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Abstract. We introduce a new framework for verifying electronic vote
counting results that are based on the Single Transferable Vote scheme
(STV). Our approach frames electronic vote counting as certified com-
putation where each execution of the counting algorithm is accompanied
by a certificate that witnesses the correctness of the output. These cer-
tificates are then checked for correctness independently of how they are
produced. We advocate verification of the verifier rather than the soft-
ware used to produce the result. We use the theorem prover HOL4 to
formalise the STV vote counting scheme, and obtain a fully verified cer-
tificate checker. By connecting HOL4 to the verified CakeML compiler,
we then extract an executable that is guaranteed to behave correctly
with respect to the formal specification of the protocol down to machine
level. We demonstrate that our verifier can check certificates of real-size
elections efficiently. Our encoding is modular, so repeating the same pro-
cess for another different STV scheme would require a minimal amount
of additional work.

1 Introduction

The main contribution of this paper is a new framework for verifiably correct vote
counting. Electronic voting is becoming more and more prevalent worldwide. But
almost scandalously, the current state of affairs leaves much to be desired, given
that the public vote is a cornerstone of modern democracy. Indeed electronic
techniques as they are used now may be seen as a step back from traditional
paper based elections.

For example, the vote counting software that is used in Australia’s most
populous state, New South Wales, was found to contain errors that had an
impact in at least one seat that was wrongly filled with high probability. This
was reported in specialist publications [5] as well as the national press [3].

When counting ballots by hand, the counting is monitored by scrutineers,
usually members of the general public or stakeholders such as party representa-
tives. In contrast, computer software that is used to count ballots merely pro-
duces a final result. Moreover, in many cases, the source code of these programs
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is commercial in confidence, and there is no evidence of the correctness of the
count that could be seen as analogous to scrutineers in traditional, paper-based
vote counting.

It is universally recognised that transparent and verifiable vote counting is
a key constituent to establish trustworthiness, and subsequently trust, in the
final outcome. The computer-based methods currently in use fail to meet both
expectations.

In the literature on electronic voting, the notion of universal verifiability of
vote counting (any voter can check that the announced result is correct on the
basis of the published ballots [14]) has long been recognised as being central,
both for guaranteeing correctness, and building trust, in electronic elections.
This notion has three subproperties; verifiability of casting votes as intended
by voters, recording votes as intended, and counting votes as recorded [8]. The
aim of this paper is only to address the last property, namely verifiability of the
tallying process.

The approach presented here combines the concept of certifying algorithms
[17] with formal specification and theorem proving to address this challenge. In
a nutshell, a certifying algorithm is an algorithm that produces, with every exe-
cution, an easily-verifiable certificate of the correctness of the computed result.
This certificate can then be scrutinised by a verifier, independently of the tools,
hardware or software that were used to create the certificate.

Our focus in this paper is on the certificate verifier. We briefly discuss a
concise formal specification of single transferable vote (STV), a complex, pref-
erential voting system used e.g. in Ireland, Malta, New Zealand and Australia
for multi-seat constituencies. From this specification, we develop a notion of cer-
tificate so that correct certificates guarantee correctness of election results. The
main body of our work concerns the verifier (certificate checker), and we present
a synthesis of the verifier that is itself fully verified down to the machine-code
level.

This proceeds in four steps.1 First, we formalise the vote counting protocol as
a sequence of steps inside the HOL theorem prover where every step corresponds
to an action taken by a counting officer in a paper-based setting. There are two
kinds of stages that we call judgements in analogy to typing assertions in type
theory. Final judgements just declare the set of winners. NonFinal judgements
represent the current state of the count as a tuple, corresponding to a snap-
shot of the stage of the count in a paper-based setting. The formalisation of the
voting protocol then takes the form of rules that specify how to advance from
one judgement to the next, thereby progressing the count. The applicability of
particular rules are described by side conditions that are in turn formalised by
HOL predicates. A correct certificate is then simply a sequence of judgements
where each judgement is justified through its predecessor by means of a correct
rule application. The task of the verifier is then simply to process a list of judge-

1 Source code of the formalisation can be found at https://github.com/
MiladKetabGhale/Checker.

https://github.com/MiladKetabGhale/Checker
https://github.com/MiladKetabGhale/Checker
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ments and ascertain that this is indeed the case. In particular, our specification
of rules is purely descriptive.

Second, in tandem with the logical specification of each rule, we define a
boolean-valued function that checks whether or not the rule has been applied
correctly. This then directly gives rise to the verifier that, at every step, just
checks whether any of the rules is applicable, using the corresponding boolean-
valued function.

Third, we establish correspondence between the logical definitions and their
computational counterparts. This boils down to formally establishing that the
logical specification holds if and only if the boolean-valued function returns true,
which in turn implies the correctness of the certificate verifier. This allows us
to conclude that a valid certificate indeed implies that the election protocol has
been carried out in accordance to the specification.

In the fourth, and last step, we synthesise an implementation of the verifier
and produce a proof of this implementation’s correctness. This is achieved by
using proof-producing synthesis [18] of CakeML code from the HOL definitions,
then using the verified CakeML compiler [22] to produce the machine code. To
perform computation on an actual certificate, we define the formal syntax for
certificates, and a parser in HOL, that we combine with the I/O mechanisms of
CakeML to obtain the verifier. The result is an executable verifier that provably
validates a certificate if and only if the certificate witnesses a correct execution
of the vote counting protocol.

In summary, our slogan is “verify the verifier”. Rather than verifying the
program that performs an election count, we demand that a program produces
a certificate that we can then independently verify. This has several advantages.
For one, it is much less labour intensive to verify the verifier, compared with
verifying the counting program. Second, having verifiable certificates at hand
establishes the count-as-recorded property [8]. Third, we achieve correctness over
a minimal trust base through the use of CakeML.

In the remainder of the paper, we describe our framework in detail and
demonstrate that it can handle real-world size elections by evaluating it on his-
torical data of elections conducted in Australia.

2 The Protocol and Its HOL Formalisation

Single Transferable Vote is a preferential voting scheme that is used in multi-
seat constituencies. Voters rank (possibly a subset of) candidates by assigning
numerical preferences to candidates where no two candidates may be given the
same preference. This allows us to represent ballots as duplicate free lists of
candidates where the list order reflects the preference order.

Each election defines a quota, i.e. a minimal set of votes that a candidate
must receive in order to be elected. The count starts by counting all voters’ first
preferences, and candidates who reach the quota are elected, but in general there
will still be seats to fill. This is effected by two mechanisms:
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1. Transfer of surplus votes. Votes for elected candidates in excess of the quota
are distributed to (and counted in favour of) the next preference listed on the
ballot.

2. Elimination of candidates. The candidate with the least number of first pref-
erences is eliminated from the election, and their votes are then distributed
to the next listed preference on the ballot.

We give a precise definition of STV below. The main idea of distributing sur-
plus votes is to account for additional candidates favoured by a voter if their
first preference is already elected, whereas elimination honours voters’ follow-on
preferences if their first preference cannot be elected. Of course, the key ques-
tion is precisely which ballots should be considered surplus and distributed to
the next preferences, as follow-on preferences will generally differ. This is the
purpose of a third mechanism:

3. Fractional Transfer. All surplus votes are transfered to the next preference,
but at a reduced weight that is proportional to the size of the surplus.

For example, if a candidate exceeds the quota by 20%, all first preference votes for
that candidate are re-assigned a weight of 0.2 and injected back into the count,
and regarded as first-preference votes for the subsequently listed candidate. In
other words, the number of first preference votes for a candidate is the sum of the
weights of ballots where that candidate is listed as first preference. The initial
weight of all ballots is 1.

There are various versions of STV. They mainly differ in how and when bal-
lots are transferred and candidates are elected, the calculation of the transfer
value, and the various tie breaking methods used to determine which candidate
is to be excluded, and the quota being used. Here, we deal with a generic ver-
sion of STV that incorporates all three mechanisms outlined above, and is very
similar to the method used to elect members of the Australian Senate, and inci-
dentally also to the scheme used elect the representatives of the student union at
the Australian National University. Throughout, we do not assume a particular
definition of the quota, but take this as a parameter. Design decisions in the
precise formulation of the scheme are resolved as follows:

Step-by-step surplus transfer. Surplus votes of elected candidates that have
exceeded the quota are transferred in order of number of first preferences
received. That is, surplus votes of the candidate with the largest number of
first preferences are transferred first.

Electing after each transfer. After each transfer of surpluses, candidates that
reach the quota after surplus votes are being elected immediately.

The description of the formal protocol that we are analysing uses the following
terminology. A continuing candidate is a candidate that has neither been elected
nor eliminated. The first preference of a ballot is the most preferred continuing
candidate, and the transfer value of a ballot is the fractional weight of a ballot.
We keep track of the following data throughout:
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– the set of uncounted ballots
– a tally for each candidate, the sum of the transfer values of all ballots counted

in the candidate’s favour
– a pile for each candidate that contains all ballots counted in favour of the

respective candidate
– an queue of candidates that await surplus transfer

Initially, the queue for surplus transfer, as well as the piles associated to the
individual candidates are empty, all ballots are uncounted, and all candidates
are continuing. From this initial state, the protocol proceeds as follows:

1. determine the set of formal ballots, i.e. those ballots that represent a total
order of preferences over a subset of candidates, each of which receives an
initial transfer value of 1.

2. determine the number of first preference votes (the tally) for each continuing
candidate. In doing this, record which vote is counted for which candidate by
adding the ballot paper to the respective pile.

3. if there are unfilled seats, all candidates that have reached the quota are
elected, and are added to the transfer queue in order of their tally.

4. if all the vacancies have been filled, counting terminates and the result is
announced.

5. if the number of unfilled vacancies equals or exceeds the number of continuing
candidates, all continuing candidates are elected and the result is announced.

6. if there are still vacancies, all ballots are counted, and the transfer queue is
not empty, remove the first candidate from the transfer queue and transfer
their votes (the votes on their pile) to the next preference by declaring these
votes to be uncounted and the transfer value given by

new value =
number of votes of elected candidate − quota

number of votes of elected candidate
(1)

Subsequent transfer values are computed as the product of the current value
with previous transfer value.

7. if there are still vacancies, all ballots are counted, and all surplus votes are
transferred, choose the candidate with the least amount of first preference
votes and exclude that candidate from the set of continuing candidates. All
votes counted in favour of the eliminated candidate are transferred to the
next preference (with unchanged transfer value).

The purpose of setting aside the ballots counted for particular candidates in
the second step is precisely for the purpose of possibly transferring these ballots
later, in case the candidate is either elected or eliminated.

2.1 An Example Certificate

As argued in the introduction, in the framework of certified computation, each
step of the protocol is evidenced. Each of the steps outlined above is formalised as
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a rule that progresses the count. Rules have side conditions (e.g. candidates hav-
ing reached the quota, or all ballots being counted) and rule application changes
the data that we track throughout the count (e.g. updating the tally, or removing
a candidate from the set of continuing candidates). We given an example cer-
tificate in Fig. 1. Here, we have a small election with three candidates A, B and
C, and an initial set of ballots containing b1 = ([A,C], 1), b2 = ([A,B,C], 1),
b3 = ([A,C,B], 1), b4 = ([B,A], 1), b5 = ([C,B,A], 1). Each ballot is a pair,
where the first component is a preference-ordered list of candidates, and the sec-
ond is the transfer value (initially set to 1). The certificate consists of a header
that specifies the quota as a fraction (computed according to the Droop quota
[10]), the number of seats to be filled, and the list of candidates being voted
on. The fourth line is the election result, and the remainder of the certificate
consists of the intermediate steps that lead to this outcome.

The certificate records every step of the count, where a step corresponds
to a rule application, and the rules themselves are modelled on valid actions
that of counting officers to progress the count. The inspection of a certificate
therefore corresponds to witnessing all the individual steps that take place in a
hypothetical counting station.

Intermediate stages of the count record six pieces of information, separated
by semicolons: the ballots the are still to be counted, the tallies of all candidates,
the ballots counted in favour of each candidate, the transfer queue, and finally
the sets of continuing and elected candidates. We briefly illustrate the protocol
using the certificate in Fig. 1 as an example, going though the protocol step-by-
step.

count. First preferences for each candidates are computed, and ballots counted
in favour of particular candidates are placed onto that candidate’s pile. Here, A
is the first preference on b1, b2, and b3 (leading to a tally of 3), and B receives
b4, and C receives b5. Tallies are updated so that tally of A becomes 3, and B
and C each reach 1.

elect. Candidate A exceeds the quota, and is elected. The transfer value of
all ballots counted in A’s favour changes to 1/9 according to formula (1). The
updated pile of A reflects this change in transfer values, and now contains ([A,C],

8/3

2

[A,B,C]

[A,C]
hwin

[b4,([A,B,C],1/9)]]; A[3/1] B[10/9] C[11/9]; A[] B[] C[b5,([C],1/9),([C,B],1/9),([C],1/9)]; []; [A]; [C]
elim

[]; A[3/1] B[10/9] C[11/9], A[] B[b4,([A,B,C],1/9)] C[b5,([A,C],1/9),([A,C,B],1/9)]; []; [A]; [B,C]
count

[([A,C],1/9),([A,B,C],1/9),([A,C,B],1/9)]; A[3/1] B[1/1] C[1/1]; A[] B[b4] C[b5]; []; [A]; [B,C]
transfer

[]; A[3/1] B[1/1] C[1/1]; A[([A,C],1/9),([A,B,C],1/9),([A,C,B],1/9)] B[b4] C[b5]; [A]; [A]; [B,C]
elect

[]; A[3/1] B[1/1] C[1/1]; A[b1,b2,b3] B[b4] C[b5]; []; []; [A,B,C]
count

ba; A[0/1] B[0/1] C[0/1]; A[] B[] C[]; []; []; [A,B,C]

Fig. 1. Example certificate
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1/9), ([A,B,C], 1/9), and ([A,C,B], 1/9). The data associated with B and C
doesn’t change.

transfer. As there are vacancies and no one else has reached or exceeded the
quota, the surplus of A is dealt with. The list of uncounted ballots is updated
to contain the votes for A (with transfer values updated in the previous step).

count. As there are uncounted ballots (again), tallies are updated. As A is no
longer a continuing candidate, the votes are counted in favour of the highest-
ranked continuing candidate. That is, C receives two new votes (each of value
1/9) which are ([A,C], 1/9) and ([A,C,B], 1/9). Candidate B receives one vote,
which is ([A,B,C], 1/9).

elim. No continuing candidate has reached the quota, one vacancy is still
unfilled, and all ballots are (again) counted. Hence the candidate with the low-
est tally is eliminated (in this case, B) and their votes (with unchanged transfer
values) are again injected into the count.

hwin. The only continuing candidate, that is C, is elected and as we have filled
all the vacancies, a final stage has been obtained.

To validate certificates of this form, we first parse the textual representation
into actual data structures, and then check the certificates for correctness on the
basis of a HOL formalisation that we now describe.

2.2 The HOL Formalisation

Elections are parameterised by the data in the header (candidates, quota and
number of vacancies) that remain constant throughout the count. We use the
term judgement for the data-structure representation of the various stages of the
count. They come in two flavours: final judgements announce the winners, and
non-final judgements are intermediate stages of the execution of the protocol.

Definition 1 (Judgements). We formalise judgements as a datatype with two
constructors. The first constructor, Final w represents a final stage of the compu-
tation, where w is the final list consisting of all of the declared elected candidates.
The second constructor, NonFinal (ba,t ,p,bl ,e,h) is an intermediate stage of the
computation, where ba is the list of uncounted ballots at this point, t is the tally
list recording the number of votes of each candidate has received up to this point,
p is the pile list of votes assigned to each candidate, bl is the list of elected whose
surplus have not yet been transferred, e is the list of elected candidates by this
point, and h is the list of continuing (hopeful) candidates up to this stage.

judgement =
NonFinal (ballots × tallies × piles × cand list × cand list × cand list)

| Final (cand list)

We use lists (instead of sets, or multisets) mainly for convenience of formalisation
in HOL, but this is not used in an essential way either in the definition, or
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in the formalisation, of the counting rules that we give later. By choosing to
formalise the tally and pile as lists rather than functions operating on the list of
candidates, judgements become an instance of the equality type class which we
use later on in specification and reasoning about counting rules. Additionally,
this formulation reduces the gap between an actual certificate and its abstract
syntactic representation which we refer to as a formal certificate.
As a (formal) certificate consists of a sequence of judgements, each of which
represents a state of the count, we need to verify the correctness of the transitions
between successive judgements. Each rule consists of three main components:

– a specification of how premiss and conclusion relate
– side conditions that specifies when a rule is applicable
– a number of implicit assertions that guarantee the integrity of the data.

For example, we expect a valid certificate to have no duplication in the list of
elected or continuing candidates, and every candidate must have only one tally
and one pile at every non-final judgement.

Crucially, the specification of the counting rules is purely descriptive. To
effectively check certificates, we augment each (specification of a) rule with an
actual decision procedure that, given two judgements, returns either true or
false, depending on whether the rule is applicable or not. The decision procedure
and the formal specification are connected by (formal) proofs of soundess and
completeness, as shown in the figure below.

Here, soundness refers to the fact that the decision procedure only stipulates
that a rule has been correctly applied if the application is in accordance with
the specification and completeness says that this will happen whenever the rule
is applicable. The decision procedures are actual functions in HOL that we then
translate and extract using CakeML to guarantee machine-level correctness, and
both soundness and completeness are established formally in HOL. We illustrate
this in detail with the elimination rule.

Integrity Constraints. The integrity constraints for the elimination rule are iden-
tical to those of other rules. For example, the name of each candidate appears
only once in the initial list of competing candidates. Also, at every stage of the
count, every candidate has exactly one tally and one pile (of votes counted in
their favour). Therefore, if a judgement in a certificate maliciously allocates no
tally, or more than one tally for a single candidate, this error is detected and
the certificate is rejected as invalid. We express the fact that tallies need to be
recorded for every candidate as follows:

Valid_PileTally t l ⇐⇒ ∀ c. mem c l ⇐⇒ mem c (map fst t)

The above predicate is paired with computational twins, and soundness
and completeness connect both. Here, given lists t and l, the function
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Valid_PileTally_dec1 decides if every first element of each pair in t is a member
of l.

Valid_PileTally_dec1 [ ] l ⇐⇒ true
Valid_PileTally_dec1 (h::t) l ⇐⇒ mem (fst h) l ∧ Valid_PileTally_dec1 t l

Additionally, the function Valid_PileTally_dec2 determines if each element of l
appears as the first component of a pair in t.

Valid_PileTally_dec2 t [ ] ⇐⇒ true
Valid_PileTally_dec2 t (l0::ls) ⇐⇒
if mem l0 (map fst t) then Valid_PileTally_dec2 t ls

else false

We prove that the formal specification Valid_PileTally corresponds with the func-
tions Valid_PileTally_dec1 and Valid_PileTally_dec2. Therefore we ensure that
tallies and piles are distinctively allocated to candidates.

� Valid_PileTally t l ⇐⇒ Valid_PileTally_dec1 t l ∧ Valid_PileTally_dec2 t l

Side Conditions. Item 7 of the protocol on Page 5 specifies when and how a
candidate shall be eliminated from the election. It stipulates that

a. there are still seats to fill
b. there are no votes to count at this stage and there are no pending transfers
c. the candidate c has the least tally
d. eliminate the candidate c
e. votes of the eliminated candidate c are transferred according to the next

preference with the same transfer value.

To illustrate how clauses of the protocol are formalised explicitly, we explain
the way that we have specified item (d) inside HOL. We introduce the predicate
equal_except which formally asserts when two lists are equal except for one exact
element.

equal_except c l nl ⇐⇒
∃ l1 l2. l = l1 ++ l2 ∧ nl = l1 ++ [c] ++ l2 ∧ ¬mem c l1 ∧ ¬mem c l2

The computational twin of this definition decides whether two list match with
the exception of one element. This is the function equal_except_dec.

equal_except_dec c [ ] = [ ]
equal_except_dec c (h::t) = if c = h then t else h::equal_except_dec c t

We formally establish that this function implements the specification given by
the equal_except predicate.

� mem c h ∧ distinct h ⇒ equal_except c (equal_except_dec c h) h
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Moreover, modulo extensional equality, the function equal_except_dec is
unique.

� mem c h2 ∧ equal_except c h1 h2 ⇒ h1 = equal_except_dec c h2

Having defined the implicit integrity constraints, and the explicit side conditions
in the definition of elimination, we can present the formalisation of this rule in
HOL as a predicate.

The ELIM_CAND rule specifies what it means to legitimately eliminate a
given candidate c. It relates three data items: a candidate, a triple composed
of three fixed parameters which are the quota, vacancies, and the initial list of
candidates, and two judgements j1 and j2 (the premiss and the conclusion of
the rule).

ELIM_CAND c (qu,st ,l) j1 j2 ⇐⇒
∃ t p e h nh nba np.

j1 = NonFinal ([ ],t ,p,[ ],e,h) ∧ Valid_Init_CandList l ∧
(∀ c′. mem c′ (h ++ e) ⇒ mem c′ l) ∧ distinct (h ++ e) ∧ Valid_PileTally p l ∧
Valid_PileTally np l ∧ length (e ++ h) > st ∧ length e < st ∧
distinct (map fst t) ∧ Valid_PileTally t l ∧
(∀ c′. mem c′ h ⇒ ∃ x . mem (c′,x) t ∧ x < qu) ∧ mem c h ∧
(∀ d . mem d h ⇒ ∃ x y. mem (c,x) t ∧ mem (d ,y) t ∧ x ≤ y) ∧ equal_except c nh h ∧
nba = get_cand_pile c p ∧ mem (c,[ ]) np ∧
(∀ d ′.

d ′ �= c ⇒
∀ l . (mem (d ′,l) p ⇒ mem (d ′,l) np) ∧ (mem (d ′,l) np ⇒ mem (d ′,l) p)) ∧

j2 = NonFinal (nba,t ,np,[ ],e,nh)

The first and the fourth component of j1 which correspond to the list of
uncounted ballots and the backlog are both empty. This realises the condition
(a) stated above. It is also required that h the list of continuing candidates in
the premise j1, and nh the updated list of continuing candidates in j2 satisfy
the predicate equal_except so that condition (d) is met. Each of the conjuncts
in the definition of ELIM_CAND encapsulates part of the item 7 in the protocol.

Similar to the case of equal_except, for each of the conjuncts, we define
a computational counterpart and prove the equivalence of the conjunct with
its computational realisation. Conjunction of these computational definitions
is ELIM_CAND_dec, which is the computational equivalent of the predicate
ELIM_CAND.

ELIM_CAND_dec c (qu,st ,l) (NonFinal (ba,t ,p,bl ,e,h)) (NonFinal (ba′,t ′,p′,bl ′,e′,h′)) ⇐⇒
null ba ∧ null bl ∧ null bl ′ ∧ t = t ′ ∧ e = e′ ∧ length (e ++ h) > st ∧ length e < st ∧
¬null l ∧ distinct l ∧ list_MEM_dec (h ++ e) l ∧ distinct (h ++ e) ∧
Valid_PileTally_dec1 p l ∧ Valid_PileTally_dec2 p l ∧ Valid_PileTally_dec1 p′ l ∧
Valid_PileTally_dec2 p′ l ∧ distinct (map fst t) ∧ Valid_PileTally_dec1 t l ∧
Valid_PileTally_dec2 t l ∧ mem c h ∧ less_than_quota qu t h ∧
h′ = equal_except_dec c h ∧ bigger_than_cand c t h ∧ ba′ = get_cand_pile c p ∧
mem (c,[ ]) p′ ∧ subpile1 c p p′ ∧ subpile2 c p′ p

ELIM_CAND_dec c v0 (Final v1) v2 ⇐⇒ false
ELIM_CAND_dec c v3 (NonFinal v11) (Final v5) ⇐⇒ false
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By drawing upon the correspondence established between conjuncts of the elim-
ination specification and computational counterpart, we prove that �ELIM_-
CAND_dec = ELIM_CAND. The same procedure is followed to achieve formal
specification, computational definitions, and their correspondence for the rest of
counting rules.

2.3 The Certificate Verifier

Clearly, one way to verify the result of a computation is to simply re-compute
(possibly using a verified program) [2]. While this makes perfect sense for a deter-
ministic program, voting protocols generally employ tie-breaking techniques that
lead to non-determinism. In the case of STV, for example, this applies when two
candidates are tied for exclusion. In this situation it is permissible to eliminate
either of the candidates. From the perspective of certified computation, this is a
non-issue, as the certificate simply records which choice has been made (and why
this choice is permissible). Compared to simply re-computing, the verification of
a certificate provides another significant advantage: in case of diverging results,
we gain information on precisely what step of the (incorrect) computation is to
blame for the wrong result. Computationally, the additional advantage is sim-
plicity and speed: the verification of the verifier is considerably simpler than that
of a fully-fledged implementation, and certificate checking is also generally faster
than re-computing.

The verification of certificates comprises two steps. First we need to validate
whether the first judgement of the certificate is a valid initial state of the count.
A valid initial judgement is one where candidate’s tally is zero, their piles are
empty, and both the transfer queue and the list of elected candidates are both
empty as well.

initial_judgement l j ⇐⇒
∃ ba t p bl e h.

j = NonFinal (ba,t ,p,bl ,e,h) ∧ (∀ c. mem c (map snd t) ⇒ c = 0) ∧
(∀ c. mem c (map snd p) ⇒ c = [ ]) ∧ bl = [ ] ∧ e = [ ] ∧ h = l

Second, we check whether transitions from one judgement to the next is accord-
ing to one of the rules that define the count.

Valid_Step_Spec params j0 j1 ⇐⇒
HWIN params j0 j1 ∨ EWIN params j0 j1 ∨ COUNT params j0 j1 ∨
TRANSFER params j0 j1 ∨ ELECT params j0 j1 ∨
∃ c. mem c (snd (snd params)) ∧ ELIM_CAND c params j0 j1

We can therefore check whether a transition from one judgement to the next is
correct by simply considering the disjunction of all rules.

Valid_intermediate_judgements params J ⇐⇒
J 	= [ ] ∧ (∃w . last J = Final w) ∧
∀ J0 J1 j0 j1. J = J0 ++ [j0; j1] ++ J1 ⇒ Valid_Step_Spec params j0 j1
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Putting the specification of a valid initial judgement with valid sequence of
judgements together, we obtain the specification for a valid certificate:

Valid_Certificate params [ ] ⇐⇒ false
Valid_Certificate params (first_judgement ::rest_judgements) ⇐⇒
initial_judgement (snd (snd params)) first_judgement ∧
Valid_intermediate_judgements params (first_judgement ::rest_judgements)

For checking a formal certificate we therefore first verify that certificate starts
at a permissible initial stage. We then iteratively check that transitions have
happened correctly, and that the terminating state is a final one where winners
are declared. The above specification of a valid vertificate, corresponds to the
following computational formal certificate checker.

Check_Parsed_Certificate params [ ] ⇐⇒ false
Check_Parsed_Certificate params (first_judgement ::rest_judgements) ⇐⇒
Initial_Judgement_dec (snd (snd params)) first_judgement ∧
valid_judgements_dec params (first_judgement ::rest_judgements)

The correctness of this definition rests on the equivalences we have already estab-
lished between the specifications and their computational counterparts, namely,
Initial_Judgement_dec and initial_judgement, and valid_judgements_dec and
valid_judgements. Consequently a formal certificate is validated if and only if
it is valid according to the HOL specification of Valid_Certificate.

Check_Parsed_Certificate params J ⇐⇒ Valid_Certificate params J

Since the HOL specification realises the protocol, a formal certificate is validated
if and only if it meets the protocol’s expectation.

3 Translation into CakeML and Code Extraction

The verified certificate-checking function, Check_Parsed_Certificate, described
above, is a good starting point for a verifier, but still has two shortcomings: it is
a function in logic rather than an executable program, and as a consequence, its
inputs must be provided as elements of the respective data types, whereas certifi-
cates are purely textual. We now demonstrate how to address these shortcomings
and obtain a verified executable for checking certificates. Our final theorem about
the verifier executable is presented at the end of this section.

Parsing. The input to the verifier is a textual certificate file, in a format sim-
ilar to Fig. 1. We specify this file format indirectly, by defining an executable
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specification of a certificate parser.

Check_Certificate lines ⇐⇒
case lines of
quota_line::seats_line::candidates_line::winners_line::jlines ⇒

case
(parse_quota quota_line,parse_seats seats_line,
parse_candidates candidates_line,parse_candidates winners_line,
mapm parse_judgement jlines)

of
(Some quota,Some seats,Some candidates,Some winners,Some judgements) ⇒

Check_Parsed_Certificate (quota,seats,candidates)
(rev (Final winners::judgements))

| _ ⇒ false
| _ ⇒ false

Specifically, we define functions that take a string representing a line in the
file and return either None or Some x , where x is the parsed information
from the line. Given these parsing functions—parse_quota, parse_seats, etc.—we
write the verifier as a function, above, that parses lines from the file then calls
Check_Parsed_Certificate to do the verification.

Translation into CakeML and I/O Wrapper. Using prior work on proof-
producing synthesis [18] we can automatically synthesise an implementation of
the function Check_Certificate in the programming language CakeML. The syn-
thesis tool for CakeML produces a theorem relating the semantics of the synthe-
sised program back to the logical function. However, the result is a pure function
that expects the lines of a file as input. To actually open the file and read lines
from it, we write the impure wrapper check_count (making use of the CakeML
Basis Library) around the pure function, and verify the wrapper using Charac-
teristic Formulae for CakeML, as described by Guéneau et al. [13]. The result is
a complete CakeML program whose I/O semantics is verified, witnessed by the
theorem check_count_compiled below, to implement Check_Certificate on lines
from standard input.

To elaborate further on the above step, the impure wrapper check_count calls
two impure functions parse_line and loop. The former, calls I/O functions to read
one line at a time from the concrete certificate given as lines on the standard
input and parse it. It comprises two phases; one for the header of the certificate
file consisting of the quota, seats number, and initial list of candidates, and the
other is for parsing judgement lines. If the parsing fails due to malformedness of
a line, the parser messages the appropriate error on the standard output with
the line number included. However, if it succeeds, the parsed line is fed to the
loop function to check if the transition from two consecutive parsed judgement
lines is a valid step. The parsing and checking of judgement lines continues until
either all steps are verified as correct, or an incorrect step is encountered. The
following theorem asserts that the loop function returns the correct output None
if and only if the initial line of judgements in the certificate file is indeed valid
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and all steps taken to move from one judgement line to its successor are correct.

loop params i (Final w) j0 js = None ⇐⇒
EVERY (IS_SOME ◦ parse_judgement) js ∧
Check_Parsed_Certificate params (rev (Final w ::j0::map (the ◦ parse_judgement) js))

Compilation in Logic. Finally, we would like an executable verifier in machine
code (rather than CakeML code). To produce this, we use the verifed CakeML
compiler [22], which can be executed within the theorem prover itself. This is
a time-consuming process: compilation within logic can be a thousand times
slower (e.g., half an hour) than running the compiler outside the logic (a second
or two). But the payoff is a final theorem which only mentions the final gen-
erated machine-code implementation: all dependence on the CakeML language
and implementation is discharged by proof.
Final Theorem. The final theorem, which we explain further below, is about the
generated machine code, represented by the constant check_count_compiled.

� wfCL cl ∧ wfFS fs ∧
x64_installed check_count_compiled (basis_ffi cl fs) mc ms ⇒
∃ io_events fs ′.

machine_sem mc (basis_ffi cl fs) ms ⊆
extend_with_resource_limit { Terminate Success io_events } ∧
extract_fs fs io_events = Some fs ′ ∧
(stdout fs ′ “Certificate OK\n” ⇐⇒

Check_Certificate (lines_of (get_stdin fs)))

We assume (x64_installed) that this code is loaded into memory in an x86-
64 machine represented by mc and ms, and that the command line (cl) and
file system (fs) are well-formed. The conclusion of the theorem concerns the
semantics (machine_sem) of executing the machine: it will terminate successfully
(or fail if there is not enough memory) with a trace of I/O events (io_events) such
that if we replay those events on the initial file system, we obtain a resulting file
system fs ′ for which the string “Certificate OK\n” is printed on standard output
if and only if Check_Certificate succeeds on the lines of standard input.

4 Experimental Results

We have tested our approach against some of the past Australian Legislative
Assembly elections in the Australian Capital Territory for years 2008 and 2012
(Fig. 2).2 The certificates were produced by the Haskell program extracted from
our previous formalisation of the same protocol in Coq [11].

We also evaluated the verifier on certificates obtained through randomly gen-
erated ballots. We vary two parameters: the number of ballots and the size of
each ballot. Figure 3 shows the results on certificates where the number of candi-
dates is fixed at 20, vacancies are 5, and the length of each ballot is 12. Also we
2 Tests were conducted on one core of an Intel Core i7-7500U CPU 2.70 GHz× 4

Ubuntu 16.4 LTS.
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electoral ballots vacancies candidates time (sec) certificate size (MB) year
Brindabella 63334 5 19 86 54.4 2008
Ginninderra 60049 5 27 118 83.0 2008
Molonglo 88266 7 40 329 211.2 2008
Brindabella 63562 5 20 75 74.5 2012
Ginninderra 66076 5 28 191 90.1 2012
Molonglo 91534 7 27 286 158.7 2012

Fig. 2. ACT Legislative Assembly 2008 and 2012

keep the number of ballots, vacancies, and length of each ballot fixed at 100000,
1, and 10 respectively, in order to see the effect of increase in the length of each
ballot (Fig. 4). We have also implemented the protocol in an unverified certify-
ing Haskell program.3 The unverified program was then tested on ballots of the
same ACT Legislative Assembly elections. We have then verified the certificates
produced by this program for each of the districts. The result shows that the
certificates of the districts for the year 2012 are valid. Also the certificate of
Molonglo electorate 2008 is verified as correct. However, the two electorates of
Brindabella and Ginninderra 2008, despite declaring the final winners correctly,
were invalid as an error occurs in an intermediate transition on line 6 in both
certificates.

ballots certificate size time (sec)
400000 523.6 4224
200000 253.3 938
100000 131.1 461

Fig. 3. Varying number of ballots

ballot length certificate size time (sec)
6 60.2 140
12 124.0 298
18 180.5 325

Fig. 4. Varying length of each ballot

Based on the aforementioned error message, we only need to inspect a very
small part of the certificate. Upon closer inspection, we uncovered a subtle error
in the implementation of the elimination rule. On the other hand, the same
program successfully (and correctly) computes election results for other districts,
substantiating the subtlety of the error. We argue that precisely because of such
delicacies in the STV protocol and hence their implementation, we advocate that
vote counting be carried out in a certified way, with a minimal trust base such
as demonstrated in this paper.

5 Discussion

Universal verifiability is a security requirement introduced for measuring veri-
fiability of an election result by any member of the public [8]. The literature

3 Source code can be found in the Github repository given in the second page.
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on election protocol design agrees on the textual formulation of the concept,
despite the fact that they vary in the technical implementation of the prop-
erty [8]. Moreover, it is accepted that satisfaction of the property rests on ver-
ifying three subproperties, namely cast-as-intended, recorded-as-intended, and
count-as-recorded [8], and also demonstration of the eligibility verifiability as an
explicitly or implicitly stated prerequisite [16].

Our framework only aims at addressing verification of the count-as-recorded
subproperty. We do not attempt to introduce an election protocol for answering
expectations of the universal verifiability. Therefore, verification of other two
subproperties and the eligibility criterion falls outside the focus of the current
work. However, our tool can be perfectly employed by any election protocol
which accommodates STV scheme and uses Mixnets [4] for anonymising and
decrypting ballots. For example, some protocols require authorities to produce a
witness for tallying, and then verify it is a proof of correctness for the announced
tallying result [6]. Such systems can adapt certification and the checker for (a)
offering an independently checkable witness of tallying, and (b) verifying the
certificate in a provably correct way. Finally, the certificates which the checker
operates on include the exact ballots published by election authorities after the
tallying is complete, and are therefore publicly available. Hence, the certificate
would not compromise privacy concerns such as vote buying or voter coercion
any more than the existing practice of ballot publication.

The framework employs CakeML to achieve an end-to-end verification of
certificates. Therefore we prove that executable checker is verified to behave
according to its specification in HOL, which operates in a different environment.
To obtain this level of verification, we rely on the verified proof-synthesis tool of
CakeML, the mechanism for producing deeply embedded equivalent assertions
of HOL functions into CakeML environment, the Characteristic Formulae of
CakeML to assert that the pure (deeply embedded functions) behave consistently
with the impure I/O calls, and the verified compiler that generates executables
that provably respect all of the above proofs.

Furthermore, the separation of the program from proofs offered in the com-
bined CakeML and HOL environment makes our formalisation easier to under-
stand. In particular, we believe that external scrutineers should be able to exam-
ine the specification of the framework to understand what it does, rather than
having to also get to grips with CakeML proofs and computational components.
HOL4’s rich rewriting tactics and libraries also allow us to express the protocol
and discharge related proofs with a minimum amount of lines of encoding.

We have demonstrated the practical feasibility of our approach by means of
case studies. For example, the certificates of the Molonglo district, the biggest
Legislative Assembly electorate in Australia, are checked in just five minutes.

Our framework is modular in two different ways. On the one hand, the for-
malisation realises the counting scheme as a set of standalone logical rules. On
the other hand, each of the rules comprises independent assertions. Since every
STV election consists of counting, elimination, transfer, electing and declaration
of winners, we only need to change some of these rules locally to capture different
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variants. For example, the STV version used in the Senate elections of Australia
requires transfer of excess votes of an elected candidate before any other rule can
apply. This difference can be formalised in our system simply by modifying a sin-
gle component of the TRANSFER rule. So for establishing verification results, we
simply have to discharge a few correspondences in HOL. Furthermore, the steps
of translation into CakeML and the process of extracting a verified executable
remains mostly unaffected.

6 Related Work

Given that our main concern is with the count-as-recorded property, we pro-
vide an overview of existing work from the perspective of their tally verification
methods. We also compare with related work that combines theorem proving
and certified computation.

The existing certificate-producing implementations of vote counting mainly
formalise a voting protocol inside the Coq theorem prover and then prove some
desired properties about the formalised specification, and then extract the devel-
opment into Haskell [11,20,23] or OCaml [21] programs. Since the semantics of
the target and source of the extraction method differ, and there is no proof that
the translation occurs in a semantic-preserving way, verification of the specifica-
tion does not provably extend to the extracted program. Moreover, these work
are either not accompanied by a checker [11], or their checker is an unverified
Haskell/OCaml program [20,21,23]. One therefore has to trust both the extrac-
tion mechanism and the compiler used to produce the executable.

In the context of certified computation, Alkassar et al. [1] combine certified
computation and theorem proving with methods of code verification to estab-
lish a framework for validation of certifying algorithms in the C programming
language. With the help of the VCC tool [9], pre- and postconditions are gener-
ated that are syntactically generalized in the Isabelle theorem prover and then
discharged. The user has to trust the VCC tool, and there is duplication of
effort in that one has to generalise the conditions imposed by the VCC and then
implement them manually in Isabelle to prove. To ameliorate this disadvantage,
Noschinski et al. [19] replace the intermediate step where VCC is invoked by
the AutoCorres [12] verifier which provably correctly translates (part of) the C
language into Isabelle in a semantics-preserving manner. Nonetheless one has to
trust that the machine code behaviour corresponds to its top-level C encoding.

Some election protocols [8,15] do require a witness for the tallying result,
which should then be verified for correctness. Other work (e.g., [7]) implements
algorithms in programming environments such as Python. However the algo-
rithm, the correctness proof of the algorithm, and the implementation occur
in different unverified environments. Finally, Cortier et al. [6] present simple
formally stated pre- and post-conditions for elections that allow voting for one
candidate. This is done inside the dependently-typed programming language F �.
The F � environment is implemented by a compiler that translates into RDCIL,
a dialect of .NET bytecode. The verification also depends on the external SMT
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solver Z3. The size of these tools’ implementations makes for a very large trusted
code base.

7 Conclusion

Correct, publicly verifiable, transparent election count is a key constituent of
establishing trustworthiness in the final outcome. The tool developed here has
clarity in encoding, precision in formulation, and modularity in implementation
so that it can be taken as a framework for verifying STV election results down
to machine level.
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