
A Performance Evaluation of Rump Kernels as a
Multi-server OS Building Block on seL4

Kevin Elphinstone
UNSW and Data61

k.elphinstone@unsw.edu.au

Amirreza Zarrabi
UNSW and Data61

a.zarrabi@unsw.edu.au

Kent Mcleod
Data61

Kent.Mcleod@data61.csiro.au

Gernot Heiser
UNSW and Data61

gernot@unsw.edu.au

ABSTRACT
In the paper, we argue that it is worthwhile to revisit build-
ing microkernel-based multiserver operating systems, and
introduce a multiserver OS architecture. We argue that recent
formal verification of microkernels provides a compelling
platform for constructing general purpose systems, and that
existing systems are not appropriate to take advantage of a
formally verified microkernel.

Our vision is of mostly-POSIX multiserver systems based
on rump kernels, with a small set of fundamental services and
frameworks. We expect the approach to provide a balance
between componentisation, development effort, and legacy
system compatibility.

We present our initial efforts with a promising performance
evaluation of a rump kernel running on seL4.

ACM Reference format:
Kevin Elphinstone, Amirreza Zarrabi, Kent Mcleod, and Gernot
Heiser.2017. A Performance Evaluation of Rump Kernels as a Multi-
server OS Building Block on seL4. In Proceedings of APSys ’17,
Mumbai, India, September 2, 2017, 8 pages.
DOI: 10.1145/3124680.3124727

1 INTRODUCTION
Dating back to the 1970s, the vision of microkernel-based
operating systems has been of a more modular, extensible,
reliable, and secure operating system (OS) compared mono-
lithic OSes [Brinch Hansen 1970].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
APSys ’17, Mumbai, India
© 2017 Copyright held by the owner/author(s). Publication rights licensed to
ACM. 978-1-4503-5197-3/17/09. . . $15.00
DOI: 10.1145/3124680.3124727

The microkernel-based multiserver is one embodiment of
the microkernel vision. In such a system, OS-services are
just applications that provide services to other applications.
The services-as-an-application model intrinsically provides
strong modularity via enforced application boundaries, ex-
tensibility via application replacement or addition, improved
reliability by fault containment and service restart [Herder
et al. 2006], and enhanced security. While the last remains
challenging, it becomes more tractable via a reduction in the
trusted computing base (TCB) and the establishment of clear
trust dependencies. This has been advocated at least since the
Orange Book [DoD], and explored in the context of separa-
tion kernels [Rushby 1984], and microkernels [Hohmuth et al.
2004].

Application

seL4

libc

Driver

Library OS

Proc. MemoryNaming Device Access

File System

Trusted
Service

Network
Stack &
Driver

App. App. App. App.

Driver

Figure 1: An example multi-server architecture.

Our vision is to enable the construction of multiserver
systems on seL4 that can leverage the formal guarantees of
the kernel with only modest effort. To this end we envisage
a distributed (but local) framework of co-operative protocols
and a small number of fundamental services that enables a
wide variety of multiservers to be constructed without being
tied to a specific instance or configuration of a system, as
shown in Figure 1.

APSys ’17, September 2, 2017, Mumbai, India K. Elphinstone et al.

The fundamental multiserver services shown in Figure 1
consist of simple low-level services to locate high-level ser-
vices (naming), coordinate and manage application processes
(proc), arbitrate access to physical memory (memory), and
manage access to devices for device drivers (device access).
These fundamental services define a framework and protocols
that facilitate the creation of services to raise the level of
abstraction up to applications.

Beyond the low-level services, the system is free to meet
domain-specific architectural needs. In general, systems are
composed of only the services required and the principle of
least authority (POLA) is applied pervasively to ensure a
robust and secure system in the presence of a fault or exploit
in a untrustworthy component of the system. Four scenarios
are shown in Figure 1.

(1) A unikernel-like application, vertically integrating
the application, libraries, a library OS, and driver,
thus forming an isolated software stack spanning
driver to application for efficiency.

(2) A trusted service with only a dependence on the
lower-level fundamental services which form the
trusted computing base (TCB). The trusted service
may be developed using rigorous application of for-
mal methods or more traditional methods, though
either way, it relies on the isolation guarantees pro-
vided by seL4 to preserve security.

(3) A combined network stack and driver that provides
network services to applications.

(4) A software stack of applications, a shared file service,
and potentially shared storage driver. This stack fea-
tures “horizontal” protection boundaries to improve
robustness and security.

Our long-term focus is on the frameworks and services that
enable flexible system construction, together with future ex-
amination of raising the formal reasoning foundation beyond
seL4. However, taking a practical perspective, a sufficiently
complex proof-of-concept multiserver is required to validate
the system with real-world use cases. To this end, we are us-
ing rump kernels to provide (potentially shared) OS services
and legacy POSIX support to applications without having
to re-engineer or implement large code bases [Kantee 2012].
Rump kernels are subsets of the NetBSD kernel running in
alternative environments (see Section 3 for details). This pa-
per presents our port of the Rumprun unikernel (a specific
instance of a rump kernel) to seL4 and evaluates its perfor-
mance. This work provides a baseline characterisation of a
rump kernel on seL4, which we hope will form a flexible
building block for future multiserver systems.

We argue it is time to revisit a microkernel-based multi-
server OS. Microkernels can now provide a guarantee of
correctness and security [Klein et al. 2014]; together with
library OSes they can provide legacy POSIX compatibility

with low engineering effort. The next section details our
argument in the context of related work.

2 MOTIVATION AND RELATED WORK
In this section we review related work and propose practical
challenges that need addressing in addition to any longer-
term goal of formal verification or reasoning about low-level
services.

2.1 Verification
The successful application of formal verification to the seL4
microkernel [Klein et al. 2009] has established a clear value
proposition for basing a system on a microkernel. seL4 pro-
vides mathematical guarantees of functional correctness, and
of some security properties (integrity, access-based confiden-
tiality, and a formulation of the absence of information flow
[Murray et al. 2013; Sewell et al. 2011]). Unlike previous
microkernels, a multiserver OS on seL4 can rely on correct-
ness and security properties of the kernel that rule out a broad
class of reliability and security problems.

In contrast to previous microkernel-based systems (for ex-
ample, Mach or Windows NT [Solomon 1998], hybridisation,
i.e. the performance-motivated addition of functionality to
the kernel instead of providing it through user-level servers,
has a clear detrimental consequence: adding code to the ker-
nel invalidates any proof guarantees, and may be sufficiently
invasive to make proof re-establishment impractical.

In theory, one could retain microkernel verification guaran-
tees by architecting a system around a large OS server (e.g.
the UNIX server in Mach or even a guest OS in a virtual
machine). However, this places a large software component
in the TCB of all dependent applications (if not the entire
system), as it creates false dependencies for applications only
dependent on a small subset of the services. Thus the benefits
of verified microkernel are undermined by an unnecessarily
bloated TCB.

Challenge: OS services must be functionally decom-
posed, to avoid expanding the TCB via false depen-
dencies.

Challenge: Global OS services should be avoided
where possible, and any global OS service must aim
for verifiability so as to not undermine verification
guarantees of the underlying kernel.

2.2 POSIX
The desire to retain API compatibility in order to provide
a gradual evolution path for legacy software is a recurring
theme, both in industry and research. Drawbridge examines
the problem by proposing a simplified API that supports li-
brary OSes, and consequently, legacy applications [Porter
et al. 2011]. However, the services required by the library

A Performance Evaluation of Rump Kernels on seL4 APSys ’17, September 2, 2017, Mumbai, India

OS are provided by a centralised, rich API of the underlying
kernel, resulting in a large TCB. Howell et al. [2013] build
upon Drawbridge to support POSIX applications on Microsoft
Windows. This API diversity is aligned with our goals, but
still relies on a monolithic, feature-rich OS to provide core
services.

(Re)building operating systems with low effort has also
been approached by many. The SawMill project attempted
to evolve Linux into a multiserver OS by extracting parts of
Linux into services [Gefflaut et al. 2000]. The project suc-
ceeded in extracting a file system, and identified distribution
issues as one of the main challenges in building a multiserver
system.

The narrower (but practically very important) problem of
re-using existing device drivers has been addressed by hosting
them either in individual (minimally-configured) guest OSes,
each running their own virtual machine (VM) [LeVasseur
et al. 2004], or a common administrative VM [Fraser et al.
2004]. Again, these approaches suffer from a large TCB, in
this case a whole Linux kernel.

Challenge: Existing approaches to simplifying the
provision of legacy OS services and code are still
dependent on large monolithic OS components.

2.3 Implicit Authority
Graphene has similarities to our vision of constructing a mul-
tiserver OS from a library OS [Tsai et al. 2014]. It builds a
distributed POSIX abstraction between co-operating uniker-
nel instances within a sandbox. However, Graphene assumes
an underlying implementation of OS services, accessible via
a Drawbridge-like platform adaption layer (PAL), and con-
sequently assumes that the underlying (monolithic) OS ser-
vices have complete access to the sandbox and Graphene
picoprocesses in order to provide the services. This assump-
tion is not true in a small microkernel environment where
the OS services are unprivileged user-level processes. In
a multiserver environment, OS services only have access
to explicitly-shared memory between services and clients.
Implementing a system call, such as fork(), that assumes
access to the client’s complete memory range and “in-kernel”
book-keeping state becomes challenging, even in scenarios
where servers violate the principle of least authority (POLA)
and have complete authority to manipulate their clients. In
a system designed with POLA, fork() is problematic as it
relies on access to all state required to create a child of the
parent. In a multiserver system, this state is distributed across
multiple servers of varying trustworthiness, and thus fork()
becomes a distributed coordination and snapshot problem
involving potentially uncooperative participants.

Challenge: Legacy APIs that assume a central imple-
mentation and global authority should be avoided..

Graphene also does not explicitly address memory sharing,
as would be required for efficient implementation of POSIX
read()/write() semantics to avoid extra copying between
clients and servers. Instead, it falls back on the drawbridge
ABI’s implicit authority to access the client’s memory.

Challenge: OS services must not rely on total author-
ity over their clients.

Graphene’s security model is also unsuitable for imple-
menting a trusted service shared between mutually distrusting
clients, such as an encryption or key storage service. This is a
result of Graphene’s strict sandboxing model, where a service
is either inside the sandbox (and at the mercy of its clients),
or outside and inaccessible by clients.

VirtuOS [Nikolaev and Back 2013] decomposes an operat-
ing system into multiple service domains for a single process,
and thus encounters the baked-in assumption in POSIX of
system calls having implicit authority over a process. VirtuOS
also avoids tackling the distributed shared-memory coordina-
tion problem required for efficient POSIX read()/write(),
and therefore has to introduce an extra memory copy to an
intermediate buffer in the system call path. It also does not
support mmap() of the storage service, due to lack of dis-
tributed memory management.

Our goal is build the distributed framework required to
enable efficient implementation of POSIX I/O without resort-
ing to either a monolithic VM and I/O service in the case of
Graphene, or the overhead of extra copying of VirtuOS. We
expect to revisit the work of the SawMill VM framework,
which tackled distributed VM within a multiserver environ-
ment, but without the benefit of an underlying capability
model for fine-grained authorisation [Aron et al. 2001].

Challenge: Virtual memory must be a distributed
framework capable of securely sharing memory where
and only where required.

2.4 Library OSes
The concept of a Library OS was originally introduced in
1990’s as a per-application customisation method [Anderson
1992] but it lacked of legacy compatibility. Library OSes
have recently been examined as a way to provide improved
isolation between subsystems [Porter et al. 2011], completely
decoupling the application’s OS personality from the host
OS. A small abstraction layer connects the library OS to the
underlying platform.

Unikernels [Madhavapeddy et al. 2013], designed for
Cloud services, are an extreme specialisation of a Library OS,
treating each service as a single-purpose application, com-
piled into a standalone, bootable image. This image includes
the entire software stack (system libraries, language runtime,
and applications) while stripping away unused functionality
at compile-time. This potentially improves system efficiency,

APSys ’17, September 2, 2017, Mumbai, India K. Elphinstone et al.

by eliminating duplication between the guest OS and the hy-
pervisor and avoiding user-kernel boundary crossing. With
the exception of Graphene described above, the design only
targets single-process applications and omits some of the com-
monly used multiprocess abstractions (e.g. fork(), signals,
or System-V IPC).

Graphene-SGX removes the need to trust the underlying
OS by utilising Intel’s SGX extensions to run library OSes in
SGX enclaves [Tsai et al. 2017]. Graphene-SGX uses tech-
niques that are complementary to our vision, such as shielding
applications that are interacting with an untrusted service us-
ing runtime checks. We envisage utilising shielding where
appropriate, however, given trusted fundamental services,
we also envisage the equivalent of software-implemented
formally-guaranteed enclaves, with consequent improved per-
formance by not needing shielding when appropriate, and not
requiring encrypted communication between co-operating
enclaves.

The rump kernel project [Kantee 2012] aims to make the
NetBSD OS a portable software stack, i.e. a library OS
targeting a variety of execution environments. It provides
support for running unmodified kernel code in user processes
or on bare metal, and grouping kernel code into components
according to their functionality and dependencies to tailor
the library OS to specific applications. We hope to leverage
rump kernels to validate the projects claim of enabling “you
to build the software stack you need without forcing you to
reinvent the wheels”.

Challenge: Leverage existing library OSes to provide
POSIX OS services and compatibility.

2.5 Summary
We have outlined recent work that tackles similar problems to
what we expect to tackle in building a multiserver on seL4. In
our analysis we have identified challenges to either applying
recent work, or overcoming its limitations. Addressing the
challenges in their entirety is an ambitious vision. As a first
step towards building a multiserver OS using existing compo-
nents, we ported the Rumprun bare-metal kernel (BMK) (a
unikernel) [Kantee 2012] to seL4, including the underlying
drivers (in our case we examined networking). This first step
serves several purposes: (1) It shows that OS services can be
quickly developed from unikernels with modest effort, (2) it
serves as a performance baseline for evaluating the perfor-
mance of unikernels as services, (3) it provides a realistic
environment for developing the distributed protocols required
to coordinate multiserver systems.

3 RUMPRUN UNIKERNEL
In this section, we provide an introduction to the Rumprun
Unikernel and surrounding concepts as described by Kantee

Application

Platform

libc

Rump Kernel syscall Layer

Rump Kernel

Platform Adaption Layer

A
p

p
licatio

n

net vfs dev

L
ib

rary O
S glue code

Figure 2: Rump kernel overview.

[2012]. Figure 2 provides an architectural overview of Rump
kernels in general.

Anykernel is defined as kernel code that “allows the
kernel’s unmodified drivers to run in various configu-
rations such as application libraries and microkernel
style serrvers, and also part of a monolithic kernel”.
In the anykernel context, drivers also include file
systems and network stacks.

With reference to the Figure 2, the anykernel soft-
ware components consist the virtual file system layer
(VFS), the BSD networking stack (net), and the asso-
ciated device driver (driver).

Rump kernels are an instance of anykernel code com-
bined with glue code and a platform adaption layer
that provides an execution environment for anykernel
code that is compatible with the what would normally
be the surrounding NetBSD kernel. The rump kernel
can be tailored to a specific application by including
or excluding kernel functionality from the anykernel
subset of NetBSD.

The glue code and platform adaption layer provide
an interface to threads, synchronisation, scheduling,
memory allocation, interrupt delivery and device ac-
cess management. Depending on the adaption layer,
a rump kernel can run as a normal process hosted
by an OS. For example, the threads interface would
be implemented by the POSIX thread support of the
host OS. Alternatively, a rump kernel my run as a
native software stack where the platform adaption
layer implements thread support natively.

The rump system call layer provides access to the
rump kernel from a client. Access can be via direct
function calls in the can the client is linked with the
rump kernel to use it as a library OS, or access can

A Performance Evaluation of Rump Kernels on seL4 APSys ’17, September 2, 2017, Mumbai, India

be via remote procedure calls in the case of a rump
kernel being used as a server on a microkernel.

Rumprun BMK (bare metal kernel) is a specific con-
figuration of an instance of a rump kernel with a
platform adaption layer that supports running the
anykernel natively, i.e. on bare metal or within a
virtual machine. Rumprun BMK unikernel provides
services to a client by acting as a library OS, thus
forming a unikernel.

4 SEL4 AS RUMPRUN PLATFORM
LAYER

As an initial step towards our vision, we modified the
Rumprun x86 platform layer to execute on seL4, thus al-
lowing us to run Rumprun POSIX applications, a rump kernel
instance, and the shared Rumprun runtime layer. Our goal
was to evaluate performance of the library OS and the effort
required to run it on seL4. It also provides a performance
baseline implementation of a library OS on seL4 prior to
introducing any future frameworks and services.

We started with the Rumprun BMK platform and modified
it to use seL4 abstractions rather than low-level hardware
mechanisms. These changes can be grouped into the follow-
ing categories:

• Execution contexts Rumprun provides a low-level
non-preemptive threading implementation that man-
ages thread resources and scheduling assuming a
single memory address space. A rump kernel binds
thread contexts to virtual CPUs. On seL4 we bind
this virtual CPU to a single seL4 thread resulting in
a co-operative threading strategy where Rumprun re-
tains its own scheduling policy and implementation.
• Interrupt delivery On the Rumprun BMK, a hard-

ware interrupt will preempt the CPU and run an in-
terrupt handler on the current thread’s context that
defers actual interrupt processing by recording the
interrupt number and marking the Rumprun interrupt
handling thread as runnable. The handler then re-
sumes the previously running Rumprun thread. The
interrupt handling thread will eventually be sched-
uled and then handle the interrupt.

seL4 delivers interrupts by signalling a Notifica-
tion object that is associated with the interrupt. To
receive an interrupt, a seL4 thread waits for a Notifi-
cation by waiting (blocking) using an inter-process
communication primitive (IPC). Upon an interrupt,
the seL4 thread unblocks, handles the interrupt, ac-
knowledges the device, and waits for the next inter-
rupt.

On the Rumprun seL4 platform, we use a dedi-
cated seL4 thread running at a higher priority than the
Rumprun thread for receiving interrupts. This thread

then performs the same behaviour as the Rumprun
bare metal interrupt handler, marking the Rumprun
interrupt thread as runnable and storing the source
interrupt number for later inspection by the rump
kernel.
• Synchronisation Synchronisation between

Rumprun threads (recall they are multiplexed on
a single seL4 thread) are managed by Rumprun-
implemented sync primitives. We handle syn-
chronisation between the two seL4 threads via
binary-semaphore-based signalling using seL4
Notification objects (effectively in-kernel blocked
queues) provided by seL4 thread synchronisation
libraries.
• Memory management On Rumprun BMK, all vir-

tual memory is directly mapped to physical memory
to enable native execution. On the seL4 platform,
Rumprun has a virtual address space and we use the
seL4 user-mode memory allocator libraries to map
in a contiguous range of memory which is passed
on to Rumprun to manage, this giving the illusion of
running natively.

Memory for DMA is managed by a seL4 user-
level DMA library and MMIO memory is mapped in
on-demand to available virtual addresses.
• Low level device access The primary hardware de-

vices that Rumprun requires is a clock source, time-
outs and console output. The BMK platform provides
this through its own device drivers. We mostly do the
same on the seL4 platform, using the x86 time stamp
counter (TSC) for a monotonically increasing times-
tamp, COM serial ports for console output, and a
programmable timer for timeouts. We experimented
with both PIT and HPET timer devices. Other
hardware, such as PCI-based devices are accessed
through hardware management support libraries that
provide interrupt management, MMIO access, and
DMA.

5 EVALUATION
Our evaluation examines two areas of interest: the perfor-
mance of the rump kernel on seL4 and the amount of the
code changes required to support rump on seL4. To evalu-
ate performance, we chose an I/O intensive workload where
the system consists of a rump unikernel focused on network-
ing that supports an Iperf 3.1.3 server, including a device
driver directly managing the Ethernet card as illustrated in
Figure 3, running on the seL4 microkernel. The seL4 spe-
cific code changes are limited to the platform adaption layer,
with the above layers being a relatively standard Rumprun
unikernel configured for networking.

APSys ’17, September 2, 2017, Mumbai, India K. Elphinstone et al.

This initial evaluation is an important step toward our vi-
sion as it sets performance expectations of our approach on
“native” seL4 before the addition of any more general frame-
work and services. It also provides the opportunity to tune
our implementation on seL4 compared to the native BMK
Rumprun unikernel.

Iperf Server

seL4

libc

Rump Kernel syscall Layer

Rump Kernel

seL4 Adaption Layer

A
p

p
licatio

n

net vfs dev

L
ib

rary O
S

Loader

Figure 3: Block diagram of system architecture under
test.

Iperf 3.1.3 [Dugan et al.] is a networking benchmark
for measuring maximum achievable bandwidth on IP net-
works. We use Iperf to measure throughput of the rump
kernel networking stack as well as CPU utilization at the
same network throughput. We measure CPU utilisation to
compare performance as maximum networking card through-
put is reached before the maximum CPU utilisation.

We benchmark our implementation to measure the over-
head introduced by seL4 and the performance difference be-
tween the rump kernel drivers on seL4 compared to other
systems performing natively. Additionally, we evaluate the
amount of required work to use rump kernels on seL4 based
on degree of changes in source code.

5.1 Experimental Setup
We run benchmarks across three different systems/software
stack along with our Rumprun unikernel on mainline seL4:

– Rumprun on bare-metal kernel A standard
Rumprun unikernel built for bare-metal x86 32-bit
architecture with same configuration as for the seL4
version.

– Native NetBSD A NetBSD release kernel built from
the same sources as the unikernel in single user mode.

– Linux An up to date Debian distribution configured
to boot in single user mode.

An Iperf server is started on the target machine, and a
client is used on load generation machine to configure, start
and stop the benchmark and to collect results. The machines
are connected to each other using a HP ProCurve 2708 Switch
and 1Gb/s network card interfaces:

– Target machine 3.4 GHz Sandy Bridge i7-2600 pro-
cessor in 32-bit mode with Intel Corporation 82574L
Gigabit Network Connection Ethernet.

– Load generator machine 3.1 GHz Haswell E3-
1220 processor in 64-bit mode with PCIe Broadcom
Limited NetXtreme BCM5720 Gigabit Ethernet.

Measurements were taken in steps of 180Mb/s from
180Mb/s up to 900Mb/s. Each test ran for 20 seconds where
the first 10 seconds was ignored to allow for the TCP sockets
to reach a stable state. Each sample was run 5 times, and
error bars indicate standard deviation. Where error bars are
not shown it is because the standard deviation is too low. The
socket size is set to 87380 (85KiB). For receiving and sending,
the TCP congestion algorithm is set to cubic and a 128KiB
buffer is used for each read and write request. In all experi-
ments, hyper-threading support was disabled and number of
enabled cores set to one in the BIOS settings (as the verified
seL4 is a uniprocessor variant).

Measuring CPU Utilisation. In all experiments, CPU util-
isation was calculated by measuring system idle time. For
Linux, this was achieved by reading the /proc/uptime file
while in NetBSD, sysctl syscall was called. The instrumen-
tation for Rumprun on BMK and seL4 runs in the idle thread
meaning that it runs when the processor would otherwise be
idle and adds no overhead.

5.2 Performance Results
We used Iperf to generate TCP load by sending packets
to the target machine and measured the CPU utilisation for
each system as shown in Fig. 4. Based in initial results
which showed a sensitivity to the hardware interrupt delivery
mechanism, we also measured different hardware interrupt
mechanisms implemented in seL4.

The Rumprun BMK has lower utilisation compared to
NetBSD and seL4 as it represents the bare minimum imple-
mentation of the Rumprun platform layer with no preemption
or protection boundaries. The Linux has lowest utilisation
but it utilises a different network card driver compared to
NetBSD which makes it difficult to draw direct comparisons.
Additionally, Linux also uses dynamic interrupt throttling
while NetBSD has a static throttle rate. This could explain the
Linux data points which have a high variance in samples due
to the switching between different interrupt throttle rates. We
see a slight reduction in CPU utilisation for the seL4 variant
that does not use the PIC.

A Performance Evaluation of Rump Kernels on seL4 APSys ’17, September 2, 2017, Mumbai, India

 0

 5

 10

 15

 20

 25

 30

 35

 40

180 360 540 720 900

C
P

U
 u

ti
lis

a
ti
o
n
 (

%
)

Throughput (Mb/s)

Linux
Rumprun
NetBSD
Rumprun on seL4 (PIC)
Rumprun on seL4 (IOAPIC)
Rumprun on seL4 (MSI)

Figure 4: Thread utilisation under applied TCP load.

Examining seL4 overhead more closely, Fig. 5 shows
the breakdown of the overhead for each method inside the
seL4 kernel. For the PIC, the longest task is handling IO
Port operations which are privileged instructions and thus the
kernel has to be entered to access ports. In this case we use
the IO ports to program an interval timer. Receiving interrupts
and delivering them to the user process and then handling
the acknowledgement of the interrupt make up about 50% of
kernel overhead.

 0

 0.5

 1

 1.5

 2

pic apic msi

C
P

U
 u

ti
lis

a
ti
o
n
 (

%
)

Throughput (Mb/s)

Acknowledge IRQ
x86 I/O Port

Interrupt delivery
Syscall:send

Syscall:receive

Figure 5: seL4 in-kernel CPU utilisation overhead break-
down.

Additionally, we used HPET for programming timeouts
which uses MMIO for both IOAPIC and MSI interrupt deliv-
ery methods to restrict access to IO ports. In both cases the
CPU utilisation reduced to less than 0.3% of the overall CPU
available. The remainder of the overhead is attributed to send
and receive syscalls which are used to provide synchronisa-
tion primitives.

5.3 Code changes
To evaluate the engineering effort of porting the Rumprun
unikernel to seL4, we examine the lines of code removed

Code change Lines
Code removed 1402
Code added 677

Table 1: Rumprun changes to support seL4

and added to the Rumprun unikernel. We excluded the seL4
roottask from the analysis as it is orthogonal to Rumprun’s
seL4 support. The roottask acts as loader for the rump kernel
and will eventually be replaced by our fundamental services.

Given we re-used and modified code from Rumprun BMK,
we used a white-space indifferent diff to measure code re-
moved and added after stripping comments and blank lines.
We then counted lines removed and added as summarised in
Table 1.

The Rumprun unikernel changes involving removing code
that manages low-level hardware that is now managed by
seL4. Specifically, code removed included GDT management,
low-level trap and boot code, multiboot header parsing, and
clock utilities. This was replaced by initialisation code that
sets up seL4 threads, notifications, together with a timer and
console driver for our platform. Code changes included modi-
fying interrupt management, PCI and DMA management and
address translation used for I/O.

We see a net negative change in the number of lines of code
in Rumprun when targeting the seL4 platform. Even ignoring
code removed, only 677 lines of code were added to support
seL4.

6 CONCLUSIONS
We have argued for revisiting microkernel-based multiserver
OSes. We described a vision of a flexible multiserver environ-
ment supported by a small number of fundamental services
and frameworks. We identified a number of issues with re-
lated work that require addressing to succeed in our vision.
We have taken then first step toward a multiserver by evaluat-
ing the Rumprun unikernel as a building block for multiserver
systems. We showed that:

• A Rumprun unikernel was supported on seL4 with
little performance impact compared to a bare metal
version. We even show improved performance in con-
figurations where seL4 used more efficient hardware
mechanisms. Overall, the performance exceeded that
of native NetBSD.
• The effort required to port the Rumprun unikernel to

seL4 was relatively small and it is now possible to
reuse many of the existing rump kernel modules in
the context of a unikernel running on seL4.

Given this promising first step, we can now focus on the
core issues of providing a secure distributed framework for

APSys ’17, September 2, 2017, Mumbai, India K. Elphinstone et al.

supporting OS services together with a small number of cor-
rect fundamental services.

REFERENCES
Thomas E Anderson. The case for application-specific operating systems. In

Workshop on Workstation Operating Systems, 1992.
Mohit Aron, Yoonho Park, Trent Jaeger, Jochen Liedtke, Kevin Elphinstone,

and Luke Deller. The SawMill framework for VM diversity. In Proceed-
ings of the 6th Asia-Pacific Computer Systems Architecture Conference,
pages 3–10, Gold Coast, Australia, January 2001.

Per Brinch Hansen. The nucleus of a multiprogramming operating system.
Communications of the ACM, 13:238–250, 1970.

DoD. Trusted Computer System Evaluation Criteria. Department of Defence,
1986. DoD 5200.28-STD.

Jon Dugan, Seth Elliott, Bruce A. Mah, Jeff Poskanzer, and Kaustubh Prabhu.
Iperf3: The tcp/udp bandwidth measurement tool. URL https://iperf.fr/.

Keir Fraser, Steven Hand, Rolf Neugebauer, Ian Pratt, Andrew Warfield, and
Mark Williamson. Safe hardware access with the Xen virtual machine
monitor. In Proceedings of the 1st Workshop on Operating System and
Architectural Support for the On-Demand IT Infrastructure (OASIS), 2004.

Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen Liedtke, Kevin J. El-
phinstone, Volkmar Uhlig, Jonathon E. Tidswell, Luke Deller, and Lars
Reuther. The Sawmill multiserver approach. In Proceedings of the 9th
SIGOPS European Workshop, pages 109–114, Kolding, Denmark, 2000.

Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S.
Tanenbaum. MINIX 3: A highly reliable, self-repairing operating system.
ACM Operating Systems Review, 40(3):80–89, July 2006.

Michael Hohmuth, Michael Peter, Hermann Härtig, and Jonathan S. Shapiro.
Reducing TCB size by using untrusted components — small kernels
versus virtual-machine monitors. In Proceedings of the 11th SIGOPS
European Workshop, Leuven, BE, September 2004.

Jon Howell, Bryan Parno, and John R. Douceur. How to run POSIX apps
in a minimal picoprocess. In Proceedings of the 2013 USENIX Annual
Technical Conference, June 2013.

Antti Kantee. Flexible operating system internals: the design and imple-
mentation of the anykernel and rump kernels. PhD thesis, Department of
Computer Science and Engineering, Aalto University, October 2012.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, et al. seL4:
Formal verification of an OS kernel. In ACM Symposium on Operating
Systems Principles, pages 207–220, Big Sky, MT, US, October 2009.

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas
Sewell, Rafal Kolanski, and Gernot Heiser. Comprehensive formal verifi-
cation of an OS microkernel. ACM Transactions on Computer Systems,
32(1):2:1–2:70, February 2014.

Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz. Unmodi-
fied device driver reuse and improved system dependability via virtual
machines. In Proceedings of the 6th USENIX Symposium on Operating
Systems Design and Implementation, pages 17–30, San Francisco, CA,
US, December 2004.

Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott,
Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon
Crowcroft. Unikernels: Library operating systems for the Cloud. In
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2013.

Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy
Bourke, Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. seL4:
from general purpose to a proof of information flow enforcement. In
IEEE Symposium on Security and Privacy, pages 415–429, San Francisco,
CA, May 2013.

Ruslan Nikolaev and Godmar Back. Virtuos: An operating system with
kernel virtualization. In Proceedings of the 24th ACM Symposium on
Operating Systems Principles, pages 116–132, 2013.

Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky, and
Galen C. Hunt. Rethinking the library OS from the top down. In Proceed-
ings of the 16th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 291–304, New York,
NY, USA, 2011. URL http://doi.acm.org/10.1145/1950365.1950399.

John Rushby. A trusted computing base for embedded systems. In Proceed-
ings of 7th DoD/NBS Computer Security Conference, pages 294–311,
September 1984.

Thomas Sewell, Simon Winwood, Peter Gammie, Toby Murray, June An-
dronick, and Gerwin Klein. seL4 enforces integrity. In International
Conference on Interactive Theorem Proving, pages 325–340, Nijmegen,
The Netherlands, August 2011.

David A. Solomon. Inside Windows-NT. 1998.
Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain, William

Jannen, Jitin John, Harry A. Kalodner, Vrushali Kulkarni, Daniela
Oliveira, and Donald E. Porter. Cooperation and security isolation of
library OSes for multi-process applications. In Proceedings of the 9th
EuroSys Conference, 2014.

Chia-Che Tsai, Donald E. Porter, and Mona Vij. Graphene-SGX: A practical
library OS for unmodified applications on SGX. In Proceedings of the
2017 USENIX Annual Technical Conference, Santa Clara, CA, 2017.

https://iperf.fr/
http://doi.acm.org/10.1145/1950365.1950399

	Abstract
	1 Introduction
	2 Motivation and Related Work
	2.1 Verification
	2.2 POSIX
	2.3 Implicit Authority
	2.4 Library OSes
	2.5 Summary

	3 Rumprun Unikernel
	4 seL4 as Rumprun Platform Layer
	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance Results
	5.3 Code changes

	6 Conclusions
	References

