τ ) steps: deliver_in_2 dequeuing a SYN, ACK
segment and generating an ACK (to be later output by deliver_out_99), connect_2 setting up the
return from the blocked connect(), and deliver_out_1 enqueuing the “Hello!” segment for output.
The diagram shows only the rule names and labels, omitting the symbolic internal state of the
host, which is calculated at each point. It is automatically generated from the result of checking
the trace.

This trace shows a common case, and should be unsurprising for those familiar with TCP. How-
ever, the specification covers TCP in full detail: fast retransmit and recovery, RTT measurement,
PAWS, and so on, and for all possible inputs, not just common cases: error behavior, pathological
corners, concurrent socket calls, and so on. Such completeness of specification is an important part
of our rigorous approach.

4 SERVICE-LEVEL SPECIFICATION

The previous section described our protocol-level specification, which characterizes the on-the-
wire behavior of the TCP protocol in terms of the individual TCP segments exchanged between
TCP endpoints, together with the Sockets API and UDP/ICMP behavior. We now turn to our
service-level specification, as introduced in Section 1.5.2 and shown in Figure 2. In the rest of this
section, we describe the service-level specification and the main differences between it and the
protocol-level specification. Our presentation is necessarily at a high level, omitting many details,
but the interested reader can find the complete specification online [91, 103].
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Fig. 9. Extract from sample checked TCP trace, with rule firings.

4.1 Motivation for Two Specifications

TCP is designed to provide (roughly) a bidirectional reliable byte-stream service between pairs of
endpoints, and programmers using TCP above the Sockets API often want to think of it in those
terms. At the protocol level, this view of TCP is almost wholly absent: one has to think in terms
of individual TCP segments, subject to retransmission, reassembly, and so forth. In contrast, the
service-level specification makes the nature of the bidirectional streams explicit.

Another way to motivate the need for a service-level specification is to think about the task of
verifying applications built above TCP. Applications that use TCP depend heavily on the reliable
byte-stream abstraction it provides; in reasoning about them, one would not want to be concerned
with protocol-level details.

4.2 Relationship to the Protocol-Level Specification

Our service-level specification provides a formal model of TCP that makes explicit the reliable
byte-stream service that TCP provides. The specification abstracts from the protocol-level details
to describe the behavior of pairs of hosts communicating over TCP, but observed only at their
Sockets API interfaces. It does not deal with TCP segments on the wire. It does include UDP (for
which the service-level specification simply provides the same view as the protocol-level specifi-
cation) and ICMP messages, because they interact with aspects of TCP (e.g., via network queue
timers).

The service-level specification was constructed in a similar manner to the protocol level. As
with the previous specification, it was written in higher-order logic supported by the HOL4 the-
orem prover. Indeed, substantial parts of the specification closely resemble their protocol-level
counterparts. The strong connection between protocol level and service level is made evident by

Journal of the ACM, Vol. 66, No. 1, Article 1. Publication date: December 2018.



1:38 S. Bishop et al.

the abstraction relation described in Section 5: not only do the two specifications describe similar
behavior (i.e., the same set of traces when viewed only at the Sockets API) but also the specifica-
tions precisely mirror each other stepwise, and at each step the protocol-level states correspond
directly to the service-level states. This close correspondence also considerably simplifies the task
of validation, as described in Section 7.7.

In principle, one could derive a service-level specification directly from the protocol model,
taking the set of traces it defines and erasing the TCP wire segment transitions. However, that
would not give a usable specification: one in which key properties of TCP, that users depend on,
are clearly visible. Instead, we built the service-level specification by hand, defining a more abstract
notion of host state, an abstract notion of stream object, and a new network transition relation,
but aiming to give the same Sockets-API-observable behavior.

Although the service level is conceptually significantly simpler than the protocol level (see,
e.g., the reduction of the TCP control block fields from 44 to 2, described later), the size of the
specification is only marginally reduced. The reason for this is that much of the specification
concerns the considerable details of the Sockets API, and much of this detail is also present at the
service level.

4.3 The Top-Level Operational Semantics Judgment

In Figure 2, we depicted the scope of the service-level specification: it describes the host Sockets
API at a single endpoint. While the protocol level described the behavior of the kernel implemen-
tation of the Sockets API, including details of packets sent on the wire, at the service level all this
detail is omitted and replaced with an abstract notion of a reliable byte stream. This abstraction is
depicted in Figure 11. The top-level judgment is now of the following form:

h, S,M
lbl→ h′, S′,M ′.

This is a ternary relation between two tuples, (h, S,M ) and (h′, S ′,M ′), and the transition label
lbl. The h component represents, as before, the host. Compared to the protocol level, the host type
is similar but simpler, since many low-level aspects that are not visible at the stream level can be
omitted. The transition label lbl is also similar to that at the protocol level. The main difference
lies in the S and M components.

The S component represents the reliable byte streams between hosts. In some sense, it is an
abstraction of host network state and messages on the wire. However, as we will see later, it is
defined in a way that makes the reliable byte stream nature evident.

The M component represents the set of messages that are on the wire. The protocol level de-
scribes the behavior at the Sockets API, and at the network interface. Implicitly, the protocol level
also determines the set of messages that may be on the wire (those that are sent via the network
interface). At the service level we need to talk explicitly about multiple hosts connected via byte
streams, and so we include a set of messages. In fact, most of the messages on the wire are in-
volved in data transfer and are already modeled via the S component. The M component includes,
for example, UDP and ICMP messages that may affect TCP behavior but do not play a role in the
byte-stream abstraction.

Note that this relation describes the behavior of sets of streams, sets of messages, and a single
host. In a final step, we lift this relation from a single host h to a set of hosts H , to give a relation

of the form H , S,M
lbl→ H ′, S′,M ′. This gives the final network transition system between network

states (H , S,M ) in terms of individual host transitions.
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4.4 The Internal Structure of the Specification

4.4.1 Host States. The abstract host states are substantially simpler than those of the protocol-
level model. For example, the protocol-level TCP control block contains 44 fields, including re-
transmit and keep-alive timers; window sizes, sequence position, and scaling information; and
timestamping and round-trip times. Almost none of these are relevant to the service-level observ-
able behavior, and so are not needed in the service-level TCP control block. Consequently, the
service-level control block contains only two fields, which is a dramatic simplification. On the
other hand, the top-level host type is almost identical to that at the protocol level, since most of
the information (file descriptors, sockets, routing table, etc.) is still relevant.

4.4.2 Streams. The heart of the service-level specification is a model of a bidirectional TCP
connection as a pair of unidirectional byte streams between Socket endpoints:
— unidirectional stream:

tcpStream = i : ip; (∗ source IP ∗)
p : port; (∗ source port ∗)
flgs : streamFlags;
data : byte list;
destroyed : bool

The data in the stream is just a byte list, directly capturing the intuition for the service intended
to be provided by TCP. This contrasts with the protocol-level specification combination of byte
lists buffered in the sending socket; TCP segments in the sending host’s outqueue oq, on the wire,
and in the receiving host’s inqueue iq; and bytes buffered in the receiving socket (as in the types
we saw in Section 3.2.1). Further fields record the source IP address and port of the stream, control
information in the form of flags, and a boolean indicating whether the stream has been destroyed
at the source (say, by deleting the associated socket). Some of these fields are shared with the
low-level specification, but others are purely abstract entities. Note that although a stream may
be destroyed at the source, previously sent messages may still be on the wire, and might later be
accepted by the receiver, so we cannot simply remove the stream when it is destroyed. Similarly,
if the source receives a message for a deleted socket, an RST will typically be generated, which
must be recorded in the stream flags of the destroyed stream. The following flags record whether
the stream is opening (SYN , SYNACK) or closing normally (FIN ) or abnormally (RST ):
— stream control information:

streamFlags = SYN : bool; (∗ SYN , no ACK ∗)
SYNACK : bool; (∗ SYN with ACK ∗)
FIN : bool;
RST : bool

This control information is carefully manually abstracted from the protocol level, to capture just
enough structure to express the user-visible behavior. Note that the SYN and SYNACK flags may
be set simultaneously, indicating the presence of both kinds of message on the wire. The receiver
typically lowers the stream SYN flag on receipt of a SYN : even though messages with a SYN may
still be on the wire, subsequent SYN s will be detected by the receiver as invalid duplicates of the
original. A bidirectional stream is then just a pair of unidirectional streams.

The basic operations on a byte stream are to read and write data, though some care is needed for
the control information. For example, the following defines a write from Sockets endpoint (i1, p1)
to endpoint (i2, p2):
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Stream s′ is the result of writing flgs and data to stream s. Stream s consists of a unidirectional
input stream in_ and output stream out, extracted from the bidirectional stream using the auxiliary
sync_streams function. Similarly, s′, the state of the stream after the write, consists of in′ and out ′.
Since we are writing to the output stream, the input stream remains unchanged, in′ = in_. The flags
on the output stream are modified to reflect flgs. For example, SYN is set in out ′.flgs if and only
if flgs contains a SYN or out.flgs already has SYN set. Finally, out ′.data is updated by appending
data to out.data.

4.5 Sample Service-Level Transition Rule: send_3

Figure 10 gives the service-level analog of the send_3 protocol-level rule of Figure 7. The transition
occurs between triples (h . . . , S0 ⊕ [. . .],M ), each consisting of a host, a finite map from stream
identifiers to streams, and a set of UDP and ICMP messages. The latter do not play an active part in
this rule, and can be safely ignored. The host state is unpacked from the host as before. Note that
protocol-level constructs such as rcvurp and iobc are absent from the service-level host state. As
well as the host transition, there is a transition of the related stream s to s′. The stream is unpacked
from the finite map via its unique identifier streamid_of_quad(i1, p1, i2, p2), derived from its quad.

As before, the conditions for this rule require that the state of the socket st must be
ESTABLISHED or CLOSE_WAIT. Stream s′ is the result of writing string str ′ and flags flgs to
s. Since flgs are all false, the write does not cause any control flags to be set in s′, although they
may already be set in s of course.

This rule, and the preceding definitions, demonstrate the conceptual simplicity and stream-
like nature of the service level. Other interesting properties of TCP are clearly captured by the
service-level specification. For example, individual writes do not insert record boundaries in the
byte stream, and in general a read returns only part of the data, uncorrelated with any particular
write. The model also makes clear that the unidirectional streams are to a large extent independent.
For example, closing one direction does not automatically cause the other to close.

5 ABSTRACTION FUNCTION FROM PROTOCOL-LEVEL TO SERVICE-LEVEL STATES

While the service specification details what service an implementation of TCP provides to the
Sockets interface, our abstraction function details how the protocol-level description of the
protocol provides that service. The abstraction function maps protocol-level states and transitions
to service-level states and transitions. A protocol-level network consists of a set of hosts, each
with their own TCP stacks, and TCP segments (and UDP and ICMP datagrams) on the wire. The
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Fig. 10. Sample service-level specification transition rule: send_3.

abstraction function takes this data and calculates abstract byte streams between Sockets API
endpoints, together with the abstract connection status information.

The latter is the more intricate part, but we give only a simple example here: the service-level
destroyed flag is set if and only if either there is no socket on the protocol-level host matching the
quad for the TCP connection or the state of the TCP socket is CLOSED.

The former is illustrated in Figure 11. For example, consider the simple case where commu-
nication has already been established, and the source is sending a message to the destination
that includes the string “abc...xyz,” of which bytes up to “w” have been moved to the source
sndq. Moreover, the destination has acknowledged all bytes up to “f,” so that the sndq contains
“fgh...uvw,” and snd_una points to “f.” The destination rcvq contains “cde...opq,” waiting for
the user to read from the socket, and rcv_nxt points just after “q.”

↓ snd_una ↓ rcv_nxt
message ...abcdefghijklmnopqrstuvwxyz...
source sndq fghijklmnopqrstuvw
destination rcvq cdefghijklmnopq
DROP (rcv_nxt - snd_una) sndq rstuvw
stream cdefghijklmnopqrstuvw

Journal of the ACM, Vol. 66, No. 1, Article 1. Publication date: December 2018.



1:42 S. Bishop et al.

Fig. 11. Abstraction function, illustrated (data part only).

The data that remains in the stream waiting for the destination endpoint to read is the byte
stream “cdefghijklmnopqrstuvw.” This is simply the destination rcvq with part of the source
sndq appended: to avoid duplicating the shared part of the byte sequence, (rcv_nxt − snd_una)
bytes are dropped from sndq before appending it to rcvq.

An excerpt from the HOL definition appears in Figure 12. It takes a quad (i1, p1, i2, p2) identifying
the TCP connection, a source host h, a set of messages msgs on the wire, and a destination host i
and produces a unidirectional stream. It follows exactly the previous analysis: (rcv_nxt − snd_una)
bytes are dropped from sndq to give sndq′, which is then appended to rcvq to give the data in the
stream.

Note that, in keeping with the fact that TCP is designed so that hosts can retransmit any data
that is lost on the wire, this abstraction does not depend on the data in transit — at least for normal
connections in which neither endpoint has crashed.

For a given TCP connection, the full abstraction function uses the unidirectional function twice
to form a bidirectional stream constituting the service-level state. As well as mapping the states,
the abstraction function maps the transition labels. Labels corresponding to visible actions at the
Sockets interface, such as a connect call, map to themselves. Labels corresponding to internal
protocol actions, such as the host network interface sending and receiving datagrams from the
wire, are invisible at the service level, and so are mapped to τ , indicating no observable transition.
Thus, for each protocol-level transition, the abstraction function gives a service-level transition
with the same behavior at the Sockets interface. Mapping the abstraction function over a protocol-
level trace gives a service-level trace with identical Sockets behavior. Every valid protocol-level
trace should map to a valid service-level trace.

6 EXPERIMENTAL VALIDATION: TESTING INFRASTRUCTURE

We now turn to the problem of testing and assessing the consistency between TCP implementa-
tions (written in C), our protocol-level model (in HOL), and our service-level specification (also in
HOL).

As introduced in Section 1.5, we did this with an experimental semantics process. For the rela-
tionship between implementations and our protocol-level specification:
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Fig. 12. Abstraction function, excerpt.
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• we wrote a large number of tests (using automation to combinatorially test a wide range of
cases);

• we instrumented production implementations to record traces of the events corresponding
to those of our protocol-level specification interfaces (as described in Section 3.1);

• we built a special-purpose checker within HOL4 that checks whether an experimental trace
is admitted by the specification; and

• we built infrastructure to support this testing and checking at scale.

For the relationship between the protocol-level and service-level specification, we recorded (a
smaller number of) double-ended traces and built a system that let us check that the abstraction
function of Section 5 relates protocol-level and service-level states at each step along the trace.

Recall that for TCP the implementations are the de facto standard. In producing specifications
after the fact, we aim to validate the specifications against the implementation behavior, but this
machinery could equally well be used in the other direction, to check implementations against our
specifications.

We begin in this section with the systems work needed for this: instrumentation, test generation,
distributed trace checking, and data visualization. The theorem-prover work of our trace checkers
is described in Section 7, and the experimental results are in Section 8.

6.1 Experimental Setup and Instrumentation for Trace Generation

To generate traces of the real-world implementations in a controlled environment, we set up an
isolated test network, with machines running each of our three OS versions, and wrote instrumen-
tation and test generation tools. A sample test configuration is illustrated in Figure 13. We instru-
ment the wire interface with a slurp tool above the standard libpcap, instrument the Sockets API
with an nssock wrapper, and on BSD additionally capture TCP control block records generated by
the TCP_DEBUG kernel option. All three produce HOL format records, which are merged into a sin-
gle trace; this requires accurate timestamping, with careful management of NTP offsets between
machines and propagation delays between them. Our abstractions from actual system behavior to
specification-interface observables, as discussed in Section 1.7 and Section 3.1, are implemented
in these tools. For example, slurp performs reassembly of IP fragments into the TCP datagrams
we saw in Figure 4, pulls out the TCP datagram options represented there, and so on, to produce
values of that tcpSegment HOL4 type.

A test executive tthee drives the system by making Sockets API calls (via a libd daemon)
and directly injecting messages with an injector tool. These tools are written in OCaml [60]
with additional C libraries. The resulting traces are HOL-parsable text files containing an initial
host state (its interfaces, routing table, etc.), an initial time, and a list of timestamped labels (as in
Figure 9).

For the service-level validation, we began with a similar instrumented test network but collected
double-ended traces, capturing the behavior of two interacting hosts, rather than just one endpoint.

6.2 Tests

Tests are scripted above tthee. They are of two kinds. The most straightforward use two machines,
one instrumented and an auxiliary used as a communication partner, with socket calls invoked
remotely. The others use a virtual auxiliary host, directly injecting messages into the network;
this permits tests that are not easily produced via the Sockets layer, e.g., with reordering, loss, or
illegal or nonsense segments.

We wrote tests to, as far as we could, exercise all the interesting behavior of the protocols and
API, with manually written combinatorial generation. Almost all tests were run on all three OSs;
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Fig. 13. Testing infrastructure.

many are automatically iterated over a selection of TCP socket states, port values, and so forth. In
total, around 6000 traces are generated.

For example, trace 1484, of intermediate complexity, is informally described as follows: “send()
– for a nonblocking socket in state ESTABLISHED (NO_DATA), with a reduced send buffer that is
almost full, attempt to send more data than there is space available.”

Assessing coverage of the traces is nontrivial, as the system is essentially infinite state, but we
can check that almost all the host LTS rules are covered. The traces are relatively short, so they
probably do not exercise all of TCP’s congestion-control regimes.

6.3 Distributed Checking Infrastructure

For good coverage we want to check many traces, and this had to be repeated often during devel-
opment of the specification. Such checking, using the theorem-prover infrastructure described in
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Fig. 14. Checker monitoring: timed step graph.

Section 7, is computationally intensive but naturally parallel: each trace (apart from initialization
of the evaluator) is independent. We therefore distributed checking over as many processors as
possible.

Checking is compute bound, not space or IO limited. A typical trace check run might require
100MB of memory (a few need more); most trace input files are only of the order of 10KB, and
the raw checker output for a trace is 100KB to 3MB. We used approximately 100 processors, run-
ning background jobs on personal workstations and lab machines (the fastest being dual 3.06GHz
Xeons) and using a processor bank of 25 dual Opteron 250s. We relied on a common NFS-mounted
filesystem. Note that these machines were typical workstation and server machines of around
2004; current hardware would provide significantly greater performance, and there have also been
substantial improvements in HOL4 performance.

Achieving satisfactory performance of the symbolic evaluator was critical for this work to be
feasible and needed considerable work: algorithmic improvements to HOL itself (e.g., in the treat-
ment of multifield records), to the evaluator (e.g., in better heuristics for search, and the lazy com-
putation and urgency approximations mentioned in §7), and to the checking infrastructure, dis-
tributing over more machines and using them more efficiently. These reduced the total TCP check
time from 500 hours, which was at the upper limit of what was practical. By the end of the project,
checking around 2600 UDP traces took approximately 5 hours, which is perfectly usable. For TCP,
the checker has a much more complex task. TCP host states are typically more symbolic, with more
fields that are only loosely constrained and with larger sets of constraints. Also, longer traces are
required to reach the various possible states of the system. Checking a complete run (around 1100
traces) of the BSD traces took around 50 hours, which is manageable if not ideal.

Figure 14 suggests the checker runtime per step rises piecewise exponentially with the trace
length, though with a small exponent. This is due to the gradual accumulation of constraints,
especially time passage rate constraints. In principle, there is no reason that in long traces they
could not be agglomerated.
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Fig. 15. Checker monitoring: progress of a TCP run.

6.4 Visualization Tools and Data Management

The resulting datasets are large and good visualization tools are necessary for working with them.
Our main tool was an HTML display of the results of each check run, with, for each trace, a link to
the checker output, the trace in HTML and graphical form (as in Figure 9), the short description,
and a graph showing the backtracking and progress of the checker (as in Figure 14). To help us
manage the outstanding issues during development of the specification, we maintained a file of
trace annotations, identifying subsets of the traces that have not succeeded for some particular
reason and indicating whether that problem should have been resolved. The display shows the
expected and actual number of successes for these. The progress of a whole run can be visualized
as in Figure 15, useful to determine when best to abort an existing run in order to restart with an
improved checker or specification. Figure 16 shows the progress of a check run indexed by the
trace number and trace length, useful for seeing patterns of non-successes.

Our experience was that devoting sufficient engineering effort to building and refining all these
tools, as well as those for automating testing and checking, was essential.

We also built an explicit regression tester, comparing the results of multiple check runs (which
might be on overlapping but nonidentical trace sets), but did not use it heavily—the annotation
display was more useful, especially as we reached closer to 100% success.

7 EXPERIMENTAL VALIDATION: CHECKING TECHNOLOGY

Our computational task for checking an observed endpoint trace against our protocol-level spec-

ification is this: given the nondeterministic labeled transition system
l→ of the host LTS, an ini-

tial host h0, and a sequence of experimentally observed labels l1 . . . ln , determine whether h0 can
exhibit this behavior in the model. The transition system includes unobservable τ labels, so we
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Fig. 16. Checker monitoring: progress of a TCP run.

actually have to determine whether there is a sequence:

h0
<[Lhτ ]>
→ ∗ l1→

<[Lhτ ]>
→ ∗ l2→ . . .

<[Lhτ ]>
→ ∗ ln→h

for some h. If the system were deterministic, the problem would be easily solved. The initial con-
ditions are completely specified and the problem would be one of mechanical calculation with
values that were always ground. Because the system is nondeterministic, the problem becomes
one of exploring the tree of all possible traces that are consistent with the given label sequence.
Nondeterminism arises in two different ways:

• two or more rules may apply to the same host-label pair (or the host may be able to undergo
a τ transition), and

• a single rule’s side conditions may not constrain the resulting host to take on just one
possible value.

These two sorts of nondeterminism do not correspond to any deep semantic difference, but do
affect the way in which the problem is solved. Because labels come in a small number of different
categories, the number of rules that might apply to any given host-label pair is relatively small. It
is clearly reasonable to explicitly model this nondeterminism by explicit branching within a tree-
structured search space. The search through this space is done depth-first. Possible τ transitions
are checked last: if considering host h and a sequence of future labels and no normal rule allows
for a successful trace, posit a τ transition at this point, followed by the same sequence of labels.
As long as hosts cannot make infinite sequences of τ transitions, the search space remains finite.

An example of the second sort of nondeterminism comes when a resulting host is to include
some numeric quantity, but where the model only constrains this number to fall within certain
bounds. It is clearly foolish to explicitly model all these possibilities with branching (indeed, for
many types there are an infinite number of possibilities). Instead, the system maintains sets of con-
straints (which are just arbitrary HOL predicates), attached to each transition. These constraints
are simplified (including the action of arithmetic decision procedures) and checked for satisfiability
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as checking proceeds. Later labels often fully determine variables that were introduced earlier, e.g.,
for file descriptors, TCP options, and so forth.

For example, a connect_1 transition in one particular TCP trace, modeling the connect() invo-
cation, introduced new variables:
(advmss :num), (advmss’ :num option),
(cb’_2_rcv_wnd :num), (n :num), (rcv_wnd0 :num),
(request_r_scale :num option), (ws :char option)

and new constraints:
∀n2. advmss’ = SOME n2 ==> n2 <= 65535
∀n2. request_r_scale = SOME n2 ==> ORD (THE ws) = n2
pending (cb’_2_rcv_wnd=rcv_wnd0* 2**case 0 I request_r_scale)
pending (ws = OPTION_MAP CHR request_r_scale)
advmss <= 65495
cb’_2_rcv_wnd <= 57344
n <= 5000
rcv_wnd0 <= 65535
1 <= advmss
1 <= rcv_wnd0
1024 <= n
advmss’ = NONE ∨ advmss’ = SOME advmss
request_r_scale=NONE ∨ ∃n1.request_r_scale=SOME n1 ∧ n1<=14
nrange n 1024 3976
nrange rcv_wnd0 1 65534
case ws of NONE -> T || SOME v1 -> ORD v1 <= TCP_MAXWINSCALE

Many of these constraints are numeric (over various different numeric types), but some are
more complex. For example, the above includes option-type and record operations, with some
nested quantifiers. In other cases, there is potential nondeterminism arising from the multiple
ways in which the data from multiple TCP segments, with overlapping sequence numbers, can be
assembled into a single stream.

Hence, instead of finding a sequence of theorems of the form

� h0
l1→h1

� h1
l2→h2

· · ·
� hn−1

ln→hn

(eliding the τ s now), we must find a sequence of theorems of the form

Γ0 � h0
l1→h1

Γ0 ∪ Γ1 � h1
l2→h2

· · ·
⋃

n−1
i=0 Γi � hn−1

ln→hn ,

where each Γi is the set of constraints generated by the ith transition. If the fresh constraints were
only generated because new components of output hosts were underconstrained, there would be
no difficulty with this. Unfortunately, the side conditions associated with each rule will typically
refer to input host component values that are no longer ground, but which are instead constrained
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by a constraint generated by the action of an earlier rule. For example, imagine that the first tran-
sition of a trace has made thev component of the host have a value between 1 and 100. Now faced
with an l-transition, the system must eliminate those rules that allow for that transition if v is
greater than 150.

The symbolic evaluator accumulates constraint sets as a trace proceeds and checks them for
satisfiability. The satisfiability check takes the form of simplifying each assumption in turn, while
assuming all of the other assumptions as context. HOL simplification includes the action of arith-
metic decision procedures, so unsatisfiable arithmetic constraints are discovered as well as more
obviously unsatisfiable constraint sets. For example, using the theorems proved by HOL’s data
type technology, the simplifier “knows” that the constructors for algebraic types are disjoint. Thus,
(s = [ ]) ∧ (s = h :: t ) is impossible because the nil and cons constructors for lists are disjoint.

Constraint Instantiation. As a checking run proceeds, later labels may determine variables that
had initially been underdetermined. For example, Windows XP picks file descriptors for sockets
nondeterministically, so on this architecture the specification for the socket call only requires that
the new descriptor be fresh. As a trace proceeds, however, the actual descriptor value chosen
will be revealed (a label or two later, the value will appear in the return-label that is passed back
to the caller). In this situation, and others like it, the set of constraints attached to the relevant
theorem will get smaller when the equality is everywhere eliminated. Though the checker does
not explicitly do this step, the effect is as if the earlier theorems in the run had also been instantiated
with the value chosen. If the value is clearly inconsistent with the initial constraints, then this will
be detected because those constraints will have been inherited from the stage when they were
generated.

Case Splitting. Sometimes a new constraint will be of a form where it is clear that it is equivalent
to a disjunction of two possibilities. Then it often makes sense to case-split and consider each arm
of the disjunction separately:

At the moment, such splitting is done on large disjunctions (as above) and large conditional
expressions that appear in the output host. For example, if the current theorem is

Γ � h0
l→(. . . if p then e1 else e2 . . . ),

then two new theorems are created: Γ,p � h0
l→(. . . e1 . . . ) and Γ,¬p � h0

l→(. . . e2 . . . ), and both
branches are explored (again, in a depth-first order).

7.1 The Core Algorithm: Evaluating One Transition

Given a host h0 (expressed as a set of bindings for the fields that make up a host, and thus of the
form fld1 := v1; fld2 := v2; . . . ), a set of constraints Γ0 over the free variables in h0, and a ground
label l0 (whether from the experimentally observed trace or a τ label), the core processing step of
the trace-checking algorithm is to generate a list of all possible successor hosts, along with their
accompanying constraints.

We precompute theorems of the form

fld1 := v1; fld2 := v2; . . .
l→ h ≡ (D1 ∨ · · ·Dn−1 ∨ Dn ), (1)
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where l is a label form (such as (tid·socket (arg)) or τ or msg) that will match l0, and where each
Di corresponds to a rule in the definition of the transition system. Such a theorem can be matched
against the input host and label. Each Di will constrain both the input fields and the output host
h. Moreover, each Di includes an equation of the form h = fld1 := v′1; fld2 := v′2; . . . , where the
new, primed variables are existentially quantified in Di , and further constrained there.

It is then straightforward to generate a sequence of theorems (one per possible rule), each of the
form

� Di ⇒ fld1 := v1; . . .
l0→ fld1 := v′1; . . . ,

where any variables existentially quantified in Di are now implicitly universally quantified in the
theorem, and may appear in the consequent of the implication. Similarly, the process of matching
the input values against the precomputed theorem (1) will have affected the form of Di .

Now the initial context Γ0 can be brought into play, and assumed while the Di is simplified in
that context. For example, we earlier discussed the scenario where a variable in the input host
might become constrained in Γ0 to be no larger than 100. If some Dk insists that the same value be
greater than 150, the process of simplification will discover the contradiction and rewrite this Dk

to false. In such a scenario, the theorem containing Dk will become the vacuous Γ0 � � and can be
discarded.

Those theorems that survive this stage of simplification can then be taken to the form

Γ0,D
′
i � fld1 := v1; . . .

l0→ fld1 := v′1; . . . .

The next phase of evaluation is “context simplification.” Though some checking and simplifi-
cation of the constraints in D ′

i
has been performed, the constraints there have not yet caused any

adjustment to Γ0. In this phase, the implementation iterates through the hypotheses in Γ0 ∪ D ′i ,
simplifying each hypothesis in turn while assuming the others. Furthermore, if this process does
induce a change in the hypotheses, the process is restarted so that the new form of the hypothesis
is given a chance to simplify all of the other members of the set.

After the first phase of context simplification, the checker heuristically decides on possible case
splits. If a case split occurs, more context simplification is required because the new hypothesis in
each branch will likely induce more simplification.

This phase of evaluation is potentially extremely expensive. We have made various improve-
ments to the checker during development that have made dramatic differences, but they do not
reflect any deep theoretical advances. Rather, we are engaged in “logic engineering” on top of the
HOL kernel. The LCF philosophy of the latter means that the ad hoc nature of parts of our imple-
mentation cannot affect soundness. At worst we will harm the completeness of a method already
known to be essentially incomplete because of the undecidability of the basic logic. In fact, incom-
pleteness is pragmatically less important than being able to quickly reduce formula sizes and to
draw inferences that will help in subsequent steps.

7.2 Laziness in Symbolic Evaluation

Because hosts quickly lose their groundedness as a checking run proceeds, many of the values be-
ing computed are actually constrained variables. Such variables may even come to be equated with
other expressions, where those expressions in turn include nonground components. It is important
in this setting to retain variable bindings rather than simply substituting them out. Substituting
nonground expressions through large terms may result in many instances of the same, expensive
computation when those expressions do eventually become ground.

This is analogous to the way in which a lazy language keeps pending computations hidden in
a “thunk” and does not evaluate them prematurely. The difference is that lazy languages “force”
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thunks when evaluation determines that their values are required. In the trace-checking setting,
expressions yield values as the logical context becomes richer, not on the basis of whether or not
those values are required elsewhere.

Moreover, as soon as an expression yields a little information about its structure, it is important
to let this information flow into the rest of the formula. For example, if the current theorem is

x = E � . . . (if x = [ ] then f (x ) else д(x )) . . . ,

then it is important not to substitute E for x and end up working with two copies of (presumably
complicated) expression E. On the other hand, future work may reveal that E is actually of the
form h :: t for some (themselves complicated) expressions h and t .

In this case, the theorem must become

v1 = h,v2 = t � . . . (д(v1 :: v2)) . . . .

In this situation, the application of д to a list known to be a cons cell may lead to future useful
simplification.

To implement this, the checker can isolate equalities to prevent them from being instantiated
and detects when expressions become value forms or partial value forms.

7.3 Evaluating Time Transitions

Time transitions require special treatment. An experimentally observed trace will typically have
a time passage transition, labeled with a duration, between each other observable transition. The
relevant rule is epsilon_1, shown in Section 3.3.3, which allows time to pass if the host state is not
urgent. The trace checker does not check for non-urgency by actually trying all of the urgent rules
in turn. Instead, it uses a theorem (proved once and for all as the system builds) that provides an
approximate characterization of non-urgency. If this is satisfied, the above rule’s side conditions
can be discharged and progress made. If the approximation cannot be proved true, then a τ step is
attempted so that the host can move through its pending urgent transition.

7.4 Model Translation

An important aim of the formalization has been to support the use of a natural, mathematical
idiom in the writing of the specification. This does not always produce logical formulas well suited
to automatic analyses. Even making sure that the conjuncts of a side condition are “evaluated”
(simplified) in a suitable order can make a big difference to the efficiency of the tool. Rather than
force the specification authors and readership to deal explicitly with algorithmic issues (and the
specification to be a Prolog-like program), we have developed a variety of tools to automatically
translate a variety of idioms into equivalent forms.

At their best, these translations are produced by ML code written to handle an infinite family
of possibilities. Written within HOL, this ML code produces translations by proving logical equiv-
alences. In this way, we can be sure that the translation is correct, i.e., that the semantics of the
specification is preserved. In other cases, we prove specific theorems that state a particular rule or
auxiliary function is equivalent to an alternative form. This theorem then justifies the use of the
more efficient expression of the same semantics.

Translating Noninjective Pattern Matching. One important example of translation comes in the
handling of the pattern-matching idiom. Making use of the HOL syntax for record values updated
at specific fields, specifiers can write

h fld1 := v0
l→ h fld1 := v
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to adjust the host h. The problem with field updates is that they are not injective functions: there are
multiple instantiations for h given any particular host meant to match this rule. The transformation
in this case is simple: h is expanded into a complete listing of all its possible fields, the actions of
the update functions are applied, and the translated rule becomes

fld1 := v0; fld2 := v2; fld3 := v3; . . .
l→

fld1 := v; fld2 := v2; fld3 := v3; . . . .

The specifier does not have to list the frame conditions, but the implementation of the evaluator
is simplified by explicitly listing all of the fields (unchanging or not) in the transformed form.

Another example of noninjective pattern matching comes with the use of finite maps. These
values are manipulated throughout the labeled transition system. For example, rules describing
the host’s response to a system call typically check that the calling thread is in the Run state, and
also specify the new state that the thread moves to if the transition is successful. Such a rule has
the general form

ts := tidmap ⊕ (t,Run); . . .
l→

ts := tidmap ⊕ (t, newstate); . . .

sideconditions,

where the ts field of the host is a finite map from thread identifiers to thread state information. A
naïve approach to the symbolic evaluation of such a rule would attempt to find a binding for the
variable tidmap. Unfortunately, in the absence of further constraints on that variable in the rule’s
side conditions, there are multiple such bindings: tidmap may or may not include another binding
for the key t, and if it does include such a binding, may map t to any possible value. Because the
only occurrences of tidmap are in situations where an overriding value for t is provided, these
possibilities are irrelevant, and the evaluator should not distract itself by looking for such values.

We have written ML code to check that rules are of suitable form and to then translate the above
into

ts := tidmap; . . .
l→

ts := tidmap ⊕ (t, newstate)

fmscan tidmap t Run ∧ sideconditions,

where the fmscan relation checks to see if its first argument (a finite map) maps its second argu-
ment to its third. It is characterized by the following theorem:

fmscan ∅ k2 v2 = ⊥
fmscan (fm ⊕ (k1, v1)) k2 v2 = (k1 = k2 ∧v1 = v2) ∨

fmscan (fm\\k1) k2 v2,

where fm\\k denotes the finite map that is equal to fm, except that any binding for k has been
removed.

In other circumstances, the underlying finite map may not always appear with a suitable rebind-
ing of the relevant key. For example, this happens in rules that remove key-value pairs from maps.
Such a rule is close_7 , which models the successful closing of the last file descriptor associated with
a socket in the CLOSED, SYN_SENT, or SYN_RECEIVED states. The rule’s transition removes the
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socket-id/socket binding from the host’s socks map. The relevant parts of the rule look like

socks := sockmap ⊕ (sid, sock); . . .

tid ·close (fd)
→
socks := sockmap; . . .

sideconditions (linking sid to fd, among other things).

Here the translation to the nonpattern version of the code can only succeed if the side conditions
include the fact that sid does not occur in the domain of the map socks. Without such a side con-
dition, the meaning of the rule would be to allow the finite map to take on any possible binding
for sid in the resulting state. Not including such a side condition is such an easy mistake for the
specification writer to make that the code implementing this transformation issues a warning if it
cannot find it.

If this constraint is found in the side conditions, then the rule becomes

socks := sockmap; . . .

tid ·close (fd)
→
socks := sockmap\\sid; . . .

fmscan sockmap sid sock ∧
sideconditions[sockmap := sockmap\\sid],

where the side conditions to the rule have acquired a new fmscan constraint and have been altered
so that any old references to sockmap are replaced by sockmap\\sid.

Other Translation Examples. A number of the specification’s auxiliary functions are defined in
ways that, while suitable for human consumption, are not so easy to evaluate. One simple example
is the definition of a host’s local IP addresses. Given a finite map from interface identifiers to
interface data values, the function local_ips is defined:

local_ips(ifmap) =
⋃

(k,i )∈ifmap

i .ipset.

Pulling (k, i ) pairs from a finite map in an unspecified order is awkward to evaluate directly, so
we recast the definition to an equivalent form that recurses over the syntax of the finite map in
question:

local_ips(∅) = ∅
local_ips (ifmap ⊕ (k, i)) = i .ipset ∪ local_ips(ifmap\\k ).

Other translations rewrite definitions of relations to take on a prenex form:

R x y = ∃�v . let u1 = e1 in

let u2 = e2 in

· · ·
c1 ∧ c2 ∧ c3 ∧ . . . cn .

The simplification strategy chosen by the checker could affect this transformation at runtime, but
there is no reason not to precompute it and use the translated form of the definition instead of the
original.
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One of the specification’s most complicated auxiliary definitions is that for reassembly of TCP
data that has arrived out of order, characterized by the function tcp_reass. Involving two gruesome
set comprehensions, tcp_reass’s definition calculates the set of all possible valid reassemblies of
a set of received segments. The theorem giving the alternative characterization instead uses ana-
logues of fold and map, making evaluation over concrete data much easier. (The data is concrete
because it is from observed labels corresponding to the arrival of packets.)

7.5 Adding Constraints

It is always sound to add fresh assumptions to a theorem. The following is a rule of inference in
HOL:

Γ � t
Γ,p � t .

We do sometimes add constraints that are consequences of existing assumptions, which preserves
satisfiability. For example, traces often produce rather complicated expressions about which arith-
metic decision procedures cannot reason directly. We help the procedures draw conclusions by
separately inferring upper- and lower-bound information about such expressions and adding these
new (but redundant) assumptions to the theorem.

7.6 Simplification

The core logical operation of the trace checker is simplification. This can be characterized as term
rewriting with equational theorems, augmented with the use of various decision procedures.

The equational theorems used in rewriting may include side conditions. The simplifier will try
to discharge such by simplifying them to truth. If this succeeds, the rewrite can be applied. For
example, integer division and modulus have no specified value when the divisor is zero, meaning
that theorems about these constants are typically accompanied by side conditions requiring the
divisor to be nonzero.

This basic term-rewriting functionality is then augmented with decision procedures, such as
those for Presburger arithmetic over R and N, whose action is intermingled with rewriting. (De-
cision procedures typically rewrite subterms to � or ⊥.) This use of (augmented) rewriting is
well established in the interactive theorem-proving community. Systems such as ACL2 have long
provided such facilities and demonstrated the potency of the combination. Equational rewriting
provides an easy way to express core identities in theories that may or may not be decidable.
Well-chosen identities can rapidly extend a system to cover significant parts of new theories.

In our noninteractive setting, it is additionally important to be able to add bespoke reasoning
procedures to the action of the simplifier. Our system extends the basic HOL simplifier not just with
new rewrites, but also with new code, which handles cases not easily treatable with rewrites. Such
programmatic extensions cannot compromise the system’s soundness because the programming
is over the HOL kernel, which remains unchanged.

In addition to extensions already discussed, such as the lazy treatment of variable bindings,
another example of such an extension is the treatment of TCP’s 32-bit sequence numbers. For
the most part, these are operated on as are normal fixed-width integers (with wrap-around arith-
metic). For example, subtraction is such that 1 − 2 = −1, but −(231) − 3 = 231 − 3. The orderings
on sequence numbers are defined to be

s1�s2 ≡ s1 − s2�0,

where � is any of {<, ≤, >, ≥}, and where the subtraction on the right results in an integer, which
is compared with 0 in the normal way for Z. These orderings exhibit some odd behaviors. For
example, s1 < s2 � s2 > s1 (consider s1 and s2 exactly 231 apart).

Journal of the ACM, Vol. 66, No. 1, Article 1. Publication date: December 2018.



1:56 S. Bishop et al.

Our system includes custom code for reasoning about inequalities on sequence numbers. This
code is not a complete decision procedure, but has proved adequate in the checking runs performed
to date.

Phasing. In the early stages of the core algorithm, the priority for simplification is to eliminate
possible transition rules that clearly cannot apply. Checking rules’ preliminary guards and quickly
eliminating those that are false is vital for efficiency. At this stage, therefore, it is wise not to expand
the definitions of the more complicated auxiliaries. Such expansions would dramatically increase
term sizes but might end up being discarded when a rule’s guards were found not to be satisfied.

To implement this, we phase our use of the simplifier, so that it only simplifies with the simplest
definitions early on. In this way, we hope to only expand complicated auxiliaries when they have
a reasonable chance of being needed.

7.7 Service-Level Validation

For the service-level validation, we started with double-ended traces, describing the behavior of
two interacting hosts rather than just one endpoint. We then used our previous symbolic evalu-
ation tool to discover symbolic traces of the protocol-level model that corresponded to the real-
world traces. That is a complex and computationally intensive process, involving the backtracking
depth-first search and constraint simplification described above, essentially to discover the internal
host state and internal transitions that are not explicit in the trace.

We then ground these symbolic traces, finding instantiations of their variables that satisfy any
remaining constraints, to produce a ground protocol-level trace in which all information is explicit.
Given such a ground trace, we can map the abstraction function over it to produce a candidate
ground service-level trace.

It is then necessary to check the validity of this trace, which is done with a service-level test
oracle. As at the protocol level, we wrote a new special-purpose service-level checker in HOL
that performs symbolic evaluation of the specification with respect to ground service-level traces.
Crucially, this checking process is much simpler than that at the protocol level because all host
values, and all transitions, are already known. All that remains is to check each ground service-
level transition against the specification.

The most significant difference between the old and new checkers is that the former had to per-
form a depth-first search to even determine which rule of the protocol model was appropriate. Be-
cause that work has already been done, and because the two specifications have been constructed
so that their individual rules correspond, the service-level checker does not need to do this search.
Instead, it can simply check the service-level version of the rule that was checked at the proto-
col level, dealing with each transition in isolation. In particular, this means that the service-level
checker need not attempt to infer the existence of unobservable τ -transitions.

Another significant difference between the two checkers is that the service-level checker can
aggressively search for instantiations of existentially quantified variables that arise when a rule’s
hypothesis has to be discharged. At the protocol level, such variables may appear quite uncon-
strained at first appearance, but then become progressively more constrained as further steps of
the trace are processed.

For example, a simplified rule for the socket call might appear as

fd � usedfds(h0)

h0 socks := socks
tid ·socket()
−−−−−−−−−→ h0 socks := socks ⊕ (sid, fd)

stating that when a socket call is made, the host h0’s socks map is updated to associate the
new socket (identified by sid) with file descriptor fd, subject only to the constraint that the new

Journal of the ACM, Vol. 66, No. 1, Article 1. Publication date: December 2018.



Engineering with Logic: Rigorous Test-Oracle Specification and Validation 1:57

descriptor not already be in use. (This underspecification is correct on Windows; on Unix, the file
descriptor is typically the next available natural number.)

In the protocol-level checker, the fd variable must be left uninstantiated until its value can be
deduced from subsequent steps in the trace. In the service-level checker, both the initial host and
the final host are available because they are the product of the abstraction function applied to the
previously generated, and ground, protocol trace. In a situation such as this, the variable from the
hypothesis is present in the conclusion and can be immediately instantiated.

In other rules of the service-level specification, there can be a great many variables that occur
only in the hypothesis. These are existentially quantified, and the checker must determine if there
is an instantiation for them that makes the hypothesis true. The most effective way of performing
this check is to simplify, apply decision procedures for arithmetic, and then repeatedly case-split on
boolean variables and the guards of if-then-else expressions to search for possible instantiations.

The above process is clearly somewhat involved, and itself would ordinarily be prone to error.
To protect against this, as for the protocol-level work, we built all the checking infrastructure
within HOL. So, when checking a trace, we are actually building machine-checked proofs that its
transitions are admitted by the inductive definition of the transition relation in the specification.

8 EXPERIMENTAL VALIDATION: RESULTS

8.1 Protocol-Level Checking Results

The experimental validation process shows that the specification admits almost all the test traces
we generated. For UDP, over all three implementations (BSD, Linux, and WinXP), 2526 (97.04%) of
2603 traces succeed. For TCP, we focused on the BSD traces, and here 1004 (91.7%) of 1095 traces
succeed.

While we have not reached 100% validation, we believe these figures indicate that the model is
for most purposes very accurate—certainly good enough for it to be a useful reference. Further, we
believe that closing the gap would only be a matter of additional labor, fixing sundry very local
issues rather than needing any fundamental change to the specification or the tools.

Of the UDP non-successes: 36 are due to a problem in test generation (difficulties with accurate
timestamping on WinXP); 27 are tests that involve long data strings for which we hit a space
limitation of the HOL string library (which uses a particularly non-space-efficient representation
at present); 11 are because of known problems with test generation; and three are due to an ICMP
delivery problem on FreeBSD.

Of the TCP non-successes: 42 are due to checker problems (mainly memory limits); six are due
to problems in test generation; and the remaining 43 traces are due to a collection of 20 issues in
the specification, which we roughly diagnosed but did not fix, simply for lack of staff resource at
the time.

Much of the TCP development was also carried out for all three implementations, and the spec-
ification does identify various differences between them. In the later stages, we focused on BSD,
for two reasons: the BSD debug trace records make automated validation easier in principle, and
as a small research team we had only rather limited staff resources available. We believe that ex-
tending the TCP work to fully cover the other implementations would require little in the way of
new techniques.

The success rates above are only meaningful if the generated traces do give reasonable coverage.
Care was taken in the design of the test suite to cover interesting and corner cases, and we can
show that almost all rules of the model are exercised in successful trace checking. Of the 194 host
LTS rules, 142 are covered in at least one successful trace check run, 32 should not be covered by
the tests (e.g., rules dealing with file-descriptor resource limits, or non-BSD TCP behavior), and
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20 either have not had tests written or not yet succeeded in validation. Moreover, test generation
was largely independent of the validation process (some additional tests were constructed during
validation, and some particularly long traces were excluded). For TCP, however, it would be good
to check more medium-length traces, to be sure that the various congestion-control regimes are
fully explored; our trace set is weighted more toward connection setup/teardown and Sockets
API issues. It would also be desirable to check implementation code coverage of our tests for the
FreeBSD and Linux implementations; we did not attempt that.

8.2 Implementation Anomalies

The goal of this project was not to find bugs in the implementations. Indeed, from a post hoc speci-
fication point of view, the implementation behavior, however strange, is the de facto standard that
users of the protocols and API should be aware of. Moreover, to make validation of the specification
against the implementation behavior possible, it must include whatever that behavior is.

Nonetheless, in the course of the work, we have found many behavioral anomalies, some of
which are certainly bugs in the conventional sense. There are explicit OS version dependencies on
around 260 lines of the specification, and the report [21] details around 30 anomalies. All are rela-
tively local issues—the implementations are extremely widely used, so it would be very surprising
to find serious problems in the common-case paths. We list a few briefly below, mostly for BSD
TCP:

• The receive window is updated on receipt of a bad segment.
• Simultaneous open can respond with an ACK rather than a SYN, ACK.
• The code has an erroneous definition of the TCPS_HAVERCVDFIN macro, making it possible,

for example, to generate a SIGURG signal from a socket after its connection has been closed.
• listen() can be (erroneously) called from any state, which can lead to pathological segments

being transmitted (with no flags or only a FIN).
• After repeated retransmission timeouts, the RTT estimates are incorrectly updated.
• After 232 segments, there is a 16-segment window during which, if the TCP connection is

closed, the RTT values will not be cached in the routing table.
• The received urgent pointer is not updated in the fast-path code, so if 2GB of data is received

in the fast path, subsequent urgent data will not be correctly signaled.
• On Linux, options can be sent in a SYN, ACK that were not in the received SYN.

Many of these oddities, and many of the 260 OS differences, were discovered by our testing
process; by describing them, we hope primarily to give some sense of what kind of fine-grained
detail can be captured by our automated testing process, in which window values, time values,
and so forth are checked against their allowable ranges as soon as possible. The remainder were
found directly in the source code while writing the specification. The main point we observe in the
implementations is that their behavior is extremely complex and irregular, but that is not subject
to any easy fix.

8.3 Service-Level Results

Our protocol-level validation involved several thousand traces designed to exercise the behavior
of single endpoints, covering both the Sockets API and the wire behavior. To produce a reasonably
accurate specification, we iterated the checking and specification-fixing process many times.

For the service-level specification, we have not attempted the same level of validation,
simply due to resource constraints. Instead, we have focused on developing the method, doing
enough validation to demonstrate its feasibility. Producing a specification in which one should
have high confidence might require another person-year or so of testing and specification
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improvement—perfectly feasible, and a tiny amount of effort in terms of industrial protocol stack
development, but unlikely to lead to new research insights. That said, most of the Sockets API
behavior does not relate to the protocol dynamics and is common between the two specifications,
so is already moderately well tested. In all, 30 end-to-end tests were generated, covering a variety
of connection setup and teardown cases and end-to-end communication, but not including packet
loss, reordering, duplication, or severe delay. After correcting some specification errors, all these
traces were found to validate successfully.

To illustrate again how discriminating our testing process is, we mention two errors we dis-
covered during service-level validation. At the protocol level, a TCP message moving from a host
output queue to the wire corresponds to an unobservable τ event at the service level. Naively,
we assumed the host state would be unchanged, since the output queue at the service level car-
ries only ICMP and UDP messages. However, this is not correct, since the transmission of a TCP
message alters the timer associated with the output queue, increasing its value. The update to the
timer permits the host to delay sending the ICMP and UDP messages. Without this side-effect, the
service-level specification effectively required ICMP and UDP messages to be sent earlier than they
would otherwise have been. To correct this error, the service specification had to allow the timer
to be updated if at the protocol level there was potentially a TCP message on the queue that might
be transferred to the wire. Another error arose in the definition of the abstraction function. The
analysis of the merging of the send and receive queues on source and destination hosts, described
in Section 5, was initially incorrect, leading to streams with duplicated, or missing, runs of data.
Fortunately, this error was easy to detect by examining the ground service-level trace, where the
duplicated data was immediately apparent.

8.4 Validating the Other Direction

Our validation processes check that certain traces are included in the protocol-level or service-level
specification. As we have seen, this can be a very discriminating test, but it does not address the
question of whether the specifications admit too many traces. That cannot be determined by ref-
erence to the de facto standard implementations, as a reasonable specification here must be looser
than any one implementation. Instead, one must consider whether the specifications are strong
enough to be useful, for proving properties of applications that use the Sockets API, or as a basis for
new implementations. We mention work of both kinds in Section 1.9, but more could be done here.

In particular, one could modularly refine the specification, resolving the points at which it is
nondeterministic, so that it does describe an implementation. This would entail specifying aspects
of the host scheduling (resolving nondeterminism between multiple rules that can fire simultane-
ously); giving algorithms for choosing initial sequence numbers, options, and so forth; and con-
straining TCP output so that it does have the ACK-clock behavior. It should then be possible to
integrate the specification, our symbolic evaluation engine, and the packet injector and slurp tools,
to form a working TCP implementation—for example, on receiving a segment from the slurp tool, it
would run the symbolic evaluator to calculate a new host state, which might produce new segments
to output via the injector. One could gain additional confidence in the validity of the specification
by checking that this interoperates with existing TCP/IP stacks, though they would have to be arti-
ficially slowed down to match the speed of the evaluator. This would demonstrate that executable
prototype implementations of future protocols could be directly based on similar specifications.

9 REVISITING THE TCP STATE DIAGRAM

TCP is often presented using a state diagram to describe how the tcpstate component of a TCP
socket state (CLOSED, LISTEN, ESTABLISHED, etc.) changes with API calls and segments sent and
received. The original RFC793 contained one such diagram, and another version (redrawn from
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Stevens [101, 102, 109]) is shown at the top of Figure 17. This can be useful, explaining in broad
terms how the SYN, ACK, and FIN flags in TCP segments are used in connection establishment
and teardown, though one has to understand that the tcpstate component is only a tiny part of
the complete socket state that the protocol endpoint behavior depends on (see the model types
socket, tcp_socket, and tcpcb in §3.2.1, which define the entire socket state, and how much of the
deliver_in_1 rule of Figure 8 relates to non-tcpstate behavior).

However, with our rigorous protocol-level specification in hand, we can see that, even for the
tcpstate behavior, the classic RFC793 and Stevens diagrams give only some of the more common
transitions. To show this, we constructed a manual abstract interpretation of our specification,
projecting it onto the tcpstate component; it is shown at the bottom of Figure 17.

Comparing the two, one can see that there are many more possible transitions in the model.
This suggests that such abstractions could be a useful part of protocol design.

It is also clear from working with the specification that several other components of a TCP
socket state are as important as the “TCP state” in determining its behavior: especially the retrans-
mit mode (None, RexmtSyn, Rexmt, or Persist), but also cantrcvmore, cantsndmore, tf _needfin,
sndq � [ ], and so forth. Obviously simply taking the product of these would yield an undrawable
diagram, but reclustering (slicing) in a different way might be useful. For example, most of the TCP
code is independent of which state in {ESTABLISHED, CLOSE_WAIT, LAST_ACK, FIN_WAIT_1,
CLOSING, FIN_WAIT_2, TIME_WAIT} is current; instead, the retransmit mode is of much more
interest. It is possible that coalescing this class, and then taking the product with the retransmit
state, would yield a manageable set of nodes. One could also think of high-performance runtime
validation that a TCP implementation is within such a transition system.

10 UPDATING THE MODEL AND TOOLS

In this section, we describe ongoing efforts to reuse the protocol-level specification, from 2015 to
2018. We discuss three aspects: model update and performance improvements, a new instrumen-
tation mechanism using DTrace [26, 68], and validating the model with packetdrill [27].

The results of this ongoing work are already promising: the model now mostly works with a
current FreeBSD TCP/IP stack, the trace checker is around 15 times faster, and the newly devel-
oped DTrace instrumentation mechanism was easily applied to an existing test suite based on
packetdrill. After minor adjustments of our model, this test suite also validates. This is still not
a turnkey industrial-strength tool, but it provides evidence that the specification can be adapted,
and that the costs of working with it can be substantially reduced from the original version.

10.1 Model Update and Performance Improvements

Our model and trace checker are written in HOL4, which is continuously extended and improved.
We adapted our model to a recent HOL4 release (Kananaskis-11, released in March 2017) and
revalidated 1000 traces recorded in 2006. Our adapted trace checker validates more of these traces
than in 2006, where some failed due to huge resource usage (CPU time and memory). Our adapted
trace checker uses 15× less time on average. This improvement is due to the hardware performance
improvements over the last decade, and to improvements in HOL4, notably the usage of Poly/ML
instead of Moscow ML; it makes working with the model much more manageable.

We used our test suite to discover modifications in FreeBSD’s TCP stack from FreeBSD-4.6 (re-
leased in 2002) to FreeBSD-12 (to be released in November 2018). The initial window size was
increased (RFC 3390), and the window adjustments now use accurate byte counting (RFC 3465);
we adjusted our model to this behavior. FreeBSD uses now selective acknowledgment (SACK), but
at the time of writing we have to switch SACK off via a sysctl, because our model lacks support
for SACK.
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Fig. 17. The TCP state diagram, following Stevens and abstracted from the specification.
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10.2 Instrumentation Using DTrace

The instrumentation described in Section 6.1 uses three different custom mechanisms to produce
traces, which need to be merged based on NTP and timestamps. We revised this design and re-
placed those mechanisms with DTrace [26, 68]. DTrace is a modern dynamic tracing instrumen-
tation framework: testers write tracing scripts in a C-inspired programming language named D,
which provides functions and variables specific to tracing. A D script consists of global variable
declarations and a list of probes. Each probe has a name, a condition, and an action. The ac-
tion (e.g., printf(“hello %d\n”, pid);) is executed when the condition (e.g., probefunc =
“setsockopt”) is met and the probe name (e.g., syscall:::return) is fired by a provider. Several
core providers are part of the operating system.

We use the syscall provider and 230 lines of D to print traces of the Sockets API, previously done
by our nssock wrapper. To output a trace of the network packets we use FreeBSD’s fbt (function
boundary tracing) provider, which fires on every function entry and exit. We developed 50 lines of
D,which use the tcp_input and ip_output probes. This replaces our slurp program. We replaced
the shared ring buffer and the TCP_DEBUG option with FreeBSD’s tcp provider and another 70 lines
of D script. The resulting D script is run while the test is executed. The test framework signals the
beginning and end of a test by write to standard output, which is instrumented by the D script.
When a TCP flow should be traced as well, this is signaled by the test framework using the same
mechanism: writing the source and destination IP and port on standard output.

The advantages of a single DTrace script compared to the earlier three custom mechanisms are
that the testing setup is simplified, there is no need for merging multiple traces into a single based
on timestamps, it is easier to maintain, and it is straightforwardly portable to tracing other off-the-
shelf test suites. The next section describes how we extended the testing framework packetdrill
with this DTrace instrumentation.

While developing the D script for Netsem, we found some issues and missing functionality for
DTrace in FreeBSD, which we reported, and also submitted patches that got merged upstream. A
single patch is still under review that adds a function to DTrace to copy out an mbuf, the data
structure used for packets in the kernel.

There are two limitations with the DTrace instrumentation: DTrace does not work across mul-
tiple computers, but in our protocol-level tests, we do not need to capture information on remote
hosts, only to synthesize packets from them. Another limitation is that DTrace by design does not
guarantee to fire a probe, especially under load. The practical impact for us is nonexistent: we ran
our test suites multiple times and always received all probes. If we would test on resource (memory
and CPU) boundaries, we would need to be careful with that or switch to a reliable instrumentation
mechanism.

10.3 Validation Using packetdrill

The packetdrill tool [27] allows network engineers to write test cases. These are lists of events,
with relative timestamps, each of which is either a Socket API call, an assertion in which TCP state
a socket is in, or a packet template. packetdrill executes a test either with a remote helper that
injects incoming packets or locally using a tun interface and injecting the packets itself. It executes
the list of events in sequence, using the relative timestamp as wait-for actions, and as timeouts for
expected events. A Sockets API call is executed, and its return value validated. An assertion about
the TCP state of a socket is validated. An outgoing packet template is validated against what is
observed on the tun interface or ethernet interface.

The FreeBSD project is developing a TCP test suite [40], which at the moment consists of 392 test
cases, which mainly validate the classic TCP state-machine abstraction. Each test case is present
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for IPv4 and IPv6; we only use the IPv4 tests. We also ignore the test cases that use TCP features
not implemented by our model. We modified the resulting 115 tests to not rely on SACK. We added
support to packetdrill for our DTrace instrumentation. After minor changes in our model, all
115 tests pass and the traces are validated by our trace checker.

This is the first external validation of the model, since the original test suite was developed
together with the model by the same authors. We adapted our model, changing timers to follow
changes to the FreeBSD stack, and multiple deliver_in rules that lacked in-window checks (RFC
5961). The test suite also showed us that our model lacked exhaustive support if window scaling
is disabled and the window size gets bigger than 216 − 1 (the size of the data field in each TCP
segment). Several anomalies we discovered in FreeBSD-4.6 with our model have been fixed in
FreeBSD-12, and we adapted our model to this behavior, for example, when the congestion window
is initialized during a simultaneous open.

11 RELATED WORK

There is a vast literature devoted to verification techniques for protocols, with both proof-based
and model-checking approaches, e.g., in conferences such as CAV, CONCUR, FORTE, ICNP, SPIN,
and TACAS. To the best of our knowledge, however, no previous work approaches a specification
dealing with the full scale and complexity of a real-world TCP. In retrospect, this is unsurprising:
we have depended on automated reasoning tools and on raw compute resources that were simply
unavailable in the 1980s or early 1990s.

The most detailed rigorous specification of a TCP-like protocol we are aware of is that of Smith
[100], an I/O automata specification and implementation, with a proof that one satisfies the other,
used as a basis for work on T/TCP. The protocol is still substantially idealized, however: congestion
control is not covered, nor are options, and the work supposes a fixed client/server directionality.
Later work by Smith and Ramakrishnan uses a similar model to verify properties of a model of
SACK [99].

Musuvathi and Engler have applied their CMC model checker to a Linux TCP/IP stack [74].
Interestingly, they began by trying to work with just the TCP-specific part of the codebase
(c.f. the pure transport-protocol specification mentioned in Section 1.7) but moved to working
with the entire code base on finding the TCP–IP interface too complex. The properties checked
were of two kinds: resource leaks and invalid memory accesses, and protocol-specific proper-
ties. The latter were specified by a hand translation of the RFC793 state diagram into C code.
While this is a useful model of the protocol, it is an extremely abstract view, with flow con-
trol, congestion control, and so forth not included. Four bugs in the Linux implementation were
found.

In a rare application of rigorous techniques to actual standards, Bhargavan, Obradovic, and
Gunter use a combination of the HOL proof assistant and the SPIN model checker to study prop-
erties of distance-vector routing protocols [15], proving correctness theorems. In contrast to our
experience for TCP, they found that for RIP the existing RFC standards were precise enough to
support “without significant supplementation, a detailed proof of correctness in terms of invari-
ants referenced in the specification.” The protocols are significantly simpler: their model of RIP is
(by a naive line count) around 50 times smaller than the specification we present here.

Bhargavan et al. develop an automata-theoretic approach for monitoring of network protocol
implementations, with classes of properties that can be efficiently checked online in the presence
of network effects [12]. They show that certain properties of TCP implementations can be ex-
pressed. Lee et al. conduct passive testing of an OSPF implementation against an extended finite
state machine model [59].
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There are I/O automata specifications and proof-based verification for aspects of the Ensemble
group communication system by Hickey, Lynch, and van Renesse [46], and NuPRL proofs of fast-
path optimizations for local Ensemble code by Kreitz [57].

Alur and Wang address the PPP and DHCP protocols, for each checking refinements between
models that are manually extracted from the RFC specification and from an implementation [4].

Kohler et al. [54] designed DCCP, a datagram congestion control protocol without reliability.
Within this process, two partial formalizations were done, one using finite state machines, and
one using colored Petri nets by Vanit-Anunchai et al. [105]. The Petri net model revealed areas of
the draft specification that were incomplete, and extended before the DCCP RFC was published.

For radically idealized variants of TCP, one has, for example, the PVS verification of an improved
sliding window protocol by Chkliaev et al. [29], and Fersman and Jonsson’s application of the
SPIN model checker to a simplified version of the TCP establishment/teardown handshakes [35].
Schieferdecker verifies a property (expressed in the modal μ calculus) of a LOTOS specification of
TCP, showing that data is not received before it is sent [95]. The specification is again roughly at
the level of the TCP state diagram. Billington and Han have produced a colored Petri net model of
the service provided by TCP (in our terminology, roughly an end-to-end specification), but for a
highly idealized ISO-style interface, and a highly idealized model of transmission for a bounded-
size medium [17, 18]. Murphy and Shankar verify some safety properties of a three-way handshake
protocol analogous to that in TCP [72] and of a transport protocol based on this [73]. Finally,
Postel’s PhD thesis gave protocol models for TCP precursors in a modified Petri net style [85].

Implementations of TCP in high-level languages have been written by Biagioni in Standard ML
[16], by Castelluccia et al. in Esterel [28], and by Kohler et al. in Prolac [55]. Each of these develops
compilation techniques for performance. They are presumably more readable than low-level C
code, but each is a particular implementation rather than a specification of a range of allowable
behaviors: as for any implementation, nondeterminism means they could not be used as oracles
for system testing. Hofmann and Lemmen report on testing of a protocol stack generated from an
SDL specification of TCP/IP [47]. Few details of the specification are given, though it is said to be
based on RFCs 793 and 1122. The focus is on performance improvement of the resulting code.

Paris et al. developed a TCP/IP implementation in Erlang [82]. They also developed a TCP/IP
model [81] in QuickCheck, which is a framework for random testing. Their model was validated
using the Linux TCP/IP implementation and found at least one issue in their Erlang TCP/IP.

A number of tools exist for testing or fingerprinting of TCP implementations with hand-crafted
ad hoc tests, not based on a rigorous specification. They include the tcpanaly of Paxson [84], the
TBIT of Padhye and Floyd [79], and Fyodor’s nmap [41]. RFC2398 [83] lists several other tools.
There are also commercial products such as Ixia’s Automated Network Validation Library (ANVL)
[50], with 160 test cases for core TCP; 48 for Slow Start, Congestion Control, and so forth; and 48
for High Performance and SACK extensions.

Cardwell et al. [27] developed packetdrill, which defines a test language—supporting socket
API calls, TCP frames, timeouts, and a remote helper—for testing TCP/IP implementations. They
developed 657 tests and found 10 bugs in the Linux TCP/IP implementation. These tests are spe-
cially crafted for the Linux behavior and are unlikely to be portable to other operating systems. It
is up to the author of a test to evaluate whether the test is within the TCP/IP spec. Packetdrill is
being adapted by TCP/IP implementors for ad hoc and regression testing.

The nqsb-tls [52] stack is both a specification and an implementation of TLS in a purely func-
tional style, achieving reasonable performance (around 75% to 85% of that of OpenSSL). Their spec-
ification is an on-the-wire specification, rather than the endpoint behavior. In contrast to TCP/IP,
TLS has much less internal nondeterminism, which is revealed in later frames on the wire (pro-
tocol version, ciphersuite selection), and no timers. The lack of nondeterminism enabled them to
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use their purely functional implementation as specification, and they provide a tool that checks
recorded TLS traces for validity.

The miTLS project [14] has developed a verified reference implementation of the TLS protocol,
using F#, F7, and F*. This interoperates with other major implementations, albeit with relatively
slow performance, but has machine proofs of security theorems. Their work has also uncovered a
number of issues with the protocol design, including client impersonation [13]. They also analyzed
the state machine implementations within widely used TLS libraries [11].

12 DISCUSSION

12.1 Contributions

At the start of this project, around October 2000, our aim was twofold:

(1) to bring mathematical rigor to bear on real-world network protocols, to make it possible
to reason formally about them and about distributed systems above them; and

(2) to bring added realism to the modeling of concurrency, communication, and failure, which
were often studied in highly idealized forms in the process calculus and concurrency the-
ory communities.

As we gained more experience, and with the benefit of hindsight, our focus has shifted, from the
desire to support formal correctness reasoning to the general problem we described in Section 1:
the limitations of standard industry engineering practice, with its testing-based development using
(at best) prose specifications, which cannot directly be used in testing. The work has produced
contributions of many kinds:

• A clear articulation of the notion of specifications that are executable as test oracles, and
the benefits thereof.

• The demonstration that it is feasible to develop a rigorous specification, in mechanized
mathematics, that is executable as a test oracle for an existing real-world key abstraction:
the TCP and UDP protocols and their Sockets API, despite the many challenges involved
(dealing with their complexities, both essential and contingent, and with the behavior of
many thousands of lines of multithreaded and time-dependent C code that were not writ-
ten with verification in mind, and for which formal proof about their behavior is not yet
feasible).

• The ideas and tools that made it possible to do that:
—our experimental semantics development process;
—a clear understanding of the importance of nondeterminism, in the forms of loose speci-

fication and implementation runtime nondeterminism, and especially internal nondeter-
minism, in test-oracle specifications and in their validation;

—a clear understanding of how the relationship between the real system and specification
has to be reified in the model and in the testing infrastructure;

—the specification idioms we needed;
—the trace-checking technology we developed; and
—the test generation and instrumentation we developed.

• Our specifications themselves: the protocol-level and service-level specifications and the
abstraction function between them.

• The idea of experimentally validating such an abstraction function.
• Our demonstration of the discriminating power of our validation process, which found

many obscure anomalies and implementation differences.
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The total effort required for the project has been around 11 person-years, of which much was
devoted to idiom and tool development. This is substantial, and might not be well motivated for
software that is not in critical use, but it is small compared with the effort devoted over the last 35
years (and perhaps the next) to implementing and understanding these protocols and their API.
Network protocols are an area in which behavioral standards are essential, as many implementa-
tions must interoperate.

In the remainder of this final section, we reflect on our experience, discussing how the specifi-
cation might be used and built on, and on the lessons we can draw from this work for design and
specification in general.

12.2 Future Work: Using the Specifications

Our specifications may be of use in several different ways, by several different communities.

12.2.1 As an Informal Reference. Most directly, the annotated and typeset versions of our spec-
ifications [21, 22, 91] can be used informally as a reference, as documentation for users and im-
plementors of TCP and the Sockets API (designers of distributed systems and implementors of
protocol stacks, respectively).

A possible objection to this is the unfamiliarity of most engineers with the higher-order-logic
language that our specifications are expressed in. There is indeed some initial overhead in adapting
to the notation for those who typically work only with C or C++ code, but we do not believe that
this is a major problem for anyone motivated to look at the specifications, and it is ameliorated
by our textual annotation and typesetting. We have seen practicing software engineers, without
detailed knowledge of TCP or previous exposure to HOL, use the specification to resolve subtle
questions about TCP behavior.

12.2.2 For Bug Finding. Finding bugs was not one of our goals, but our work identified 33
issues with the implementations we tested, detailed in a technical report [21, §9], and 260+ places
in our specifications where those three implementations differ. Most of the former appear to us to
be errors, many of which would be very hard to find with normal testing, which may be worth
considering by the current maintainers of these implementations. The nature of those issues shows
how discriminating testing against our specifications can be.

12.2.3 For Testing New Implementations. We developed our specifications in large part by
reverse-engineering from three specific implementations (together with careful reading of the
existing RFCs and texts), building validation tools to test the specifications against existing im-
plementations. But the same tools could be used to test future implementations against the speci-
fications, for high-quality automated conformance testing. Doing so would be mainly a matter of
engineering, to package up our testing tools to make them usable in a more push-button fashion.
We would have liked to do this, but lacked the resource required (perhaps a person-year of effort).
Some initial experiments in this direction are now underway (in 2017). Having done so, one could
test a wide variety of implementations and track implementations through version changes, evolv-
ing the specification as required (whereas here we froze the three implementations we considered
at the start of our work on TCP).

Interpreting the output of our trace-checking tools is a moderately skilled task that involves
diagnosing any discrepancy between implementation behavior and what the specifications allow,
tracking it down to either a bug in the implementation, an error in the specifications, or a limi-
tation of our symbolic evaluation tools. Updating the specification as appropriate requires some
familiarity with the HOL language but does not need real theorem-proving expertise (one member
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of the project, then an undergraduate intern, went from zero knowledge of HOL to contributing
useful specification in a matter of weeks).

The performance of our symbolic evaluation tools was a substantial issue: they were fast enough
to be usable, but still a major bottleneck. Preliminary experiments in 2017 suggest that this is now
much less of a concern.

Most substantially, changing the symbolic evaluator (which might be required by any significant
change in the specification) is a highly skilled task, needing deep familiarity with HOL4. This
highlights the desirability of making specifications that can be made executable as test oracles in
simpler ways, without needing a special-purpose evaluator and theorem-prover expertise.

12.2.4 As a Reference for Proposed Changes. TCP continues to evolve, albeit slowly, and our
specifications could provide a basis for precise discussion of future changes. It would be desirable to
isolate the aspects of the specification that are subject to more frequent change, e.g., restructuring
to factor the congestion control aspects out into replaceable modules.

12.2.5 As a New Internet Standard. In principle, our specifications could form the basis for new
IETF Internet Standards for TCP, UDP, and Sockets, much more rigorous and detailed than the
existing RFCs. This is more a political question than a technical one, requiring engagement with
the IETF community that we did not embark on (though one would want to do further testing, as
outlined above, to ensure that the specifications are not overfitted to the three implementations
we tested).

12.2.6 As a Basis for Formal Reasoning. Given our protocol-level and service-level specifica-
tions, one could think of formal mechanized proof:

(1) correctness of the executable code of a TCP implementation with respect to the protocol-
level specification (either one of the existing mainstream C implementations or of a clean
reimplementation written with verification in mind); or

(2) correctness of our protocol-level specification with respect to our service-level
specification.

Together these would “prove TCP correct,” establishing much greater confidence in the relation-
ships that we established only by testing here. However, the scale and complexity of the specifi-
cations, and of any TCP implementation, make either an intimidating prospect with current proof
technology.

One could also attempt to prove correctness of higher-level communication abstractions im-
plemented above our service-level specification, as Compton [31] and Ridge [89] did above our
UDP specification and a simplified TCP specification. This would be verification of executable
implementations rather than the more usual distributed-algorithm proofs about nonexecutable
pseudocode or automata-theoretic descriptions.

12.3 General Lessons for New System Development

This work can be seen within a line of research developing and applying rigorous semantics for
particular aspects of real systems. We were particularly inspired by the work on x86 Typed As-
sembly Language of Morrisett et al. [71], and by Norrish’s earlier work on C semantics [77]. In
turn, our experience here influenced our later work on semantics for other aspects of real-world
systems, including multiprocessor concurrency [37, 94, 98], C/C++11 concurrency [10], the C lan-
guage [69], ELF linking [53], POSIX filesystems [92], and the TLS protocol [52]; it also influenced
that of Maffeis et al. on JavaScript semantics [66, personal communication].
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All of these involve specifications that are in some way executable as test oracles, and many
involved investigation of de facto standards that hitherto have only been expressed as prose spec-
ification documents. At first sight one might think that for each of these the problem is one of
formalizing an existing basically well-defined prose specification, after which one might work on
verification and proof. In fact, it is more typical to find that the existing abstractions are poorly
defined, and one actually has to create a well-defined abstraction, in consultation with the relevant
practitioners.

Our work on TCP demonstrated that pre-existing real-world protocols can be specified rigor-
ously, but at the cost of significant effort and using relatively sophisticated tools. Reflecting on
why the latter was necessary for TCP/IP/Sockets, we now argue that applying rigorous methods
at design time could be done much more straightforwardly and have even greater benefits.

Our first conclusion is that:

Specifications should be expressed in some executable-as-test-oracle form.

More specifically, this applies to any specification that is seriously intended as a definition of
the allowed behavior for some abstraction, where one cares about the conformance between the
specification and one or more implementations, and where the implementations are developed
using the usual test-and-debug methods. Network protocols are prime examples of this, as there
one expects there to be multiple implementations that have to interoperate, but there are many
other cases too.

In other cases, of course, a prose specification serves only as a starting point for some software
development, and the code quickly becomes primary. There one may have less incentive to test
against the specification, and the specification may not be maintained over time.

Our second lesson is that, to make this feasible:

Managing specification looseness is key.

There are two issues: that of writing the specification to precisely capture any intended looseness,
and that of doing so in a way that makes the specification still usable for testing implementations
against.

In the simplest case, one has a tight specification that is completely deterministic, allowing no
freedom for variation in the observable behavior (except performance) of conforming implemen-
tations. Such a specification can trivially be used as a test oracle, simply by running it and an
implementation on the same inputs and comparing the results, and it can also serve directly as
an executable prototype implementation. In this case, one can write the specification in a conven-
tional programming language—perhaps best in the pure fragment of a functional language (such
as OCaml, Haskell, or F�) or in a specification language that supports code extraction (such as
Coq, Isabelle/HOL, HOL4, or Lem), for maximum clarity and to prevent accidental introduction
of behavioral complexity from imperative code, but it could be in any programming language—
even C—so long as one is clear that one is writing a specification, aiming for clarity, rather than a
conventional implementation, aiming for performance.

The situation we have dealt with in this article is at the opposite extreme: our TCP/IP/Sockets
specifications had to be highly nondeterministic (c.f. Section 1.6 and Section 3.3.1) to admit the
variation in implementation behavior, with much internal nondeterminism, and that meant that
we had to use a rich mathematical language to express them (in our case, the higher-order logic of
HOL4), and we had to build sophisticated tools (as described in Section 7) to construct test oracles
from the specifications.
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Looking in more detail at the kinds of loose specification that were required suggests several
points to bear in mind for design-time specification:

12.3.1 Implementation-Internal Nondeterminism. Some nondeterminism is required to accom-
modate the run-to-run variation in behavior of a single implementation, e.g., the variations due to
OS thread scheduling, pseudorandom choices, and timer rate variations. We modeled these with
internal nondeterminism, and our test oracle dealt with them searching over the transition graph
and by constraint solving. In retrospect, it would have been better to handle these by instrument-
ing the implementations to emit visible labels at these points, letting the test oracle resolve these
choices immediately (we were overly concerned not to perturb the systems that we were analyz-
ing, and we also did not want to rule out testing of the Windows implementations, for which
we did not have source access); this would make checking much simpler and faster. A clean-
slate protocol design would be able to build visibility of internal choices into the design from the
start.

Given this, one might express an executable-as-test-oracle specification in a much more straight-
forward way, e.g., as an explicit pure-functional predicate computing whether an arbitrary trace
is allowed, or operationally as an abstract machine/labeled transition system with a pure function
that enumerates the allowed transitions at each state (parametric on the observed internal choices).
Then no analog of our HOL4 symbolic evaluation or backtracking search would be required.

There are also now widely used tracing frameworks, e.g., DTrace [26, 68] (http://elinux.org/
Kernel_Trace_Systems), that would simplify the instrumentation required.

12.3.2 Superficial Inter-implementation Variation. In some cases, we dealt with inter-
implementation variation by parameterizing the specification, as for the BSD-specific behavior
in the bind_5 of Figure 6. This is not a problem for testing, as one knows when using the test
oracle which implementation is being used, but such variations are undesirable (as they might
well lead to hard-to-detect portability issues) and should rarely be needed if doing design-time
specification, rather than capturing existing implementations that have already diverged.

12.3.3 Debatable Looseness. In other cases, it is debatable how loose a specification should be.
For example, when a TCP endpoint receives overlapping TCP segments, we chose in our specifi-
cation to permit them to be reassembled into a stream in any reasonable way, as we expect there
might well be interimplementation variation here. This required extra work to make a test oracle,
as described in Section 7.4. It is also arguably poor protocol design, as it raises the possibility that a
firewall will reassemble the segments in one way, analyze the result, and pass it through, while the
endpoint will reassemble them in another way into a different stream. For a new protocol design,
one might want to minimize this kind of looseness, both for checking and for robustness.

12.3.4 Scope/Coverage Completeness. Another place where some specifications are vague in
ways that would be better replaced by precise (but possibly loose) specifications is the response of
a protocol or other system to unexpected inputs: a good specification should define the (envelope
of allowed) behavior in response to any stimulus, to reduce the potential for security holes.

12.3.5 Major Variations. Finally, one has major variations, where the protocol specification
should be intentionally loose to allow real implementation variation and protocol improvements
over time. For TCP the obvious example is the congestion control subsystem of the protocol. Here
we would have liked to factor that out into a pluggable part of the specification, restricting the main
specification to just enough to ensure functional correctness of the protocol. If done at protocol
design time, we believe that that would have brought a useful focus on the minimal correctness
properties that the protocol was intended to achieve.
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12.3.6 Experience with Other Executable-as-Test-Oracle Specifications. Many of the same ideas
underlie our later work on multiprocessor and C/C++ concurrency, C, ELF linking, POSIX filesys-
tems, and the TLS protocol. The relationships to industry practice and the technical approach to
making specifications executable as test oracles differ in interesting ways in each case.

For multiprocessor concurrency (x86, IBM POWER, ARM, RISC-V) [3, 37, 38, 45, 86, 94, 98], there
are a variety of existing (or, for RISC-V, in-progress) implementations, and experimental investi-
gation has been a crucial part of our work, but there is also an ultimate authority in each case to
discuss design questions with the vendor architects or (for RISC-V) design committee. We have
established large suites of small “litmus” test cases with potential non-sequentially consistent exe-
cutions, both handwritten and generated using the DIY tool of Alglave and Maranget [1]. There is
a great deal of specification looseness and implementation nondeterminism, which at the start of
our work was exceedingly poorly characterized by the prose specification documents, but which
now has largely been made mathematically precise for each of those architectures. Two speci-
fication styles have been used: operational models, with labeled transition systems (LTSs) with a
computable function calculating the set of enabled transitions from each state, and axiomatic mod-
els, expressed as computable predicates over candidate executions. Both can be made executable
as test oracles for small concurrency tests, computing the set of all model-allowed behavior by
exhaustive search of the LTS or exhaustive enumeration or constraint solving, respectively. These
are embodied in the rmem (previously ppcmem) [36, 86] and herd [2, 3] tools.

For the sequential aspects of processor instruction-set architecture (ISA) semantics, we have
built models for fragments of a variety of architectures, including IBM POWER, ARM, MIPS,
CHERI [108], x86, and RISC-V, in our Sail domain-specific language [6] and in Fox’s L3 domain-
specific language [39]. While there is some loose specification/nondeterminism here, with unspec-
ified values and more general unpredictable behavior (sometimes bounded), for many aspects one
can test against implementation behavior simply by executing the model. The L3 formal model
has been a central tool in the CHERI design process. For all of these, accessibility of the mod-
els has been a principal concern, leading to the development of the L3 and Sail domain-specific
languages, reminiscent of vendor pseudocode languages but more clearly defined, and with care-
fully limited expressiveness. There is also closely related work in ARM by Reid [88], and Campbell
and Stark [25] have used more sophisticated theorem-prover and SMT-based methods to generate
interesting test cases.

Our work on the C++ and C concurrency models [10] was principally during the design of the
C++11 ISO standard (later folded into C11), in collaboration with the C++ WG21 Concurrency
group. Here there were no existing compiler implementations to compare against. It is also harder
than in the hardware case to cause implementations to exhibit a wide range of their possible behav-
ior, as it requires triggering compiler optimizations, though the model was used later for compiler
testing by Morisset et al. [70]. Making the specification rigorous and executable helped uncover a
number of issues in the design. The model was phrased as a computable predicate over candidate
executions, which could be exhaustively enumerated for small litmus tests. We developed a mod-
est family of handwritten litmus tests and built the cppmem tool [9], allowing users to explore
the exhaustively enumerated executions. Later work on C/C++ concurrency [7, 8, 58, 67, 93] has
improved the model; it has also rephrased the model in explicitly relational styles, using herd [2],
Alloy [107], or Rosette [24], to allow the use of solvers to answer questions about variant tests and
models.

For the Cerberus sequential semantics of C [69], some aspects of the language are essentially
well specified by the prose ISO standard, while others—especially those relating to memory objects,
pointers, and so on—are either unclear or differ significantly between the ISO standard and the
de facto standard. We investigated the latter with surveys of expert programmers, rather than
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empirically. For this we build an executable-as-test-oracle specification via an elaboration from C
into a core language, equipped with an operational semantics that can be combined with a memory
object model that accumulates constraints. The elaboration captures the uncontroversial aspects of
the ISO standard and can be closely related to its prose. For small examples, this allows executions
to be exhaustively enumerated. We have handwritten a library of small test cases for the memory
object semantics, and also use established test suites and Csmith-generated tests [110].

The SibylFS semantics for POSIX filesystems [92] has a broadly similar character to the TCP
stream specification we describe here, defining the allowable traces of API calls and returns, and
was similar also in that the existing implementations together form the real standard, despite the
existence of the POSIX prose specification document. Learning from the experience with TCP,
great care was taken to make SibylFS efficiently executable as a test oracle, particularly when
managing nondeterminism. One key difference is that whereas Netsem used a transition relation,
SibylFS used a transition function returning a finite list of successor states, and encoded possibly
infinite branching using simple ad hoc symbolic constraints within the host state itself, rather than
in the HOL metalogic. This meant that many thousands of tests could be executed on real filesys-
tems and checked against the model in just a few minutes. Tests were generated by a semiautomatic
enumeration of interesting cases, as for TCP. In addition, there was an attempt to exhaustively test
API calls for which this was feasible (essentially, those that did not involve read and write), and
code coverage was used to ensure that all the lines of the model were exercised at least once during
testing.

The TLS protocol is similar to TCP in that its notional specification spans over a series of RFCs.
TLS does not include timers and does not specify an API. The nqsb-TLS stack [52] developed the
protocol logic in a pure style. It is used both as an executable implementation, by utilizing an ef-
fectful layer that sends and receives packets, and as a test oracle by checking a recorded trace.
In subsequent work [51], the nondeterministic choice points were made explicit, and a nondeter-
minism monad was used to generate exhaustive test cases. The nqsb-tls work complements the
TCP work in this article: at the core a pure functional implementation is used instead of a logic
system, which leads to a reusable stack, both as executable and test oracle. The ability to generate
test cases could be adapted to TCP in a similar way if the TCP model were made executable as an
implementation.

Our last main point is that:

Rigorous specification can help manage complexity.

As Anderson et al. write in their Design Guidelines for Robust Internet Protocols (“Guideline #1:
Value conceptual simplicity” [5]), the value of simplicity is widely accepted but hard to realize.
Writing a behavioral specification makes complexity apparent, drawing attention to unnecessary
irregularities and asymmetries in a way that informal prose and working code do not. One is nat-
urally led to consider each case, e.g., of an arbitrary TCP segment arriving at a host in an arbitrary
state, whereas when working with a prose specification it is all too easy to add a paragraph with-
out thinking of all the consequences, and when working with code it is all too easy to not consider
some code-flow path. Doing this at design time would help keep the design as simple and robust
as possible. It also opens the possibility of machine-checking completeness: that the specification
does indeed handle every case (for an earlier version of our specification, we proved a receptive-
ness property along those lines).

Specification is a form of communication, both within a design group and later to implementors
and users. The added clarity of rigorous specification aids precise communication and reduces
ambiguity.
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Drawing these together, if we were to design a new network protocol, we would:

(1) Clearly identify the part of the overall system that the specification is intended to cover,
defining the observable events that it should be in terms of, and how they would relate to
actual implementation events. Probably this should include both wire and software API
interfaces.

(2) Specify both the service that the protocol is intended to achieve (as for our service-
level stream specification of TCP) and the protocol internals (as our protocol-level seg-
ment/endpoint specification), and the relationship between the two.

(3) Be explicit and precise about any looseness in the specification, and (especially) that any
significant internal nondeterminism can be made observable. Aided by that, express the
specification, in one way or another, so that an efficient test oracle can be built directly
from the specification.
(a) In some cases, one could arrange for the specification to be completely deterministic

between observable events, and there one could write those parts of the specification
in an executable pure functional language, and then use that directly for testing and
as an executable prototype.

(b) In other cases, where one really does want to leave implementation freedom
(e.g., bounding TCP congestion control within some limits), that should be factored
out, and either one needs a more expressive specification language (as here) and a
constraint-solving checker or one should write a test oracle directly.

(4) Either test (or ideally prove) that the protocol-level specification does provide the intended
service.

(5) Set up a random test generation infrastructure, tied to the test oracle, to use for imple-
mentations.

Our experience in doing this has been very positive. We specified, in collaboration with the
designers, a new Media Access Control (MAC) protocol for the SWIFT experimental optically
switched network, by Dales and others [19], extracting a verified checker from a HOL4 speci-
fication and using that to check traces from ns2 and hardware simulations. With relatively low
effort, we quickly established a high degree of confidence in the protocol design and in its imple-
mentation, clarifying several aspects of the design in the process.
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