
A Data Layout Description Language for Cogent

(Extended Abstract)

Zilin Chen
1 2

Matthew Di Meglio
2

Liam O’Connor
2

Partha Susarla
1

Christine Rizkallah
2

Gabriele Keller
3

1
Data61, CSIRO

Sydney, Australia

2
UNSW

Sydney, Australia

3
Utrecht University

The Netherlands

1 Introduction

While purely functional languages allow for reasoning about

code equationally and productively, they often do not give

systems programmers sufficiently fine-grained control for

achieving the level of efficiency they desire. Our aim is to

reduce the effort required for producing reliable, efficient

systems.

Cogent [5] is a restricted uniqueness-typed purely func-

tional language for writing high-assurance systems code [1].

Cogent has a certifying compiler that generates efficient C

code [5, 7] by making use of Cogent’s uniqueness types.

Cogent programs do not exist in isolation. Typically, a

Cogent program constitutes a component of a larger system,

written in C, which is connected to the Cogent program us-

ing a foreign function interface (FFI). The aim, when building

a system using Cogent, is to write as much of it in Cogent

as possible, because the effort needed to verify low level

imperative C code is significantly higher than that needed

to verify Cogent code.

Cogent programs are defined as pure functions operating

on algebraic data types. The exact layout of these data types in
memory is determined by the Cogent compiler. Many of the

data structures in operating systems such as Linux could be

represented as algebraic types, however their exact memory

layout differs from that used by our Cogent compiler.

Therefore, the systems written in Cogent must maintain

a great deal of glue code to synchronise between two copies

of the same conceptual data structure [1]. As Cogent code

can only interact with the Cogent data representation, this

glue code is currently written in C. This code is tedious to

write, wasteful of memory, prone to bugs, has a significant

performance cost, and requires cumbersome manual verifi-

cation at a low level of abstraction. To solve these issues we

want to be able to write this type of code in Cogent.

To do so, we propose a new framework that allows for data

abstraction in Cogent programs. Rather than maintaining

two copies of data, we define a data description language,

Dargent, to describe the correspondence between Cogent

algebraic data types and the bits and bytes of kernel data

PriSC 2019, January 13, 2019, Lisbon, Portugal
This is the author’s version of the work. It is posted here for your personal

use. Not for redistribution.

structures — what we call the layout of the data. With Dar-

gent, the programmer can write code as usual, manipulating

ordinary Cogent data types, and after compilation the gen-

erated C code will manipulate kernel data structures directly,

without extensive copying and synchronisation at run-time.

This will improve performance by eliminating redundant

code, simplifying the integration of C and Cogent code, and

enabling users to write and verify more Cogent code rather

than reasoning about cumbersome C code. Dargent elimi-

nates the need for a standalone language for marshalling and

unmarshalling data (such as PADS [3], Nail [2]). Moreover,

it allows programmers a level of fine-grained control over

memory usage similar to that provided by C.

So far, we have designed Dargent (Section 2), imple-

mented some of the compilation phases, and formalised our

Dargent prototype design in Agda. We have also imple-

mented some essential extensions to the Cogent language

(Section 3) to accommodate the data layout descriptions.

2 The Dargent Language

Dargent describes how a Cogent algebraic data type may

be laid out inmemory, down to the bit level. Data descriptions

in Dargent will influence the generated definitions and

proofs that constitute the compilation certificate between

Cogent and the generated C code.

Figure 1 gives an illustrative example of a Dargent de-

scription in our current prototype. We describe a memory

layout for a Cogent record type containing two numbers

and a variant, {x : U8, y : U16, z : ⟨A X | B U16⟩}. As can
be seen from the ordering of the fields y and x, fields may

be placed in any order and at any location. This allows ac-

commodating data layouts where certain parts of the data

type must appear at particular offsets, such as with the con-

tainer pattern.
1
It also makes it possible to leave unreserved

space in between fields, accommodating data layouts which

do this to respect padding or alignment constraints in the

architecture.

In the record, the field y starts at bit 0 (0b), occupying 2

bytes (2B); the field x comes right after y, starting at byte

2, and takes 8 bits (8b). The variant field z is represented

according to the Nested description, offset by three bytes

1https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/
include/linux/kernel.h?h=v4.19-rc8#n995. Accessed on October 18, 2018.

1

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/kernel.h?h=v4.19-rc8#n995
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/kernel.h?h=v4.19-rc8#n995


layout Example = record { y : 2B at 0b

, x : 8b at 2B
, z : Nested at 3B }

layout Nested = variant (1b at 2b)

{ A(1) : 32b at 1B

, B(0) : 16b at 24b }

{
x : U8 , y : U16 , z :

〈
A X | B U16

〉 }

y x

A (pointer to heap object X)

B

if=1

if = 0

0B 1B 2B 3B 4B 5B 6B 7B 8B

Figure 1. A Cogent type (upper-right) laid out (lower-right) according to a Dargent spec (left).

(3B). That Nested description reserves the third bit of the

first byte (the fourth byte of the original object) to determine

which of the two constructors A and B is active. If the bit is 1,

the constructor A is active, with the additional pointer-to-X
payload stored at a one-byte offset (the fifth to eighth bytes

of the original object). If the bit is 0, the constructor B is

active, with the U16 payload stored at a three byte offset (the
seventh and eighth byte of the original object).

3 Extensions to Cogent

A number of extensions must be made to Cogent to accom-

modate our new data layout description framework.

Type system The type system needs to incorporate Dar-

gent data layouts. In Cogent, there are two types of records:

(heap-allocated) boxed records and (stack-allocated) unboxed

records. Previously, we proposed an explicit pointer type to

carry data layout information [6]. However, such a pointer

type would merely be a special case of a boxed record with

only one field. Therefore, boxed records are the only top-

level heap-allocated datatypes that need to be laid out. Thus

Dargent descriptions should be attached to boxed records.

Code generator The code generator needs to compile each

abstract read and write operation on Cogent data types to

the equivalent concrete operation in C using information pro-

vided by Dargent. Furthermore, because Cogent programs

often copy (parts of) heap allocated objects to the stack, the

compiler must also generate code to convert between the

stack and heap representations of each heap-allocated type.

Verification framework Cogent has a certifying com-

piler [5, 7] which in addition to C code, produces a shallow

embedding of Cogent in Isabelle/HOL and a formal proof

that the generated C code refines the shallow embedding.

Any correctness theorem proven about the shallow embed-

ding also applies to the generated C. We plan to update our

verification framework to account for Dargent. The C se-

mantics [4, 8] our Cogent compiler relies on does not allow

a reinterpretation or multiple interpretations of heap objects.

This limitation has an inevitable impact on our Dargent

design and on our Dargent compiler implementation. To

account for this, the compiler explicitly generates setter and

getter functions for abstract datatypes embedded in a com-

posite type, such as records.Whenwe update our verification

framework, we will have to axiomatise the correctness of

these setter and getter functions. While they cannot be veri-

fied in our C framework, their implementations should be so

trivial that their correctness can be established by inspection.

4 Extensions to Dargent

The prototype data description language and framework en-

visioned here only scratches the surface of the potential use

cases of Dargent. In addition to several syntactic improve-

ments, we plan to extend our initial prototype of Dargent

to support a number of additional semantic features.

Tighter C Integration To access a data structure defined

in C, one must define a highly platform-specific Dargent

layout that matches the alignment, padding, integer size, and

pointer size of the architecture and C compiler being used.

Ideally, we would like to be able to automate this process,

replicating the exact layout decisions made by the C compiler

so that C definitions can automatically be converted into

Dargent for each compiler and architecture being used.

Layout Polymorphism By taking a Cogent program and

adding Dargent layout descriptions, we mix the abstract

functional model with concrete implementation details. Thus

we cannot simply run the same program with different heap

layouts without changing either the program or the layout.

A Cogent program that does not make use of kernel APIs

or foreign C functions can be defined independently of the

layout used. For this reason, we plan to extend Cogent to

support layout polymorphism. Such a feature would allow

Cogent functions to be defined generically for any layout,

and instantiated to particular layouts by the compiler, based

on their call-sites.

Expressiveness Our Dargent prototype currently sup-

ports a limited form of layouts. We plan to extend Dargent

to allow for defining bit- and byte-level endianness, neces-

sary for implementing network protocols, dynamically sized

data, dependent fields, and constraints on permissible values.



References

[1] SidneyAmani, AlexHixon, Zilin Chen, Christine Rizkallah, Peter Chubb,

Liam O’Connor, Joel Beeren, Yutaka Nagashima, Japheth Lim, Thomas

Sewell, Joseph Tuong, Gabriele Keller, Toby Murray, Gerwin Klein, and

Gernot Heiser. 2016. Cogent: Verifying High-Assurance File System

Implementations. In International Conference on Architectural Support
for Programming Languages and Operating Systems. Atlanta, GA, USA,
175–188.

[2] Julian Bangert and Nickolai Zeldovich. 2014. Nail: A Practical Tool

for Parsing and Generating Data Formats. In Proceedings of the 11th
USENIX Symposium on Operating Systems Design and Implementation.
USENIX Association, Broomfield, CO, 615–628. https://www.usenix.
org/conference/osdi14/technical-sessions/presentation/bangert

[3] Kathleen Fisher and DavidWalker. 2011. The PADS project: an overview.

In Proceedings of the 14th International Conference on Database Theory.
ACM, New York, NY, USA, 11–17. http://doi.acm.org/10.1145/1938551.
1938556

[4] David Greenaway, June Andronick, and Gerwin Klein. 2012. Bridging

the Gap: Automatic VerifiedAbstraction of C. In International Conference

on Interactive Theorem Proving. Springer, Princeton, New Jersey, USA,

99–115.

[5] Liam O’Connor, Zilin Chen, Christine Rizkallah, Sidney Amani, Japheth

Lim, Toby Murray, Yutaka Nagashima, Thomas Sewell, and Gerwin

Klein. 2016. Refinement Through Restraint: Bringing Down the Cost

of Verification. In International Conference on Functional Programming.
Nara, Japan.

[6] Liam O’Connor, Zilin Chen, Partha Susarla, Christine Rizkallah, Gerwin

Klein, and Gabriele Keller. 2018. Bringing Effortless Refinement of

Data Layouts to Cogent. In International Symposium On Leveraging
Applications of Formal Methods, Verification and Validation. To appear.

[7] Christine Rizkallah, Japheth Lim, Yutaka Nagashima, Thomas Sewell,

Zilin Chen, Liam O’Connor, Toby Murray, Gabriele Keller, and Gerwin

Klein. 2016. A Framework for the Automatic Formal Verification of

Refinement from Cogent to C. In International Conference on Interactive
Theorem Proving. Nancy, France.

[8] Harvey Tuch, Gerwin Klein, and Michael Norrish. 2007. Types, Bytes,

and Separation Logic. In ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages. ACM, Nice, France, 97–108.

https://www.usenix.org/conference/osdi14/technical-sessions/ presentation/bangert
https://www.usenix.org/conference/osdi14/technical-sessions/ presentation/bangert
http://doi.acm.org/10.1145/1938551.1938556
http://doi.acm.org/10.1145/1938551.1938556

	1 Introduction
	2 The Dargent Language
	3 Extensions to Cogent
	4 Extensions to Dargent
	References

