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Abstract

With ever increasing availability of verified stacks capable of guaranteeing end-to-end
correctness on applications—like compilers (CakeML, CompCert) or even critical software
systems (seL4)—one can now realistically write a program, along with a proof describing
any desirable property, and have it compiled into a correct executable implementation of the
original program. However, most of these approaches can only really deal with sequential
programs and provide no support for reasoning about the correctness of multiple (con-
current) programs. To address these shortcomings, we propose a choreographic language
where the behavior of a system consisting of several endpoints, is described on a global
level, that can be subsequently projected and compiled into its individual components. We
are developing an end-to-end proof of correctness that ensures i) the deadlock-freedom of
the generated set of endpoints and ii) the preservation of all behavior of the system down
to the binary level. Our implementation uses the verified CakeML compiler as a backend
and takes advantages of its verified stack.

This extended abstract presents our ongoing work on connecting choreography languages
with verified stacks. Our overarching goal is to develop an environment where programmers
can write communicating systems as high-level protocol descriptions in the style of Alice →
Bob notation, and then, easily generate executable code that is formally verified to correctly
implement the protocol down to the machine-code level. To achieve our goal, we connect these
two strands of work to provide both a convenient abstraction for representing such systems,
and strong guarantees about their behaviour.

1 -- choreography

2 A[item] → B.x

3 B[price(x)] → A.y

4

5 -- projection A

6 send(B,item)

7 receive(B,y)

8

9 -- projection B

10 receive(A,x)

11 send(B,price(x))

Figure 1: price-query chore-
ography

Choreographies present a global description of the in-
teractions of a system in terms of the messages exchanged
between its components [1] (endpoints). Its syntax resem-
bles the description of a protocol, but it provides a more
concrete definition of the system. For example, in lines 2
and 3 of Figure 1, A sends B the name of an item and B sends
back its price by evaluating price(x). This choreography,
while simple, completely captures the interaction between
A and B, abstracting away individual operations like send

and receive as communications (→).
Choreographies can be thought of as protocol descrip-

tions, in the sense that they are descriptions that a set of
programs—in the form of threads, processes, servers, etc—
implement, and that as a whole, should exhibit the intended
behaviour. Nevertheless, making sure a system complies
with its specification is in general no easy task, and we have
seen time and time again examples of protocols being implemented poorly [2]. What distin-
guishes choreographies is that they are programming languages, and hence provide concrete
enough descriptions to generate implementations directly from them.
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Endpoint projection (EPP) [6] generates an implementation for a choreography by trans-
lating each endpoint into a program, that when joined through parallel composition with all
the others, should exhibit the same interactions as the original specification. This correctness
property is know as the endpoint projection theorem (EPP theorem). Additionally, choreogra-
phies prevent any mismatch between send and receive operations by construction, since the
language constructs for interaction describe the action of both parties. This in turn implies
deadlock-freedom, which extends to any projected implementations thanks to the EPP theorem.
This combination of features and guarantees is what makes choreographies a good candidate
for describing communicating systems, and an interesting subject for our verification efforts.

Verified stacks aim to produce a set of tools and techniques—involving a combination of
interactive theorem provers, SMT-solvers, and other tool-chains—that allow users to describe
programs, and through a mechanized process, generate a representation in a target language
(usually binary) while providing some formal guaranties about the behaviour of the resulting
program w.r.t. the initial specification. Some examples of verified stacks are compilers like
CakeML [4] and CompCert [5]. They provide a proof of correctness that guarantees that the
observable behaviours of the generated executables are compatible with the behaviours of the
source programs. Other approaches, like the seL4 microkernel [3], target specific programs and
can include proofs of additional properties like security or deadlock-freedom.

By connecting a choreography language with a verified stack, one could provide end-to-
end guarantees about communicating systems, using a simple and expressive interface with
convenient properties. However, most EPP results in the literature target modelling languages
like the π-calculus rather than concrete programming languages, and make no attempt to extend
the results to executable representations of the protocol participants. Furthermore, there is
limited support for representing (concurrent) interactions in most verified stacks, which restricts
their usability to only sequential programs. We aim to address these issues by providing i) to
the best of our knowledge, the first mechanized proof of the EPP theorem, ii) a proven correct
choreographic compiler, and iii) a novel approach for dealing with open system specifications.

Choreography

Endpoint calculus

EPC without choice

EPC with payload size

Figure 2: Roadmap

Our implementation uses the HOL4 theorem prover and is
comprised of a choreographic language definition that gets pro-
jected using EPP to endpoints expressed in a process algebra
which is similar to value-passing CCS, but also features explicit
locations, internal and external choice, and a more concrete rep-
resentation of data and local computations that is amenable to
code generation. From there, a sequence of verified refinements
of the endpoints gradually translates each process into concrete
CakeML code. The first step eliminates the internal and exter-
nal choice primitives by encoding them using send, receive and
if-statements. The second step compiles from a process algebra
where messages can have unlimited length to a process algebra
where messages have a (configurable) maximum payload size by
introducing a protocol which sends messages in smaller chunks.
The (by now sequential) code at each location is translated into
a functional program in the CakeML language. Finally, we can
use the verified CakeML compiler [8] as a backend to compile the
functional representation into concrete machine code for main-
stream architectures (including x86-64 and ARMv8) such that the

2



Connecting Choreography Languages With Verified Stacks A. Gómez-Londoño and J. Åman Pohjola

machine code preserves the observable behaviour of the CakeML
program. By connecting the correctness proofs for each of these
intermediate steps, we can obtain a top-level correctness statement that the communication
behaviour and deadlock freedom properties of the choreography are preserved down to the
machine code that runs it.

Local computations (e.g: price(x) in Figure 1) are shallowly embedded as functions in
higher-order logic, hence can be directly translated by CakeML’s proof-producing synthesis
tool [7], or left underspecified to model external components. Finally, the underlying send and
receive operations are implemented using CakeML’s foreign function interface, which allows
their use to be back-end agnostic (sockets, IPC, etc).

A high-level roadmap of our work is described in Figure 2, where each arrow signals a
proof of semantic correspondence between the intermediate representations. Downwards arrows
are semantic preservation proofs, and upward arrows are semantic reflection. Dashes account
for sections pending verification. Additionally, proofs of confluence, deadlock-freedom, and
structural congruence laws are in place for the semantics of our choreography language, and an
extension for the CakeML FFI is being develop to allow for parameterized send and receive

specifications.

In conclusion, by building on top of a flexible and robust verified stack like CakeML, and
taking advantage of the strong guarantees and ease of use of choreographies, we believe this
work will make the task of developing and maintaining verified systems a much more simple
and cost-effective one.
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